
Dynamic Memory and
Arrays

What are real-world examples of classes and
abstractions?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

 arrays

 dynamic memory
 management

linked data structures

Roadmap

Life after CS106B!
Core
Tools

User/client
Implementation

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

We've now crossed the
abstraction boundary!

 arrays

 dynamic memory
 management

linked data structures

Roadmap

Life after CS106B!
Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

● You can do so much with
the ADTs that you have!
○ Write code that sorts names in the

U.S. census
○ Use stacks, grids to search for

optimal paths in a maze
○ Generate combinations recursively

using sets

● You used their interfaces.

Readymade containers are great!

But how are those containers implemented?

● We’ll need to learn about more basic building
blocks in C++: arrays, pointers.

● Tomorrow, we’re building our own vector!

And what if we need custom containers / objects?

● We have to define our own classes.
● A4, you’ll be building a priority queue class!

For example, Google Chrome

Going under the hood

● We’ll need to learn
about more basic
building blocks in
C++.

● We’ll need more
control of memory
management.

Going under the hood

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Today’s
question

What are the fundamental
building blocks of data
storage provided by C++?

Today’s
topics

1. Review

2. Dynamic Allocation

3. Arrays

4. Pointers

Review

abstraction
Design that hides the details of how

something works while still allowing the user
to access complex functionality

Definition

How do we accomplish this in
C++? With classes!

class
A class defines a new data type for our

programs to use.

Definition

encapsulation
The process of grouping related information

and relevant functions into one unit and
defining where that information is accessible

Definition

Another way to think about classes...

● A blueprint for a new type of C++ object!
○ The blueprint describes a general structure, and we can create

specific instances of our class using this structure.

instance
When we create an object that is our new type,

we call this creating an instance of our class.

Definition

A class is a type that you define

● Every class has two parts:
○ an interface specifying what operations can be performed on instances of

the class (this defines the abstraction boundary)
○ an implementation specifying how those operations are to be performed

● The only difference between structs + classes are the encapsulation defaults.
○ A struct defaults to public members (accessible outside the struct itself).
○ A class defaults to private members (accessible only inside the class

implementation).

Three main parts

● Member variables
○ These are the variables stored within the class
○ Usually not accessible outside the class implementation

● Member functions (methods)
○ Functions you can call on the object
○ E.g. vec.add(), vec.size(), vec.remove(), etc.

● Constructor
○ Gets called when you create the object
○ E.g. Vector<int> vec;

How do we design a class?
We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

In general, classes are useful in helping us with complex programs where
information can be grouped into objects.

Classes in C++

● Defining a class in C++ (typically) requires two steps:
○ Create a header file (typically suffixed with .h) describing what

operations the class can perform and what internal state it needs.
○ Create an implementation file (typically suffixed with .cpp) that

contains the implementation of the class.

● Clients of the class can then include (using the #include directive)
the header file to use the class.

Struct vs class?

“A class feels like a living and
responsible member of society with
intelligent services, a strong
encapsulation barrier, and a well defined
interface.”

“A struct simply feels like an
open pile of bits with very
little in the way of
encapsulation or
functionality.”

CPP Wiki

● The only difference between structs + classes are the encapsulation defaults.
○ A struct defaults to public members (accessible outside the struct itself).
○ A class defaults to private members (accessible only inside the class

implementation).

https://isocpp.org/wiki/faq/classes-and-objects

Structs vs. classes (BankAccount)

struct BankAccountStruct {
 string name;
 double amount;
};

class BankAccount {
public:
 BankAccount(string name, double amount);
 void deposit(double depositAmount);
 void withdraw(double withdrawlAmount);
 void transfer(double transferAmount,
 BankAccount& recipient);

 double getAmount() const;
 string getName() const;

private:
 string name;
 double amount;
};

Structs vs. classes (BankAccount)

struct BankAccountStruct {
 string name;
 double amount;
};

class BankAccount {
public:
 BankAccount(string name, double amount);
 void deposit(double depositAmount);
 void withdraw(double withdrawlAmount);
 void transfer(double transferAmount,
 BankAccount& recipient);

 double getAmount() const;
 string getName() const;

private:
 string name;
 double amount;
};

Better encapsulation! Error
checking + limitations!

No direct
access to
private data!

Controlled
access!

Final Takeaways

● The constructor is a specially defined method for classes that initializes the
state of new objects as they are created.

○ Often accepts parameters for the initial state of the fields.
○ Special naming convention defined as ClassName()
○ You can never directly call a constructor, but one will always be called when declaring a new

instance of an object

● this
○ Refers to the current instance of an object that a method is being called on
○ Similar to the self keyword in Python and the this keyword in Java
○ Syntax: this->memberVariable
○ Common usage: In the constructor, so parameter names can match the names of the object's

member variables.

RandomBag Revisited

#pragma once
#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size() const;
 bool isEmpty() const;

private:
 Vector<int> elems;
};

#pragma once
#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size() const;
 bool isEmpty() const;

private:
 Vector<int> elems;
};

What are the fundamental
building blocks of data storage

provided by C++?

Getting Storage Space

Getting Storage Space

● The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.

Getting Storage Space

● The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.

● That storage space is acquired using dynamic memory allocation.

Getting Storage Space

● The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.

● That storage space is acquired using dynamic memory allocation.

● Essentially:
○ You can, at runtime, ask for extra storage space, which C++ will give to you.
○ You can use that storage space however you’d like.
○ You have to explicitly tell the language when you’re done using the memory.

Arrays

Arrays

● Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called arrays

Arrays

● Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called arrays

● An array is a contiguous chunk of space in the computer's memory, split into
slots, each of which can contain one piece of information

○ Contiguous means that each slot is located directly next to the others. There are no "gaps".
○ All arrays have a specific type. Their type dictates what information can be held in each slot.
○ Each slot has an "index" by which we can refer to it.

Arrays

● Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called arrays

● An array is a contiguous chunk of space in the computer's memory, split into
slots, each of which can contain one piece of information

○ Contiguous means that each slot is located directly next to the others. There are no "gaps".
○ All arrays have a specific type. Their type dictates what information can be held in each slot.
○ Each slot has an "index" by which we can refer to it.

Arrays

● Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called arrays

● An array is a contiguous chunk of space in the computer's memory, split into
slots, each of which can contain one piece of information

○ Contiguous means that each slot is located directly next to the others. There are no "gaps".
○ All arrays have a specific type. Their type dictates what information can be held in each slot.
○ Each slot has an "index" by which we can refer to it.

0 1 2 3 4 5 6Index:

Dynamically Allocating Arrays

Dynamically Allocating Arrays

● First, declare a variable that will point at the newly-allocated array. If
the array elements have type Type, the pointer will have type
Type*.
○ e.g. int*, string*, Vector<double>*

Dynamically Allocating Arrays

● First, declare a variable that will point at the newly-allocated array. If
the array elements have type Type, the pointer will have type
Type*.
○ e.g. int*, string*, Vector<double>*

● Then, create a new array with the new keyword and assign the
pointer to point to it.

Dynamically Allocating Arrays

● First, declare a variable that will point at the newly-allocated array. If
the array elements have type Type, the pointer will have type
Type*.
○ e.g. int*, string*, Vector<double>*

● Then, create a new array with the new keyword and assign the
pointer to point to it.

● In two separate steps:
Type* arr;
arr = new Type[size];

Dynamically Allocating Arrays

● Declare a variable that will point at the newly-allocated array. If the
array elements have type Type, the pointer will have type Type*.
○ e.g. int*, string*, Vector<double>*

● Then, create a new array with the new keyword and assign the
pointer to point to it.

● In two separate steps:
Type* arr;
arr = new Type[size];

● Or, in the same line:
Type* arr = new Type[size];

Pointers

Pointers

● A pointer is a brand new data type that becomes very prominent when
working with dynamically allocated memory.

Pointers

● A pointer is a brand new data type that becomes very prominent when
working with dynamically allocated memory.

● Just like all other data types, pointers take up space in memory and can store
specific values.

Pointers

● A pointer is a brand new data type that becomes very prominent when
working with dynamically allocated memory.

● Just like all other data types, pointers take up space in memory and can store
specific values.

● The meaning of these values is what's important. A pointer always stores a
memory address, which is like the specific coordinates of where a piece of
memory exists on the computer.

Pointers

● A pointer is a brand new data type that becomes very prominent when
working with dynamically allocated memory.

● Just like all other data types, pointers take up space in memory and can store
specific values.

● The meaning of these values is what's important. A pointer always stores a
memory address, which is like the specific coordinates of where a piece of
memory exists on the computer.

● Thus, they quite literally "point" to another location on your computer.

Announcements

Announcements

● Midterm grades
○ Grades will be released shortly after class today via Gradescope (should receive email)
○ We want you to go through your feedback and reflect on your learning/mastery!
○ To encourage this, your section leaders will be offering mid-quarter check-in meetings

■ Meet with your SL and discuss your midterm performance, your thoughts on your mastery
of the content from the first 5 weeks, your plans for the rest of the quarter, etc.

■ If you attend AND engage in thoughtful discussion you earn back ⅓ the missed points.
■ To participate: submit a brief reflection (2-3 sentences is fine) on areas you want to

focus on to the “Midterm Check-In” assignment on Paperless. Then use the IG
Scheduling feature to sign up for time slot with your SL.

● Assignment 3 is due Tuesday, July 19 at 11:59pm with a 24-hour grace.
● Final Project Proposal due Sunday, July 24 at 11:59 pm.
● Weekly announcements will be posted tonight.

Dynamic Allocation
Example

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t ?

st
ri

ng
*

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t ?

st
ri

ng
*

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

?

st
ri

ng
*

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

0x8084ffff

st
ri

ng
*

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

0 1 2 3 4 5 6Index:

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

0 1 2 3 4 5 6Index:

Because the variable arr
points to the array, it is

called a pointer.

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

0 1 2 3 4 5 6Index:

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

0 1 2 3 4 5 6Index:

i

0in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

0 1 2 3 4 5 6Index:

i

0in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We

0 1 2 3 4 5 6Index:

i

0in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We

0 1 2 3 4 5 6Index:

i

0in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We

0 1 2 3 4 5 6Index:

i

1in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We

0 1 2 3 4 5 6Index:

i

1in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can

0 1 2 3 4 5 6Index:

i

1in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can

0 1 2 3 4 5 6Index:

i

1in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can

0 1 2 3 4 5 6Index:

i

2in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can

0 1 2 3 4 5 6Index:

i

2in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance

0 1 2 3 4 5 6Index:

i

2in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance

0 1 2 3 4 5 6Index:

i

2in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance

0 1 2 3 4 5 6Index:

i

3in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance

0 1 2 3 4 5 6Index:

i

3in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If

0 1 2 3 4 5 6Index:

i

3in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If

0 1 2 3 4 5 6Index:

i

3in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If

0 1 2 3 4 5 6Index:

i

4in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If

0 1 2 3 4 5 6Index:

i

4in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We

0 1 2 3 4 5 6Index:

i

4in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We

0 1 2 3 4 5 6Index:

i

4in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We

0 1 2 3 4 5 6Index:

i

5in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We

0 1 2 3 4 5 6Index:

i

5in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want

0 1 2 3 4 5 6Index:

i

5in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want

0 1 2 3 4 5 6Index:

i

5in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want

0 1 2 3 4 5 6Index:

i

6in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want

0 1 2 3 4 5 6Index:

i

6in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want To

0 1 2 3 4 5 6Index:

i

6in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want To

0 1 2 3 4 5 6Index:

i

6in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want To

0 1 2 3 4 5 6Index:

i

7in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want To

0 1 2 3 4 5 6Index:

i

7in
t

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want To

0 1 2 3 4 5 6Index:

7in
t

0: We
1: Can
2: Dance
3: If
4: We
5: Want
6: To

0x8084ffff

int main() {
 int numValues = getInteger("How many lines? ");
 string* arr = new string[numValues];
 for (int i = 0; i < numValues; i++) {
 arr[i] = getLine("Enter a string: ");
 }
 for (int i = 0; i < numValues; i++) {
 cout << i << ": " << arr[i] << endl;
 }
}

numValues

7in
t

arr

st
ri

ng
*

We Can Dance If We Want To

0 1 2 3 4 5 6Index:

7in
t

0x8084ffff

Arrays
● Arrays are allocated with a fixed size that you can’t

subsequently change.
● Even though arrays have a fixed size, C++ does not make

that size available to the programmer.
○ As a result, programs that work with arrays typically

need an additional variable to keep track of the
number of elements.

● When we use arrays to build classes, you use pointers and
new to allocate and keep track of the memory

● C++ performs no built-in bounds-checking to ensure that
the elements you select are actually present in the array.

Attendance ticket:
https://tinyurl.com/whylearnarray

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/whylearnarray

Pitfalls and Dangers

Pitfalls and Dangers

Pitfalls and Dangers

● C++’s language philosophy prioritizes speed over safety and simplicity.

Pitfalls and Dangers

● C++’s language philosophy prioritizes speed over safety and simplicity.

● The array you get from new[] is fixed-size: it can neither grow nor
shrink once it’s created.
○ The programmer’s version of “conservation of mass.”

Pitfalls and Dangers

● C++’s language philosophy prioritizes speed over safety and simplicity.

● The array you get from new[] is fixed-size: it can neither grow nor
shrink once it’s created.
○ The programmer’s version of “conservation of mass.”

● The array you get from new[] has no bounds-checking. Walking off the
beginning or end of an array triggers undefined behavior.

Pitfalls and Dangers

● C++’s language philosophy prioritizes speed over safety and simplicity.

● The array you get from new[] is fixed-size: it can neither grow nor
shrink once it’s created.
○ The programmer’s version of “conservation of mass.”

● The array you get from new[] has no bounds-checking. Walking off the
beginning or end of an array triggers undefined behavior.

What are potential examples of "undefined behavior"
that could occur if you access beyond the bounds of an
array? (select all that apply)
● Nothing happens
● You get a random (garbage) value back
● Your program crashes
● You make your computer vulnerable to a hacker

takeover
● You make the front page of the New York Times

A brief interlude for
some ethics + real
world consequences...

How to take down the internet (in 1988)
1. Many programs were not “memory-safe” back then.

a. Programs would let you access memory on the computer that you shouldn’t have access to

2. Find an array/buffer that lets you access memory you shouldn’t have access to.

3. Inject some malicious code right after that array.
a. The computer will get tricked into running the code.

4. Accidentally add a bug that eats up all of the memory on each host computer.
5. Crash the entire internet.

"Responsible" Hacking

● The story of Robert Morris and his Internet Worm illustrates the core dilemma
at the heart of security research

● Identifying and exposing security vulnerabilities is very important!

● Exposing security vulnerabilities in an irresponsible manner can result in
devastating damages (monetary, physical, etc.)

● Responsible Disclosure: a vulnerability disclosure model in which a
vulnerability or an issue is disclosed only after a period of time that allows for
the vulnerability or issue to be patched or mended.

Back to our regularly
scheduled
programming...

Memory from the Stack vs. Heap

Memory from the Stack vs. Heap

Vector<string> varOnStack;

● Until today, all variables we’ve
created get defined on the stack

● This is called static memory allocation

● Variables on the stack are stored
directly to the memory and access to
this memory is very fast

● We don’t have to worry about
memory management

Memory from the Stack vs. Heap

Vector<string> varOnStack;

● Until today, all variables we’ve
created get defined on the stack

● This is static memory allocation

● Variables on the stack are stored
directly to the memory and access to
this memory is very fast

● We don’t have to worry about
memory management

string* arr = new string[numValues];

● We can now request memory from the
heap

● This is dynamic memory allocation

● We have more control over variables on
the heap

● But this means that we also have to
handle the memory we’re using carefully
and properly clean it up when done

Cleaning Up

Cleaning Up

● When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.

Cleaning Up

● When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.
○ Memory allocation is the process by which the computer hands you a piece of

computer memory in which you can store data.

Cleaning Up

● When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.
○ Memory allocation is the process by which the computer hands you a piece of

computer memory in which you can store data.
○ Memory deallocation is the process by which control of this memory (data storage

location) is relinquished back to the computer

Cleaning Up

● When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.

● When using new, you are responsible for deallocating the memory
you allocate.

Cleaning Up

● When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.

● When using new, you are responsible for deallocating the memory
you allocate.

● If you don't, you get a memory leak. Your program will never be
able to use that memory again.
○ Too many leaks can cause a program to crash – it’s important to not leak

memory!

Cleaning Up

● You can deallocate (free) memory with the delete[] operator:

delete[] arr;

● This destroys the array pointed to by the given pointer, not the pointer itself.
○ You can think of this operation as relinquishing control over the memory back to the computer.

arr

?in
t* 137

42

42

Cleaning Up

● You can deallocate (free) memory with the delete[] operator:

delete[] arr;

● This destroys the array pointed to by the given pointer, not the pointer itself.
○ You can think of this operation as relinquishing control over the memory back to the computer.

ptr

?in
t* 137

42

42

delete[]

Cleaning Up

● You can deallocate (free) memory with the delete[] operator:

delete[] arr;

● This destroys the array pointed to by the given pointer, not the pointer itself.
○ You can think of this operation as relinquishing control over the memory back to the computer.

ptr

?in
t* 137

42

42

Dynamic
Deallocation!

delete[]

Cleaning Up

● You can deallocate (free) memory with the delete[] operator:

delete[] arr;

● This destroys the array pointed to by the given pointer, not the pointer itself.
○ You can think of this operation as relinquishing control over the memory back to the computer.

arr

?in
t*

Cleaning Up

● You can deallocate (free) memory with the delete[] operator:

delete[] arr;

● This destroys the array pointed to by the given pointer, not the pointer itself.
○ You can think of this operation as relinquishing control over the memory back to the computer.

arr

?in
t*

arr is now a dangling pointer. We
can re-assign it to point somewhere
else, but if we try to read from it or
write to it, very bad, bad things will
happen!

Takeaways

● You can create arrays of a fixed size at runtime by using new[].

● C++ arrays don’t know their lengths and have no bounds-checking. With great
power comes great responsibility.

● You are responsible for freeing any memory you explicitly allocate by calling
delete[].

● Once you’ve deleted the memory pointed at by a pointer, you have a dangling
pointer and shouldn’t read or write from it.

Summary

Dynamic Memory and Arrays

● We’ve learned about classes, which have an interface and implementation.

Dynamic Memory and Arrays

● We’ve learned about classes, which have an interface and implementation.

● When implementing classes at the lowest level of abstraction, we need to use
dynamic memory as a fundamental building block for specifying how much
memory something needs.
○ We use the keyword new to allocate dynamic memory.
○ We keep track of that memory with a pointer. (more on pointers next week!)
○ We must clean up the memory when we’re done with delete.

Dynamic Memory and Arrays

● We’ve learned about classes, which have an interface and implementation.

● When implementing classes at the lowest level of abstraction, we need to use
dynamic memory as a fundamental building block for specifying how much
memory something needs.
○ We use the keyword new to allocate dynamic memory.
○ We keep track of that memory with a pointer. (more on pointers next week!)
○ We must clean up the memory when we’re done with delete.

● So far, we’ve learned how to allocate dynamic memory using arrays, which
give us a contiguous block of memory that all stores one particular type (int,
string, double, etc.).

What’s next?

Get ready to build a vector!

Arrays vs. Vectors

● Arrays are a very necessary tool to use if we want to actually store
information in a structured way in a program.

● Vectors are a great abstraction, providing helpful methods and a clean
interface that other programmers can use to solve interesting
problems.

● Idea: Let's use a dynamically allocated array as the underlying method
of data storage for a Vector class. Best of both worlds!

Implementing a Dynamic ADT

