Priority Queues and Heaps

What is an example of a real-world system where
you need to put people in a ranked or prioritized
order?

https://pollev.com/cs106bpolls

_ -
"What is an example of a real-world system where you need

to put people in a ranked or prioritized order?

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm

Roadmap

arrays

dynamic memory
management

linked data structures

Life after CS106B/

How can we make use of
multiple levels of
abstraction to build better

Today’s ADTs?
guestions

How do we implement
algorithms for prioritizing
data?

Today'’s
topics

Review (OurVector)

Priority Queues

Binary Heaps

Human Prioritization
Algorithms

Review

[implementing OurVector]

What is OurVector?

e Goal: Implement own version of the Stanford C++ Vector

e Scope Constraints:
o We will only implement a subset of the functionality that the Stanford Vector

provides.
O OurVector can and is not be configurable to store other

types.

OurVector Header File

class OurVector {
public:
OurVector () ;
~QurVector () ;
void add(int wvalue) ;
void insert(int index, int wvalue);
int get(int index);
void remove (int index) ;
int size();
bool isEmpty () ;
private:
int* elements;
int allocatedCapacity;
int numItems;

};

Review: OurVector internal state

198 106 -3 27 4 g g ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4 vec.insert (0, 198);

Dynamic Array Growth

Find another, larger shell.
Move all their stuff into the
new shell.

Leave the old shell on the
seafloor.

Update their address with the
Hermit Crab Postal Service.
Make note of their new shell's
spacious capacity by posting
on Hermit Crab Instagram.

Dynamic Array Growth

77 v void OurVector::expand() {

78 // 1. Create a new, larger array. Usually we choose to double the current size.
79 int* newElements = new int[Z * allocatedCapacity];

80 // 2. Copy the old array elements to the new array.

81 v for (int 1 = 0; 1 < numItems; i++) {

82 newElements[i] = elements[i];

83 }

84 // 3. Delete (free) the old array.

85 delete[] elements;

86 // 4. Point the old array variable to the new array.

87 elements = newElements;

88 // 5. Update the associated capacity variable for the array.
89 allocatedCapacity *= Z;

2 }

Implementing ADT Classes

e The first step of implementing an ADT class (as with any class) is answering the
three important questions regarding its public interface, private member
variables, and initialization procedures.

e Most ADT classes will need to store their data in an underlying array. The
organizational patterns of data in that array may vary, so it is important to

illustrate and visualize the contents and any operations that may be done.

e The paradigm of "growable" arrays allows for fast and flexible containers with
dynamic resizing capabilities that enable storage of large amounts of data.

. What about more complex
Implementing ADT Classes ADTe?

e The first step of implementing an ADT class (as with any class) is answering the
three important questions regarding its public interface, private member
variables, and initialization procedures.

e Most ADT classes will need to store their data in an underlying array. The
organizational patterns of data in that array may vary, so it is important to

illustrate and visualize the contents and any operations that may be done.

e The paradigm of "growable" arrays allows for fast and flexible containers with
dynamic resizing capabilities that enable storage of large amounts of data.

Multiple Levels of Abstraction

Levels of abstraction

Abstract Data
Structures

R R

Abstraction botmdary for Data Organization

Strategies
the ucer g

Fundamental C++
Data Storage

Levels of abstraction

What is the interface for the user?
(Vectors, Sets, Queues, Grids, etc.)

____{.____

Data Organization
Strategies

Fundamental C++
Data Storage

Levels of abstraction

What is the interface for the user?
(Priority Queue)

____{.____

What youll focus on Data Organization
for Ascignment 4 Strategies

Fundamental C++
Data Storage

Levels of abstraction

What is the interface for the user? Abstract Data
(Priority Queue) Structures

____{.____

How is our data organized?
(sorted array, binary heap)

Fundamental C++
Data Storage

Levels of abstraction

What is the interface for the user? Abstract Data
(Priority Queue) Structures
How is our data organized? Data Organization
(sorted array, binary heap) Strategies

What stores our data?
(arrays, linked lists, etc.)

Levels of abstraction

What is the interface for the user? Abstract Data
(Priority Queue) Structures
How is our data organized? Data Organization
(sorted array, binary heap) Strategies

What stores our data?
(arrays)

Levels of abstraction

What is the interface for the user? Abstract Data
() Structures
How is our data organized? Data Organization
(sorted array,) Strategies
What well

Fundamental C++

ores our data?
focus on foala}’-/ Data Storage

(arrays)

Priority Queues

What is a priority queue?

® A queue that orders its elements based on a provided “priority”

What is a priority queue?

® A queue that orders its elements based on a provided “priority”

e Like regular queues, you cannot index into them to get an item at a particular
position.

Where are they used?

e Medical queues: ER waiting rooms, organ matches, vaccine availability

Hospital Emergency Queue

The person who requires quick medical
attention will be treated immediately!

Where are they used?

e Medical queues: ER waiting rooms, organ matches, vaccine availability

e Different airline boarding groups (families and first class passengers, frequent
flyers, boarding group A, boarding group B, etc.)

Where are they used?

e Medical queues: ER waiting rooms, organ matches, vaccine availability

e Different airline boarding groups (, frequent
flyers, boarding group A, boarding group B, etc.)

Individval data points can have the same priority!

Where are they used?

e Medical queues: ER waiting rooms, organ matches, vaccine availability

e Different airline boarding groups (families and first class passengers, frequent
flyers, boarding group A, boarding group B, etc.)

e Filtering data to get the top X results (e.g. most popular Google searches or
fastest times for the Women’s 800m freestyle swimming event)

Where are they used?

Medical queues: ER waiting rooms, organ matches, vaccine availability

Different airline boarding groups (families and first class passengers, frequent
flyers, boarding group A, boarding group B, etc.)

Filtering data to get the top X results (e.g. most popular Google searches or
fastest times for the Women’s 800m freestyle swimming event)

College admissions

Social assistance programs

i LAHSA Coordinated Entry System @ Help > N Signin

SO0 About GetHelp Regional Info Documents Tools for Providers Dashboards

THE HOMELESS CRISIS RESPONSE SYSTEM FOR LOS ANGELES COUNTY

The Coordinated Entry System (CES) facilitates the coordination and management of resources and services through the crisis response system.
CES allows users to efficiently and effectively connect people to interventions that aim to rapidly resolve their housing crisis.

CES works to connect the highest need, most vulnerable persons in the community to available housing and supportive services equitably.

Los Angeles County Coordinated
Entry System (CES)

An electronic registry of unhoused persons who are applying or have
applied to housing support programs offered by Los Angeles County.

Slides adapted from Katie Creel and Diana Acosta-Navas

How does it work?

Ranking Matching

Algorithm uses Risk score is used
personal data to to prioritize and
assign a number assign housing and
from 1-17, least housing related
vulnerable tomost services.
vulnerable.

How does it work?

Ranking

Algorithm uses Risk score is used
personal data to to prioritize and
assign a number assign housing and
from 1-17, least housing related
vulnerable tomost services.
vulnerable.

Values in technology

e Design decisions encode values that express what we care about.

Aesthetic

Attention econom , :
‘ Community-creation

Free speech

- Privacy
. Data aggregation
Social justice SHEE
Personalization

Competitive popularity

Values in technology

e Design decisions encode values that express what we care about.

e These values can reveal our assumptions about the world and the people who
will be interacting with our design and benefiting from it.

Values in technology

e Design decisions encode values that express what we care about.

e These values can reveal our assumptions about the world and the people who
will be interacting with our design and benefiting from it.

e Despite the best intentions, sometimes design decisions have unintended
consequences that evoke different values than those of the original creators.

Values in technology

e Design decisions encode values that express what we care about.

e These values can reveal our assumptions about the world and the people who
will be interacting with our design and benefiting from it.

e Despite the best intentions, sometimes design decisions have unintended
consequences that evoke different values than those of the original creators.

In the case of priority queues, the ‘priorities” themgselves represent a
very explicit valve ryg’tem./

For now, we’ll assume
we have the priorities...

Three fundamental operations

e enqueue(priority, elem):inserts elem with given priority

e dequeue(): removes the element with the highest priority from the queue

e peek(): returns the element with the highest priority in the queue without
removing it

Less fundamental operations

e size(): returns the number of elements in the queue

e isEmpty(): returns true if there are no elements in the queue, false otherwise

e clear(): empties the queue

How do we design PriorityQueue?

1. Member functions: What public interface should PriorityQueue
support? What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in PriorityQueue?

3. Constructor: How are the member variables initialized when a new
instance of PriorityQueue is created?

How do we design PriorityQueue?

1. : What public interface should PriorityQueue
support? What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in PriorityQueue?

3. Constructor: How are the member variables initialized when a new
instance of PriorityQueue is created?

Well ,bkovic/e the ,baé//c interface...

How do we design PriorityQueue?

2. . What private information will we need to store in
order to keep track of the data stored in PriorityQueue?

3. : How are the member variables initialized when a new
instance of PriorityQueue is created?

You get o decide on the implementation details!

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

e Idea: We can keep a sorted array where the elements are in order of their

priority (highest priority is at the end of the array)!
o Dequeue will be fast — just get the last element in the array.
o But every time we enqueue something, we have to adjust the entire array...

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

e Idea: We can keep a sorted array where the elements are in order of their

priority (highest priority is at the end of the array)!
o Dequeue will be fast — just get the last element in the array.
o But everytime we something, we have to adjust the entire array...

,K Youll get to implement this

on the acsignment!

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

e Idea: We can keep a sorted array where the elements are in order of their

priority (highest priority is at the end of the array)!
o Dequeue will be fast — just get the last element in the array.
o But every time we enqueue something, we have to adjust the entire array...

e Can we do better?

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

e Idea: We can keep a sorted array where the elements are in order of their

priority (highest priority is at the end of the array)!
o Dequeue will be fast — just get the last element in the array.
o But every time we enqueue something, we have to adjust the entire array...

e Can we do better? (yes!)

There are multiple pocsible implementations for the came ADT!

Levels of abstraction

What is the interface for the user? Abstract Data
(Priority Queue) Structures

____{.____

How is our data organized?
(sorted array,)

Fundamental C++
Data Storage

What stores our data?
(arrays)

Announcements

Announcements

e Midterm regrade requests are due Friday by 11:59pm.
o If you opt into mid-quarter check-ins, you must also sign up to meet with your

section leader via the |G scheduling feature on Paperless. Reach out to your
section leader if there aren’t times available yet!

e Assignment 2 revisions are due Friday, July 22 at 11:59pm.

e The final project proposals are due Sunday, July 24 at 11:59pm. Please read the full
guidelines on the course website.

e Assignment 4 was released on last night and is due next Tuesday, July 26 at 11:59pm.
o YEAH hours are today at 5pm in Hewlett 103. (Note the not-typical room!)

Binary Heaps

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

e Additional properties
o Binary: Two children per parent (but no implied orderings between siblings)

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

e Additional properties
o Binary: Two children per parent (but no implied orderings between siblings)
o Completely filled (each parents must have 2 children) except for the bottom level,
which gets populated from left to right

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

e Additional properties
o Binary: Two children per parent (but no implied orderings between siblings)
o Completely filled (each parents must have 2 children) except for the bottom level,
which gets populated from left to right

e Two types = which we use depends on what we define as a “higher” priority
o Min-heap: smaller numbers = higher priority (closer to the root)
o Max-heap: larger numbers = higher priority (closer to the root)

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

e Additional properties
o Binary: Two children per parent (but no implied orderings between siblings)
o Completely filled (each parents must have 2 children) except for the bottom level,
which gets populated from left to right

e Two types = which we use depends on what we define as a “higher” priority
© : smaller numbers = higher priority (closer to the root)
o Max-heap: larger numbers = higher priority (closer to the root)

Spot the Valid Min-Heap

{"a "’ 4]

O

{"b"’ 6]

N

{"d "’ 7}

{"e"’ 9:}

Heap 1

{"C", 8}

{"a"’ 4}

\
/

{" b", 6}

{"d ", 7}

{"e"’ 5}

Heap 2

{"C", 8}

Spot the Valid Min-Heap

root nodes
{"a", 4} {"a", 4}
{"b", 6} {"c", 8} {"b", 6} {"c", 8}
{"d", 7} {"e", 9} {"d", 7} {"e", 5}
Heap 1 Heap 2

Spot the Valid Min-Heap

children of
("a" 4} the root ('a", 4}
N / nodec\ N
{"b", 6} {"c", 8} {"b", 6} {"c", 8}
{"d", 7} {"e", 9} {"d", 7} {("e", 5}
Heap 1 Heap 2

Spot the Valid Min-Heap

{"a "’ 4]

O

{"b"’ 6]

N

{"d "’ 7}

{"e"’ 9:}

Heap 1

{"C", 8}

{"a"’ 4}

\
/

{" b", 6}

{"d ", 7}

{"e"’ 5}

Heap 2

{"C", 8}

@ When poll is active, respond at pollev.com/cs106bpolls

Which of these heaps is a valid min-heap?

Heap

Heap

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Spot the Valid Min-Heap

{"a "’ 4]

O

{"b"’ 6]

N

{"d "’ 7}

{"e"’ 9:}

Heap 1

{"C", 8}

{"a"’ 4}

\
/

{" b", 6}

{"d ", 7}

{"e"’ 5}

Heap 2

{"C", 8}

Thic efement i¢

Spot the Valid Min-Heap

not smaller than
both ite children!

{"a", 4} X {("a", 4}
{"b", 6} {"c", 8} {"b", 6} {"c", 8}
{"d", 7} {"e", 9} {"d", 7} {"e", 5}
Heap 1 Heap 2

Spot the Valid Min-Heap (Round 2)

{"a "’ 4] {"a"’ 4}

— O

{"b"’ 6] {"b"’ 6} {"C", 8}

N

{"d"’ 9} {"e", 10}

Heap 1 Heap 2

Spot the Valid Min-Heap (Round 2)

{"a "’ 4] {"a"’ 4}

— O

{"b"’ 6] {"b"’ 6} {"C", 8}

N

{"d"’ 9} {"e", 10}

Heap 1 Heap 2

@ When poll is active, respond at pollev.com/cs106bpolls

Which of these heaps is a valid min-heap?

Heap

Heap

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Spot the Valid Min-Heap (Round 2)

{"a "’ 4] {"a"’ 4}

— O

{"b"’ 6] {"b"’ 6} {"C", 8}

N

{"d"’ 9} {"e", 10}

Heap 1 Heap 2

Spot the Valid Min-Heap (Round 2)

{"a "’ 4] {"a", 4}

— O

{"b"’ 6] {"b"’ 6} {"C", 8}

N
7> |rdne| (e 10)

This level of the

heap is not

Heap 1 Heap 2

complete

Binary heaps and
iImplementation

Binary heaps and implementation

What is the interface for the user? Abstract Data
(Priority Queue) Structures

____{.____

How is our data organized?
(sorted array,)

Fundamental C++
Data Storage

What stores our data?
(arrays)

Binary heaps and implementation

What is the interface for the user? Abstract Data
(Priority Queue) Structures
How is our data organized? Data Organization
() Strategies

What stores our data?

(arrays)
D

Binary heaps + implementation

e Binary heaps are both another way to implement PriorityQueue and also an
abstraction on top of arrays!

Binary heaps + implementation

e Binary heaps are both another way to implement PriorityQueue and also an
abstraction on top of arrays!

e Later, we will see a different approach to storing tree structures, but for heaps
(which look like trees), the best solution is actually a simple array.
o The reason for this is because of the complete nature of the structure,
with all levels filled from left to right.

Binary heaps + implementation

e Binary heaps are both another way to implement PriorityQueue and also an
abstraction on top of arrays!

e Later, we will see a different approach to storing tree structures, but for heaps
(which look like trees), the best solution is actually a simple array.

o The reason for this is because of the complete nature of the structure,
with all levels filled from left to right.

How are parente and children in the tree related in the array?

Binary heaps + implementation

{"a"’ 4}

O

{"b"’ 6} {"C", 8}

N

{"d"’ 7} {"e"’ 9}

{"a”, 4} | {"b", 6} {*c”, 8} | {"d", 7} | {"€”, 9}

0] 1 2 3 4

Binary heaps + implementation

{nan’ 4} Parent index: O
Left child: 1
/\ Right child: 2
{:"b"’ 6} ‘["C", 8}
{"d"’ 7} {"e"’ 9}

(a4 (0.6} {c.8 ("7} (e,

0] 1 2 3 4

Binary heaps + implementation

{"a"’ 4}
i "Wt Parent index: 1
('p" 6} ("c", 8) Left child: 3
/\ Right child: 4
{"d"’ 7} {"e"’ 9}

(. 4) (b6} (.8 ("7} (e, 9}

0] 1 2 3 4

Binary heaps + implementation

{"a", 4} Left child: 1
/\ Right child: 2
Left child: 2*1 + 1 {("b", 6) {"c", 8} Left child: 3
Right child: 2*1 + 2 /\ Right child: 4
{"d"’ 7} {"e"’ 9}

{"a”, 4} | {"b", 6} {*c”, 8} | {"d", 7} | {"€”, 9}

0] 1 2 3 4

Binary heaps + implementation

{"a" 4} Parent index: O
Parent: (i-1) / 2 /\ -
Parent index: 1
{"b"’ 6} {"C", 8}
{"d"’ 7} {"e"’ 9}

{"a”, 4} | {"b", 6} {*c”, 8} | {"d", 7} | {"€”, 9}

0] 1 2 3 4

Binary heaps + implementation

{"a"’ 4}

N

{:" b"’ 6}

N

{"d "’ 7}

{'Ie"’ 9}

{"c"’ 8}

Parent index: O
Left child: 1
Right child: 2

Parent index: 1
Left child: 3
Right child: 4

{"a”, 4} | {"b", 6} {*c”, 8} | {"d", 7} | {"€”, 9}

0

1 2

3

4

Manipulating heap
contents

Heap operations

There are three important operations in a heap:

e peek(): return the element with the highest priority (lowest number for a
min-heap). This operation does not change the state of the heap at all.

e enqueue(e):insert an element e into the heap. Insertion of this element must
result in a heap that still retains the heap property! Accomplishing this will
require some clever manipulation.

e dequeue(): remove the highest priority (smallest element for a min-heap)
from the heap. This changes the state of the heap, and thus we have to do
work to restore the heap property.

{"a", 5} l

{"b"’ 10} ‘ {"C", 8}

{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}

N

{"h", 22} {"i", 43}

{"a"’ 5:} {"b", 10} {"c"’ 8} {"d", 12} {lle", 11} {"f", 14} {"g"’ 13] {"h"’ 22} {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

peek()

e Look at the root of the tree (position O in your array)

e 0(1)

{"a ", 5} l

{"b"’ 10} ‘ {"C", 8}

{"d", 12} {"e", 11} {"f"’ 14} {"g"’ 13}

N

{"h", 22} {"i", 43}

{"a", 5} {"b", 10} {"c"’ 8} {"d", 12} {"e", 11} {"f", 14} {"g"’ 13] {"h"’ 22} {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

enqueue()

e How might we go about inserting into a binary heap?

e Example: What if we called enqueue({"j", 9}) into the heap from before?

e The key is to understand how heaps are built: it is critical that we fill each level
from left to right.

enqueue()

e Start by putting the element into the first empty slot at the bottom level. Similar
to how we did with the OurVector class, we can say something along the lines
of heap[heapSize] = newElement;

e Inserting our new element into the first empty slot may have destroyed the
heap property so now we have to fix it.

e To do so, we "bubble up" the new element into its correct spot.

enqueue()

e Start by putting the element into the first empty slot at the bottom level. Similar
to how we did with the OurVector class, we can say something along the lines
of heap[heapSize] = newElement;

Operation: enqueue("j", 9)

enqueue() {%mal
{"b"’ 10} ‘ {"C", 8}
{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43}
("a"5} | ("b"10} | ("¢ 8} | {"d", 12} | ("e". 11} | ("f" 14} | {"g". 13} | ("h", 22} | {("i" 43} ? ? ?
o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b"’ 10} ‘ {"C", 8}
{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"j", 9}
("a",5} | ("b"10} | ("¢ 8) | {"d". 12} | ("e". 1} | ("f" 14} ("g". 13} | {"h" 22} | ("i" 43} (4" 9) ? ?
o 2 3 4 5 6 7 8 9 10 1"

enqueue()

{"b"’ 10}

/\b

{"a ",Ei

Operation: enqueue("j", 9)

‘ {"C", 8}

‘/\

{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"j", 9} \.—
{("a",5) | {("b"10} | ("c".8) | ("d"12} | {"e". 11} | ("f"14)} | ("g". 13} @ ("h", 22} ({i"43} | ("9} ? ?
0 1 2 3 4 5 6 7 8 9 10 1"

enqueue()

e |nserting our new element into the first empty slot may have destroyed the
heap property so now we have to fix it.

e To do so, we "bubble up" the new element into its correct spot.

enqueue()

e Inserting our new element into the first empty slot may have destroyed the
heap property so now we have to fix it.

e Todoso,we the new element into a spot in the heap that is

more fitting of its priority.
o Look at the newly added element and its parent. Do they have a proper min-heap
relationship (that is, is the parent smaller than the child element)?
m Ifyes, then we're done, terminate the bubble up process.

m Ifnot,
o Repeat the above steps until the process terminates or until the newly added element

becomes the root of the heap.

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b"’ 10} ‘ {"C", 8}
{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"j", 9}
("a",5} | ("b"10} | ("¢ 8) | {"d". 12} | ("e". 1} | ("f" 14} ("g". 13} | {"h" 22} | ("i" 43} (4" 9) ? ?
o 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b"’ 10} ‘ {"C", 8}
{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"j", 9}
("a",5} | ("b"10} | ("¢ 8) | {"d". 12} | ("e". 1} | ("f" 14} ("g". 13} | {"h" 22} | ("i" 43} (4" 9) ? ?
o 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b"’ 10} ‘ {"C", 8}
{"d", 12} {"e“, 11} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"j", 9}
{"a",.5)} | {"b"10} | {"c". 8} | {"d"12} {"e" 1} | {"f" 14} | {"g"13} | {"h" 22} {"i" 43} | ("9} ? ?
o 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b"’ 10} ‘ {"C", 8}
{"d", 12} {"e“, 11} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"j", 9}
{"a",.5)} | {"b"10} | {"c". 8} | {"d"12} {"e" 1} | {"f" 14} | {"g"13} | {"h" 22} {"i" 43} | ("9} ? ?
o 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b"’ 10} ‘ {"C", 8}
{"d", 12} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {"d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b"’ 10} ‘ {"C", 8}
{"d", 12} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {"d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b"’ 10} ‘ {"C", 8}
{"d", 12} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {"d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b", 10} ‘ {"C", 8}
{"d", 12} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {"d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"b", 10} ‘ {"C", 8}
{"d", 12} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {"d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
("j", 9) ‘ ("c", 8)
A A
{"d", 12} {"b", 10} {"f", 14} {"g", 13}
N -
"h", 22} | | {"i", 43} | | {"e", 11)

{"a", 5} | {9} {"<, 8} | {"d", 12} | {"" 10} {"f", 14} {"9"13} {"h", 22} | {"i",43} | ({"e", 11} ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {..a..,ﬂ
("j", 9) ‘ ("c", 8)
A A
{"d", 12} {"b", 10} {"f", 14} {"g", 13}
N -
"h", 22} | | {"i", 43} | | {"e", 11)

{"a", 5} | {9} {"<, 8} | {"d", 12} | {"b", 10} | {"f", 14} @ {"9"13} @ {"h", 22} | {"i",43} | ({"e", 11} ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
("j", 9) ‘ ("c", 8)
A A
{"d", 12} {"b", 10} {"f", 14} {"g", 13}
N -
"h", 22} | | {"i", 43} | | {"e", 11)

{"a", 5} | {9} {"<, 8} | {"d", 12} | {"b", 10} | {"f", 14} @ {"9"13} @ {"h", 22} | {"i",43} | ({"e", 11} ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

enqueue()

{"j ", 9}

L

{" a ",Ei

Operation: enqueue("j", 9)

‘ {"C", 8}

‘/\

{"d", 12} {"b", 10} {nfn’ 14} {ng"’ 13}
{"h", 22} {"i", 43} {ne", 11}
{"a", 5} {"j", 9} {"c", 8} {("d", 12} | {"b",10} | {"f",14} | {"g",13} | {"h", 22} | {"i", 43} {("e", 11} ? ?
o 1 2 3 4 5 6 7 8 9 10 1"

enqueue()

{"j ", 9}

L

{" a ",Ei

Operation: enqueue("j", 9)

‘ {"C", 8}

‘/\

{"d", 12} {"b", 10} {nfn’ 14} {ng"’ 13}
{"h", 22} {"i", 43} {ne", 11}
{"a", 5} {"j", 9} {"c", 8} {("d", 12} | {"b",10} | {"f",14} | {"g",13} | {"h", 22} | {"i", 43} {("e", 11} ? ?
o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {""""’fi
{"j "’ 9} ‘ {"C", 8}
{"d", 12} {" b"’ 10} {"f"’ 14} {"g"’ 13}
{"h", 22} {"i", 43} {"e", 11}
{("a"5) {9} | {"c" 8} | {"d" 12} | {"b"10} ("', 14} | ('g" 13} | {"h", 22} | {("i" 43} | ("e", 1) ? ?
o 1 2 3 4 5 6 7 8 9 10 1"

enqueue()

e After our "bubble up" process completes, the heap is in a proper state again.
Yay! We have now successfully inserted a new element into the heap.

e [or a cool animation of this process across many enqueue operations, check
out this cool

e What is the runtime complexity of the enqueue operation?
o In the worst case scenario, we have to bubble up the new element all the way up to

the root position.

o Since there are n total elements, the tree will have 1log n levels, which means we
would do log n comparisons and 1og n swaps along the way.

o The overall complexity is 0(1log n), which we know is blazingly fast! How cool!

http://www.cs.usfca.edu/~galles/visualization/Heap.html

dequeue()

e Remove the minimum element; the root of the tree.

e Replace the root with the “last” element in our tree (last level, farthest right)
since we know that location will end up empty.

e Bubble down to regain the heap property!

dequeue()

® Remove the minimum element; the root of the tree.

e Replace the root with the “last” element in our tree (last level, farthest right)
since we know that location will end up empty.

{"a ",Ei

{"j"’ 9} ‘ {"C", 8}

{"d", 12} {"b"’ 10} {"f"’ 14} {"e"’ 11}

N <

{"h", 22} {"i", 43} {"g"’ 13}

{"a"’ 5:} {"j", 9} {"c"’ 8} {"d", 12} {"b"’ 10} {"f", 14} [lle"’ 11} {"h"’ 22} {"i"’ 43} {:"g", 13] ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

{"j "’49}{

¢/\.

{"d", 12} {"b", 10}
{"h", 22} {"i", 43} {ngn’ 13}
{"j", 9} {"c", 8} {("d",12} | {"b",10} | {"f",14}
0 1 2 3 4 5

[lle"’ 11}

6

‘ {"C", 8}

A

["f"’ 14}

{"h"’ 22} {"i"’ 43} {:"g", 13]

7

8

9

?

10

{"e"’ 11}

1"

{"g "’ 13}

{"j"’ 9} ‘ {"C", 8}

{"d", 12} {"b"’ 10} ["f"’ 14} {"e"’ 11}

N

{"h", 22} {"i", 43}

{"g", 13} {"j"’ 9} {"c"’ 8} {"d", 12} {"b"’ 10} {"f", 14} [lle"’ 11} {"h"’ 22} {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

dequeue()

® to regain the heap property!
o Compare the moved element to its new children.
m [|f one of the two children is smaller, swap with that child.
m |f both of the children are smaller, swap with the one that’s smaller.
o Repeat until you no longer bubble down or there are no more children to compare
against.

{"g "’ 131

{"j"’ 9} ‘ {"C", 8}

{"d", 12} {"b"’ 10} ["f"’ 14} {"e"’ 11}

N

{"h", 22} {"i", 43}

{"g", 13} {"j", 9} {"C", 8] {"d", 12} {"b"’ 10} {"f", 14} [lle"’ 11} {"h"’ 22} {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

{"C", 8} l

{"j"’ 9} ‘ {"9"9 13}

{"d", 12} {"b"’ 10} ["f"’ 14} {"e"’ 11}

N

{"h", 22} {"i", 43}

{"c", 8] {"j"’ 9} {"g", 13] {"d", 12} {"b"’ 10} {"f", 14} [lle"’ 11} {"h"’ 22} {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

{"C", 8} l

{"j"’ 9} ‘ {"9"9 13}

{"d", 12} {"b"’ 10} {"f", 14} {"e“’ 11}

N

{"h", 22} {"i", 43}

{"C", 8} {"j"’ 9} {"g", 13] {"d", 12} {"b"’ 10} ["f", 14} {"e", 11] {"h"’ 22} {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

{"C", 8} l

{"j", 9} ‘ ("e", 11)

{"d", 12} {"b"’ 10} ["f"’ 14} {"g"’ 13}

N

{"h", 22} {"i", 43}

{"C", 8} {"j"’ 9} {"e", 11} {"d", 12} {"b"’ 10} {"f", 14} {Ilg"’ 13} {"h"’ 22} {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

What happens if we dequeve
{"C",E}i

agaoin 7
{"j", 9} ‘ ("e", 11)

{"d", 12} {"b"’ 10} {"f"’ 14} {"g"’ 13}

N

{"h", 22} {"i", 43}

{"C", 8} {"j"’ 9} {"ell, 11} {"d", 12} {"b"’ 10} {"f", 14} {"g"’ 13] {"h"’ 22} {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

Attendance ticket:
https://tinyurl.com/dequeueC

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/dequeueC

What happens if we dequeve
{"C",E}i

agaoin 7
{"j", 9} ‘ ("e", 11)

{"d", 12} {"b"’ 10} {"f"’ 14} {"g"’ 13}

N

{"h", 22} {"i", 43}

{"C", 8} {"j"’ 9} {"ell, 11} {"d", 12} {"b"’ 10} {"f", 14} {"g"’ 13] {"h"’ 22} {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

{"j "’ 9}

‘ {"e"’ 11}

{"b", 10}
{"d", 12} nin 43} {nfn’ 14} {ngn’ 13}
{"h", 22}
{"j", 9} {"b", 10} {"e", 11} {("d", 12} {"i", 43} {"f", 14} {"g",13} | {"h", 22} ? ? ? ?
o 1 2 3 4 5 6 7 8 9 10 1"

dequeue()

e Remove the minimum element; the root of the tree.

e Replace the root with the “last” element in our tree (last level, farthest right)
since we know that location will end up empty.

e Bubble down to regain the heap property!

e O(log n): At worst, you do one comparison at each level of the tree.

dequeue()

e Remove the minimum element; the root of the tree.

e Replace the root with the “last” element in our tree (last level, farthest right)
since we know that location will end up empty.

e Bubble down to regain the heap property!

e O(log n): At worst, you do one comparison at each level of the tree.

We have a data structure with only 0(log n) and 0(1) operations!

Summary

o are queues ordered by priority of their elements, where the
highest priority elements get dequeued first.

) are a good way of organizing data when creating a priority
queue.
o Use a min-heap when a smaller number = higher priority (what you’ll use
on the assignment) and a max-heap when a larger number = higher
priority.

e There can be multiple ways to implement the same abstraction! For both ways
of implementing our priority queues, we’ll use for data storage.

Levels of abstraction

What is the interface for the user?
(Priority Queue)

How is our data organized?
(sorted array, binary heap)

What stores our data?
(arrays)

Abstract Data
Structures

____{.____

Data Organization
Strategies

Fundamental C++
Data Storage

Human Prioritization
Algorithms

How do we calculate ,bkior/ﬁeg'?

Values in technology

e Design decisions encode values that express what we care about.

e These values can reveal our assumptions about the world and the people who
will be interacting with our design and benefiting from it.

e Despite the best intentions, sometimes design decisions have unintended
consequences that evoke different values than those of the original creators.

In the case of priority queues, the ‘priorities” themgselves represent a
very explicit valve fyg’tem./

Slides adapted from Katie Creel and Diana Acosta-Navas

A Case Study

i LAHSA Coordinated Entry System @ Help > N Signin

SO0 About GetHelp Regional Info Documents Tools for Providers Dashboards

THE HOMELESS CRISIS RESPONSE SYSTEM FOR LOS ANGELES COUNTY

The Coordinated Entry System (CES) facilitates the coordination and management of resources and services through the crisis response system.
CES allows users to efficiently and effectively connect people to interventions that aim to rapidly resolve their housing crisis.

CES works to connect the highest need, most vulnerable persons in the community to available housing and supportive services equitably.

Los Angeles County Coordinated
Entry System (CES)

An electronic registry of unhoused persons who are applying or have
applied to housing support programs offered by Los Angeles County.

Slides adapted from Katie Creel and Diana Acosta-Navas

How does it work?

Ranking

Algorithm uses Risk score is used
personal data to to prioritize and
assign a number assign housing and
from 1-17, least housing related
vulnerable tomost services.
vulnerable.

How does it work?

Data gathering Ranking

Unhoused person

: Algorithm uses Risk score is used
provides (very) personal data to to prioritize and
personal information assign a number assign housing and
including name, from 1-17, least housing related
DOB, immigration vulnerable tomost services.
status, current & past vulnerable.

mental health, sexual
activity, substance
usage.

[Simplified] CES Binning System

1-4: Least 14-17: most
vulnerable » vulnerable »
short-term long term
shelter apartment

— — —

No Services
Provided

Vulnerability assessment

e |f no one intervenes
o Death
o Chronic homelessness

O Use of costly social services

e Some criteria
o Physical or mental illness
o Disability
o Addiction
o Length of time unhoused

Values intended by the designers

Evidence- Efficient use of

driven policy Neutrality
: resources
design

Priority of the Promoting
worst-off autonomy

Positive outcomes

“I'm doing the matching and it’s very unbiased as far as our work because the
computer tells me, based on a scoring system, which families are higher need than
other families.”

- Worker Interviewed According to Need Podcast

The CES did improve matching between people and services!

Unintended consequences and values

e Data collection demands and risks

e Certain groups of people benefited more / less than others

® Resource allocation

Unintended consequences and values

e Data collection demands and risks

o The collection of data itself is demanding for the data subjects.
m |n addition to name, DOB, and demographic information, they are asked for
very personal information, like immigration status, history of mental health and
substance use.

o Generating and storing a large pool of data about a vulnerable population itself
incurs risks.
m What if the data leaks or is hacked?
m What if other agencies like ICE attempt to access collected data, such as
immigration status + where the person is during the day?

Unintended consequences and values

e Data collection demands and risks

o Survey data “expires” every six months (although they are not deleted from the
system!)

o This means the people in the middle have to provide the information every six
months, re-taking the survey or interview.

o People who are asked to fill out the survey multiple times with without being
offered any services may become cynical and disengaged.

[Simplified] CES Binning System

1-4: Least 14-17: most
vulnerable » vulnerable »
short-term long term
shelter apartment

p— p— p—

No Services
Provided

Unintended consequences and values

e Certain groups of people benefited more / less than others

o Because of economic disparities, it is easier for people of color to become
unhoused.

o But a higher proportion of white unhoused people met some of the criteria of high
vulnerability. As a result, they scored higher on the ranking and were more likely to
receive benefits.

o The binning also creates a middle group of unhoused folks who never qualify for

housing and have no other paths to services. The algorithm unintentionally created
a new category of people seen as persistently unhouseable.

Unintended consequences and values

® Resource allocation

o The CES has cost LA County $11 million so far, which is about $1,140 per person who
has gotten housing through it.

o An algorithmic prioritization system requires engineers to build it, social workers to
collect data for it, and tech people to maintain it.

O The CES did improve matching between people and services, but didn’t increase
the total number of apartments, vouchers, or shelter beds available, and therefore
didn’t decrease the number of people unhoused.

Unintended consequences and values

e Data collection demands and risks
e Certain groups of people benefited more / less than others

® Resource allocation

How would you evaluate this system?
What are the tradeoffs between the intended encoded values and the
unintended encoded valvec?

Frameworks for
evaluating automated
systems

Virginia Eubanks’ Two Questions for Automated
Decision-Systems

1. “Does the tool [or algorithm] increase the self-determination and agency
of the decision subjects?”

2. “Would the tool be tolerated if it was targeted at non-poor [housed, etc.]
people?” (Eubanks 2018)

If the answer is no, Eubanks argues that we should reconsider the design
or consider not building the system at all.

Autonomy

“Individual autonomy is ... the capacity to be one’s own person, to live one’s life
according to reasons and motives that are taken as one’s own and not the product
of manipulative or distorting external forces, to be in this way independent ...

to govern oneself, to be directed by considerations, desires, conditions, and
characteristics that are not simply imposed externally upon one, but are part of
what can somehow be considered one’s authentic self” (Christman 2020).

Autonomy

“Individual autonomy is ... the capacity to be one’s own person, to live one’s life
according to reasons and motives that are taken as one’s own and not the product
of manipulative or distorting external forces, to be in this way independent ...

to govern oneself, to be directed by considerations, desires, conditions, and
characteristics that are not simply imposed externally upon one, but are part of
what can somehow be considered one’s authentic self” (Christman 2020).

How might a prioritization algorithm diminish or enhance autonomy?
e Who gains access to services and who doesn’t
e Whose data is collected and what are the effects of that data surveillance
e Who gets to make the decisions about who/what is considered “high priority”

Embedded Ethics Case Study

Ethics case study written by Katie Creel, Nick Bowman, and Neel Kishnani.

Design analysis

You're working as a software engineer and have been contracted to build a priority queue for a client. The client's specification
requests that the design support exactly three levels of priority: "high," "medium," and "low." Elements enqueued at the same
priority level are to be processed in FIFO (first-in-first-out) order. Your manager proposes a design for a new PQueue class that
has an internal implementation consisting of three ordinary Queues: one for high priority elements, one for medium priority
elements, and one for low priority elements. To dequeue elements, it would first drain the high priority queue, then medium,
and then low.

Q15. Consider the differences between this three-bin priority queue and the priority queue you implemented on your
assignment. Which would be more efficient to insert elements into and why? More generally, what are the benefits and
disadvantages of using the three-bin priority queue vs. a regular priority queue?

Your manager tasks you with implementing the proposed priority queue. Now, you have to decide the threshold between a low
priority element, a medium priority element, and a high priority element.

Q16. Describe a real-world system where a three-bin priority queue could be used. What factors would you use to
distinguish between a low vs. medium vs. high priority element? What limitations might you need to consider when using
a three-bin priority queue to represent this system?

Validity of rank-based systems

Say a college admissions department used a priority queue to rank their applicants. The admissions team decides on an
algorithm to assign each applicant a weighted score, claiming that it takes into account the applicant's GPA, course load,
extracurriculars, and personal statements. Each applicant's score would be a double, and a higher score would make them
higher priority in the queue (more likely to be admitted). Once the admissions team builds up the priority queue, they take the

Values in technology

e Design decisions encode values that express what we care about.

e These values can reveal our assumptions about the world and the people who
will be interacting with our design and benefiting from it.

e Despite the best intentions, sometimes design decisions have unintended
consequences that evoke different values than those of the original creators.

In the case of priority queues, the ‘priorities” themgselves represent a
very explicit valve ryg’tem./

What's next?

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

Memory and Pointers

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

Ox3A28213A

Ox6339292C,

Ox 7363632E.
| HATE YOU.

a3k

