Linked Lists

What’s something annoying/frustrating

about arrays?

Feel free to mention something that’s come up in A4
or something that’s confusing from lecture.

(pollev.com/cs106bpoll)

'Something that's annoying/frustrating about working with

arrays?

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm

Roadmap

arrays

dynamic memory
management

linked data structures

Life after CS106B/

TOday’S How can we use pointers

to organize non-contiguous

guestion memory on the heap?

Today'’s
topics

Review

. What is a linked list?

How do we use linked lists
in a class?

How do we manipulate
linked lists?

Review

[memory and pointers]

Abstract Data
Structures

Levels of abstraction

Data Organization
Strategies

How is computer memory organized?

0x£ca0b000 O i

Pointers and Memory

e Every variable you create has an address in memory on your computer (either
on the stack or the heap).

How is computer memory organized?
Stack Heap

Static memory allocation Dynamic memory allocation

Automatic memory management You manage the memory

How is computer memory organized?
Stack Heap

Static memory allocation Dynamic memory allocation

Automatic memory management You manage the memory

Pointers and Memory

e A pointer is just a type of variable that stores a memory address!

Pointers and Memory

e A pointer is just a type of variable that stores a memory address!
o You specify the type of the variable that it points to so that C++ knows how
much space the value its pointing to is taking up (e.g. string* or int* or
Vector¥*).

Pointers and Memory

e A pointer is just a type of variable that stores a memory address!
o You specify the type of the variable that it points to so that C++ knows how

much space the value its pointing to is taking up (e.g. string* or int* or
Vector¥*).

o But remember that pointers and what they point to (e.g. string vs.
string¥*) are two completely different data types!

Pointers and Memory

e When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.

o E.g.int* number
o E.g.int* numArr

int;
int[5];

Pointers and Memory

e When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.

o E.g.int* number
o E.g.int* numArr

int; Dynamically allscated variables

int[5]; are the only reason well use

pointers in this clace!

Pointers and Memory

e TJo getthe value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).

Pointers and Memory

e [Every variable you create has an address in memory on your computer (either
on the stack or the heap)

e A pointer is just a type of variable that stores a memory address!

e When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.

e TJo getthe value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).

http://www.youtube.com/watch?v=5VnDaHBi8dM

Today: Using pointers
INn practice

Today: Using pointers
INn practice

How can we use pointere to organize non-contiquous

memory on the hea,b?

Today: Using pointers
INn practice

How can we use pointere to organize

memory on the hea,b? ’K
/Vot armyr./

Abstract Data

What is the interface for the user?
Structures

C
O — o — e = =
—
o Data Organization
E How is our data organized? 9 .
- Strategies
n
O
©
G
O What stores our data? Fundamental C++
% (arrays, linked lists) Data Storage
g .'-
Q .
—
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data
What is the interface for the user?

Structures
C
O — o — e = =
—
o Data Organization
E How is our data organized? 9 .
- Strategies
n
O
©
G
O What stores our data? Doint Fundamental C++
=2 (arrays, linked lists) prters move Data Storage
Q u¢ acrocs this
> |
Q éoum/arg./
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data

What is the interface for the user?
Structures

C
O — o — e = =
—
o Data Organization
E How is our data organized? 9 .
4+ Strategies
n
O
©
G
O What stores our data? . Fundamental C++
% (’) These are built Data Storage
Q on top of
> .
q) \-’ IbOIVlfekf./ _— e = - _-— s =
—
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data
What is the interface for the user?

Structures
C
O _— —_— _— —_— —_— _— —_— -_—
—
o Data Organization
E How is our data organized? 9 .
- Strategies
n
e
©
G
o What stores our data?
0 (arrays) Our Focue for
) ’ today!
S 4
m __________
—
How is data represented electronically? Computer
(RAM) Hardware

What's wrong with arrays?

int* tenInts = new int[10];

The OS will find a
contiguous array for
10 integers and give
you that memory
back

https://docs.google.com/presentation/d/128i5NSGLWlrIsLhXw8NDfAvUYRsxeilxAnMnw_r2nvc/edit#slide=id.g125b2f8e9b8_0_217

The remove () operation

106 42 -3 27 4 g ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;
numItems 4

The remove () operation

106 42 -3 27 4 g ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4

The remov operation

106 42 -3 27 4 g ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4

The remove () operation

106 -3 -3 27 4 g ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4

The remove () omon

106 -3 -3 27 4 g ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4

The remove () operation

106 -3 27 27 4 ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4

The remove () operation

106 -3 ? ? ? ?
0 1 4 5 6 7
I // client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;
allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;
vec.remove (1) ;
numItems 3

The insert () operation

106 -3 27 B 4 ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 3

The insert () operation

106 -3 27 B 4 ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 3 vec.insert (0, 198);

The insert () eranion

106 -3 27 27 4 ? ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 3 vec.insert (0, 198);

The insemeration

106 -3 -3 27 4 g ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 3 vec.insert (0, 198);

Th@t() operation

106 106 -3 27 4 g ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 3 vec.insert (0, 198);

The insert () operation

106 106 -3 27 4 g ? ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4 vec.insert (0, 198);

The insert () operation

198 106 -3 27 4 g g ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4 vec.insert (0, 198);

A Day in the Life of a Growable Array

In essence, when we run out of space in our array, we want to allocate a new
array that is bigger than our old array so we can store the new data and keep
growing. These "growable arrays" follow a five-step expansion that mirrors the
hermit crab model (with poetic license).
o Grow the array until we run out of space (how can we tell if we've run out of
space?)
m Create a new, Iarger array. Usually we choose to = the current size.
m |Copy the old array elements to the new array.

m Delete (free) the old array.
Point the old array variable to the new array.
Update the associated capacity variable for the array.

Can we do better?

e A way to store elements as a sequence even if they’re not physically next to

each other on the computer memory
o So we can easily insert new elements into the list
o So we can easily remove elements from the list
o So we can easily resize the list
o (So we don’t have to mass copy elements and shift them over or shift them into a new block of

memory)

Can we do better?

e Nope. Class for the rest of the quarter is cancelled; computing as we know it
has been a standstill since 1954,

(just kidding)

What is a linked list?

What is a linked list?

e A linked list is a chain of nodes.

What is a linked list?

e A linked list is a chain of nodes.

e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence
o Alink to the next node in the list

What is a linked list?

e Alinked list is a chain of nodes.
e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence

o A link to the next node in the list

e We can traverse the list by starting at the first node and repeatedly following its
link.

Node

Data

Link

Pointer to a node

/—> Data

Link

Pointer to a node that points to a node

_— Data / Data
: Link Link

Pointer to a node that points to a node that points to a node

_— Data / Data / Data
: Link Link Link

Pointer to a node that points to a node that points to a node

/—> Data

Link

Data

e

Link

Data

e

Link

e

pP?

A linked list!

/—> Data

Link

Data

Link

Data

Link

Cabifornia’

NULLp

Why use linked lists?

e More flexible than arrays!
o Since they’re not contiguous, they’re easier to rearrange.

e We can efficiently splice new elements into the list or remove existing
elements anywhere in the list. (We’ll see how shortly!)

e \We never have to do a massive copy step.

e But linked lists still have many tradeoffs and are not always the best data
structure!

Linked lists in C++

The Node struct

struct Node {
string data;
Node* next;

The Node struct

struct Node {
string data;
Node* next;

e The structure is defined recursively! (both the Node and the linked list itself)

The Node struct

struct Node {
string data;
Node* next;

e The structure is defined recursively! (both the Node and the linked list itself)

e The compiler can handle the fact that in the definition of the Node there is a

Node* because it knows it is simply a pointer.
o (It would be impossible to recursively define the Node with an actual Node object inside the
struct.)

Pointer to a node

— / string data
OxfcaOb000
Node* next

list

*

Node

Node* 1list = new Node;

Pointer to a node

/ string data
OxfcaOb000
Node* next

list

fﬂnva@lueupdhﬁe
these values (i.e. the
MNode itcelf)?

Node

Node* 1list = new Node;

Pointer to a node

|
l OxfcaOb000 '/

list

*

Node

Node* 1list = new Node;
(*list).data = "someData";

"someData"

Node* next

Pointer to a node

*

N / "someData"
§ OxfcaOb000
Z Node* next
list
Node* list = new Node; (ce * to dereference the
(¥list).data = "someData";

pointer to get the Node
¢truct.

Pointer to a node

— / "someData"
§ OxfcaOb000
Z Node* next
list
Node* list = new Node; Uce dot (.) notation to
* o _ n n,
(*list).data = "someData"; update the data. field of

the ctruct.

Pointer to a node

Califorrna’
: — "someData" PTR
'/ T i S
2 B

list

Node* 1list = new Node;
(*list).data = "someData";
(*1list).next = nullptr;

Pointer to a node

|
l OxfcaOb000 '/

list

*

Node

Node* 1list = new Node;
(*list).data = "someData";
(*1list).next = nullptr;

., Data" Cabiforrnia’
somebata NU LPTR

L .

| |

Therec an eacier Wa.y./

Pointer to a node

Califorrna’
g — "someData" LPTR
'/ T i S
- B

list

Node* 1list = new Node;
"someData";
nullptr;

list->data
list->next

Pointer to a node

Cabiforrnia’
p— "someData"
*% OxfcaOb000 / L ‘NULLP'TR
XTCa
2 | |
list
Node* list = new Node; The arrow notation (=>) dereferencec
list->data = "someData”; AND accesces the field for pointere

list->next nullptr;

that point to structe specifically.

Announcements

Announcements

e Final project proposals were due yesterday. We will try to have feedback to
you by Thursday or Friday.
o In the meantime, make sure to take a look at the project timeline to stay
on track!
o Next milestone: Sunday Aug 7

e Assignment 4 is due tomorrow (with 24 hour grace period).
e Assignment 5 is out tomorrow!
o Good use of the debugger is essential in this assignment. Use the
techniques in the warm-up to help you uncover those tricky memory bugs!

How do we use linked lists in a
class?

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

Implementing a Stack

MNote: You could do thic with an a.rmg./ This is just for The
cake of getting practice with linked licts.

Stack as a linked list

e We’ll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

Stack as a linked list

e We’ll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

e Our linked list nodes will be connected from the top to the bottom of our stack.

Stack as a linked list

e We’ll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

e Our linked list nodes will be connected from the top to the bottom of our stack.

e Our stack will specifically hold integers, so our Node struct will hold an int
type for our data field:
struct Node {
int data;
Node* next;

)
D

Three Stack operations
e push()

e pop()

e Destructor

Three Stack operations

e pop()

e Destructor

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

o How do we rearrange the elements in a linked list?

o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

How sur linked list ctarts:

Cabiforria’

— ; N
™ e w

top

push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

Goal:

7 : 9 - NULEm
|i|—/ lil—/ (il

Let’s code push()!

Live Activity Summary

e We strongly recommend watching the live recording of the coding activity, as
the code and explanations contextualize the following diagrams

Initial State (beginning of push () function)

R

?J<x£€;v~

YRR VgEN Va7

Node ¥ volus
W@/jy | 7

Node *temp = new Node;
temp->data = 7;

9J<MJ621&

P[] P

P
eV ol | 7 {

Node *temp = new Node;

temp->data = 7;

top = temp; // INCORRECT

Node *temp = new Node;
temp->data = 7;
temp->next = top;

Node *temp = new Node;
temp->data = 7;
temp->next = top;

top = temp;

Three Stack operations

e push()

e Destructor

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?
o How do we rearrange the elements in a linked list?

e Insertion

o How do we add an element to a linked list?

o How do we remove an element from a linked list?

pop()

e Now we want to remove the top value:

myStack.pop();

Starting state of the fict:

7/

e

(-

(-

Cobiformin”

~ NULL#

(-

pop()

e Now we want to remove the top value:

myStack.pop(); // we want the result to be {9, 8}

Goal:

B . ~ NULL™
- (-

Let’s code pop()!

Initial State (beginning of pop () function)

T

L,

12

top = top->next; // INCORRECT

Node* temp = top;
top = top->next;
delete temp;

Attendance ticket:
https://tinyurl.com/willthiscodework

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/willthiscodework

Three Stack operations

e push()

e pop()

Common linked lists operations

o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion

o How do we add an element to a linked list?

o How do we remove an element from a linked list?

Destructor

e We have to make sure we delete all of the Nodes.

e The top pointer should be nullptr when we’re done.

(Cabsforria
—— NULw

OxfcaOb000 '

top

[Node*]

Let’s code the
destructor!

IntStack takeaways

e Linked lists are chains of Node structs, which are connected by pointers.

o Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

e Common traversal strategy

o While loop with a pointer that starts at the front of your list
o Inside the while loop, reassign the pointer to the next node

e Common bugs

o Be careful about the order in which you delete and rewire pointers!
o It’'s easy to end up with dangling pointers or memory leaks (memory that hasn’t been
deallocated but that you not longer have a pointer to)

How do we manipulate linked
lists?

Linked list utility functions

e We've now seen linked lists in the context of classes, where we used a linked
list as the data storage underlying an implementation of a Stack.

Linked list utility functions

e However, linked lists are not limited only to use within classes. In fact, the next
assignment will ask you to implement "standalone" linked list functions that
operate on provided linked lists, outside the context of a class.

Linked list utility functions

e This is the paradigm that we will work under for the several functions. In doing
so, we'll gain a little more flexibility to get practice with many different linked
list operations and build our linked list toolbox!

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

Linked List Traversal

Traversal utility functions

e Freeing a linked list

e Printing a linked list

e Measuring the length of a list

Traversal utility functions

e Freeing a linked list
o Very similar to the destructor we just saw!

Freeing linked lists,
the wrong way

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

/-E Oxab40 '

list

Cobigormin”

"Jenny" "Kylie" "Trip" -~ NULLe
e i

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list !'= nullptr) {
delete list;
list = list->next;

Oxab40 '

list

y(::wy’//////> "Kymy"/////,> "Trip" ?ﬁﬁ]ﬁ&R
(-

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

Oxab40 '

list

y(::wy’//////> "Kymy"/////,> "Trip" ?ﬁﬁ]ﬁ&R
(-

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

}
}/' delete

e

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

/E Oxab40 '

list

Cobigormin”

"Kylie" "Trip" NULEWR
a (-

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

Oxab40 '

list

Cobigormin”

"Kylie" "Trip" NULEWR
a (-

void freeList(Node* list) {

/* WRONG WRONG WRONG WRONG WRONG */
while (list != nullptr) {

delete list;
list = list->next;

"Trip"

"Kylie" /

(-

Cobigormin”

~ NULLe

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

Undefined

Behavior!

Cobiformia’

NULLP™

"Kylie" / "Trip" /

Freeing linked lists,
the right way (intuition)

delete list;
list = list-

/-E Oxab40 '

list

void freeList(Node* list) {

while (list != nullptr) {

>next;

"J en ny"

e

"Kylie"

"Trip"

e

(-

Cobigormin”

~ NULLe

void freeList(Node* list) {
while (list != nullptr) {

delete list;
list = next;

list next

/‘E Oxab40 ' Oxab42 '

"Trip"

"Jenny" "Kylie" //////,>

(-

Cobiformia’

~ NULLe

void freeList(Node*

while (list != nullptr) {
Node* next = list->next;

delete list;

list) {

list = ;
} — ——
} E Oxab40 ' Oxab42 '
/ list next
"Kylie" "Trip"

e

(-

Cobiformia’

~ NULLe

void freeList(Node*

while (list != nullptr) {
Node* next = list->next;

delete list;

list) {

list = ;
/ list next
"Kylie" "Trip"

e

(-

Cobiformia’

~ NULL#

Freeing linked lists,
the right way from the
top

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/-E Oxab40 '

list

"Jenny" / "Kylie" / "Trip" / am_mﬁm
(-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/-E Oxab40 '

list

"Jenny" / "Kylie" / "Trip" / am_mﬁm
(-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/-E Oxab40 '

list

"Jenny" / "Kylie" / "Trip" / am_mﬁm
(-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

I
/- E Oxab40 ' /E Oxbc70 I

list next

Calbiforria’
"Jenny" "Kylie" "Trip" / NULLPTR
/ |i|~/ (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

I
/- E Oxab40 ' /E Oxbc70 I

list next

Calbiforria’
"Jenny" "Kylie" "Trip" / NULLPTR
/ |i|~/ (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

}]

list next

Cobiformia’

"Kylie" "Trip" NULEWR
|i|~/ (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

}]

list next

Cobiformia’

"Kylie" "Trip" NULEWR
|i|~/ (-

void freeList(Node*

while (list != nullptr) {
Node* next = list->next;

|
Oxbc70 '

next

delete list;
list = next;

/E Oxbc70 ' /E

list

list) {

/

n Kylie"

(-

"Trip"

e

(-

Cobiformia’

~ NULLe

void freeList(Node*

while (list != nullptr) {
Node* next = list->next;

|
Oxbc70 '

next

delete list;
list = next;

/E Oxbc70 ' /E

list

list) {

/

n Kylie"

(-

"Trip"

e

(-

Cobiformia’

~ NULLe

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E Oxbc70 '

list

Cobigormin”

"Kylie" "Trip" NULUWR
a (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E Oxbc70 '

list

Cobigormin”

"Kylie" "Trip" NULEWR
a (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E Oxbc70 '

list

Cobigormin”

"Kylie" "Trip" NULEWR
a (-

void freeList(Node* list) {

while (list != nullptr) {
Node* next = list->next;

—
E 0x40f0 I

delete list;
list = next;

/E Oxbc70 '

list next

"Trip"

"Kylie" /

(-

Cobiformia’

~ NULLe

void freeList(Node* list) {

while (list != nullptr) {
Node* next = list->next;

—
E 0x40f0 I

delete list;
list = next;

/E Oxbc70 '

list next

"Trip"

"Kylie" /

(-

Cobiformia’

~ NULLe

void freeList(Node* list) {

while (list != nullptr) {
Node* next = list->next;

0x40f0 '

delete list;
list = next;

(E Oxbc70 '

list next

"Trip"

(-

Cobiformia’

~ NULLe

void freeList(Node* list) {

while (list != nullptr) {
Node* next = list->next;

0x40f0 '

delete list;
list = next;

(E Oxbc70 '

list next

"Trip"

(-

Cobiformia’

~ NULLe

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;

delete list;
EQI!HHHII

list = next;
list next

/E 0x40f0 '

"Trip"

(-

Cobiformia’

~ NULLe

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E 0x40f0 '

list

"Trip"

(-

Cabifornaa’

~ NULLe

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E 0x40f0 '

list

"Trip"

(-

Cabifornaa’

~ NULLe

void freeList(Node*
while (list !=
Node* next

delete list;
list = next;

/E 0x40f0 '

list

list) {
nullptr) {
= list->next;

next

"Trip"

(-

Cobiformia’

~ NULLe

void freeList(Node*
while (list !=
Node* next

delete list;
list = next;

/E 0x40f0 '

list

list) {
nullptr) {
= list->next;

next

"Trip"

(-

Cobiformin”

~ NULLe

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E 0x40f0 '

list

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E 0x40f0 '

list

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

list next

/Eﬂl (-

Cabifornaa’

~ Niilem

void freeList(Node* list) {
while (list != nullptr) {

Node* next = list->next;

delete list;
list = next;

/Eﬂl

list

Cabifornaa’

~ NULLe

All memory
freed! Wooo!

Traversal utility functions

e Freeing a linked list

e Printing a linked list

e Measuring the length of a list

Printing a linked list

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

e There are two main ways to do so: using the and printing to the

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

e There are two main ways to do so: using the and printing to the
e First attempt: What is the result of the following code? (Poll)
/* Creates a list with contents "Hello" -> "World" -> nullptr */

Node* list = createlList();
cout << list << endl;

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

e There are two main ways to do so: using the and printing to the

e First attempt: What is the result of the following code? (Poll)
/* Creates a list with contents "Hello" -> "World" -> nullptr */

Node* list = createlList();

cout << list << endl; Answer: Some memory address is
printed! We can't predict the exact value.

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

e There are two main ways to do so: using the and printing to the

e First attempt (directly printing list pointer) unsuccessful.

e Second attempt: Let's write a function to print the list!

printList()
Let's code it!

How does it work?

int main() {

Node* list = readList();
printList(list);

/* other list things happen... */

int main() {

Node* list = readList();
printList(list);

/* other list things happen... */

int main() {

Node* list = readList();
printList(list);

/* other list things happen...

Node*

l Oxab40 '

list

*/

"J en nyll

e

n Kylie"

"Trip"

Cobiformia’

~ NULLe

(-

int main() {

Node* list = readList();
printList(list);

/* other list things happen...

Node*

l Oxab40 '

list

*/

"J en nyll

e

n Kylie"

"Trip"

Cobiformia’

~ NULLe

(-

int main() {

void printList(Node* list) {
while (list != nullptr) {

cout << list->data << endl;
} list = list->next;

2
1i::",;:>
"Jenny" / "Kylie" / "Trip" -ﬂﬁéﬁmml}lm
| | | |

Node*

int main() {

void printList(Node* list) {
while (list != nullptr) {

cout << list->data << endl;
} list = list->next;

2
1i::",;:>
'Uenny",//////> "Kylie" //////,> "Trip" ﬁqﬁmi;}R
| | | |

Node*

int main() {

void printList(Node* list) {
while (list != nullptr) {

cout << list->data << endl;
} list = list->next;

2
1i::",;:>
'Uenny",//////> "Kylie" //////,> "Trip" ﬁqﬁmi;}R
| | | |

Node*

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

Node

cout << list->data << endl;

|
' (0)'¢z1o7:10) '
11?)

Jenny

"Kylie"

"Trip"

"Jenny"
&

(-

Califorria’
NULLP™

\ .

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

Node

cout << list->data << endl;

|
' (0)'¢z1o7:10) '
11?)

Jenny

"Kylie"

"Trip"

"Jenny"
&

(-

Califorria’
NULLP™

\ .

int main() {

void printList(Node* list) {

while (list != nullptr) {
cout << list-
list = list->next;

}
'

list

Node*

>data << endl;

Jenny

n Kylie"

"Jenny"
lir/

Cobiformia’
NUL[P

"Trip" /
(-

int main() {

void printList(Node* list) {

while (list != nullptr) {
cout << list-
list = list->next;

}
'

list

Node*

>data << endl;

Jenny

n Kylie"

"Jenny"
lir/

Cobiformia’
NUL[P

"Trip" /
(-

int main() {

void printList(Node* list) {

while (list != nullptr) {
cout << list-
list = list->next;

}
'

list

Node*

>data << endl;

Jenny

n Kylie"

"Jenny"
lir/

Cobiformia’
NUL[P

"Trip" /
(-

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

' Oxbc70 '

list

Node*

cout << list->data << endl;

Jenny
Kylie

"Kylie"

"Trip"

"Jenny"
&

(-

Cobiformia’
~ NULLe

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

' Oxbc70 '

list

Node*

cout << list->data << endl;

Jenny
Kylie

"Kylie"

"Trip"

"Jenny"
&

(-

Cobiformia’
~ NULLe

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

Node*

' 0x40f0 '

list

Jenny
Kylie

"Kylie"

"Trip"

"Jenny"
&

(-

Cobiformia’
~ NULLe

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

Node*

' 0x40f0 '

list

Jenny
Kylie

"Kylie"

"Trip"

"Jenny"
&

(-

Cobiformia’
~ NULLe

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

Node*

' 0x40f0 '

list

Jenny
Kylie

"Kylie"

"Trip"

"Jenny"
&

(-

Cobiformia’
~ NULLe

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

—
0x40f0 '

list

Jenny
Kylie
Trip

"Kylie"

"Trip"

"Jenny"
&

(-

Cobiformia’
~ NULLe

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

—
0x40f0 '

list

Jenny
Kylie
Trip

"Kylie"

"Trip"

"Jenny"
&

(-

Cobiformia’
~ NULLe

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

|
nullptr '

list

Jenny
Kylie
Trip

"Kylie"

"Trip"

"Jenny"
&

(-

Cobiformia’
~ NULLe

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

|
nullptr '

list

Jenny
Kylie
Trip

"Kylie"

"Trip"

"Jenny"
&

(-

Cobiformia’
~ NULLe

int main() {
Node* list = readList(); Jenny

printList(list); Kylie

/* other list things happen... */ Trlp

l Oxab40 '

list

Node*

Cobiformia’

"Jenny" "Kylie" "Trip" / NUL L7
e i

int main() {
Node* list = readList(); Jenny

printList(list); Kylie

/* other list things happen... */ Trlp

l Oxab40 '

list

Node*

Cobiformia’

"Jenny" "Kylie" "Trip" / NUL L7
e i

Traversal utility functions

e Freeing a linked list

e Printing a linked list

e Measuring the length of a list
o We’ll go over this is as a warmup on Friday!

Summary

Linked lists can be used in standalone utility
functions or in the context of classes!

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

Linked list traversal takeaways

e Temporary pointers into lists are very helpful!
o When processing linked lists iteratively, it's common to introduce pointers that point to cells in
multiple spots in the list.
o This is particularly useful if we’re destroying or rewiring existing lists.

e Using awhile loop with a condition that checks to see if the current pointer is
nullptr is the prevailing way to traverse a linked list.

g% r/todayilearned

r i L el S . Ol
Posted by u/shaka_sulu * 8h

TIL a California man got

'NULL as a personalized \' l J L l
license plate hoping that -
'NULL would confuse the N
computer system. Instead, when cops

left the plate number info empty on a
ticket or citation, the fine went to him.
He got over $12k fines sent to him his
first year.

arstechnica.com Cabiforni

ULETR

What’s next?

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic el
Life after CS106B/
algorithmic recursive

analysis problem-solving

More on linked lists!

OKAY, HUMAN.

HUH? 3
BERCRE YoU

HIT (OMPILE,
YLISTEN Up

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU MAGINE YOURSELF
WALKING OR
M SOMETHING,

AND SUDCDENLY YOU
NISSTEP, STUMBLE,
AND JOLT AWAKE?

YEI/\H'. rﬁ

WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.

\
DOUBLE - CHECK YOUR
DAMN POINTERS, OKAY?

-2

