
Linked Lists
What’s something annoying/frustrating

 about arrays?
Feel free to mention something that’s come up in A4

or something that’s confusing from lecture.

(pollev.com/cs106bpoll)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

 arrays

 dynamic memory
 management

linked data structures

Roadmap

Life after CS106B!
Core
Tools

User/client
Implementation

Today’s
question

How can we use pointers
to organize non-contiguous
memory on the heap?

Today’s
topics

1. Review

2. What is a linked list?

3. How do we use linked lists
in a class?

4. How do we manipulate
linked lists?

Review
[memory and pointers]

Levels of abstraction
Abstract Data

Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

How is computer memory organized?

0xfca0b000

Pointers and Memory

● Every variable you create has an address in memory on your computer (either
on the stack or the heap).

How is computer memory organized?

Stack Heap
Static memory allocation

Automatic memory management

Persistence is out of your
control!

You need to know size needed
at compile time!

Hard to share a single large
object (copy instead)

Dynamic memory allocation

You manage the memory

You manage persistence!

You can figure out the size
needed at runtime!

You can share a single large
object between classes (with
pointers!).

How is computer memory organized?

Stack Heap
Static memory allocation

Automatic memory management

Persistence is out of your
control!

You need to know size needed
at compile time!

Hard to share a single large
object (copy instead)

Dynamic memory allocation

You manage the memory

You manage persistence!

You can figure out the size
needed at runtime!

You can share a single large
object between classes (with
pointers!).

Pointers and Memory

● Every variable you create has an address in memory on your computer (either
on the stack or the heap).

● A pointer is just a type of variable that stores a memory address!

Pointers and Memory

● Every variable you create has an address in memory on your computer (either
on the stack or the heap).

● A pointer is just a type of variable that stores a memory address!
○ You specify the type of the variable that it points to so that C++ knows how

much space the value its pointing to is taking up (e.g. string* or int* or
Vector*).

Pointers and Memory

● Every variable you create has an address in memory on your computer (either
on the stack or the heap).

● A pointer is just a type of variable that stores a memory address!
○ You specify the type of the variable that it points to so that C++ knows how

much space the value its pointing to is taking up (e.g. string* or int* or
Vector*).

○ But remember that pointers and what they point to (e.g. string vs.
string*) are two completely different data types!

Pointers and Memory

● Every variable you create has an address in memory on your computer (either
on the stack or the heap)

● A pointer is just a type of variable that stores a memory address!

● When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.
○ E.g. int* number = new int;
○ E.g. int* numArr = new int[5];

Pointers and Memory

● Every variable you create has an address in memory on your computer (either
on the stack or the heap)

● A pointer is just a type of variable that stores a memory address!

● When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.
○ E.g. int* number = new int;
○ E.g. int* numArr = new int[5];

Dynamically allocated variables
are the only reason we’ll use
pointers in this class!

Pointers and Memory

● Every variable you create has an address in memory on your computer (either
on the stack or the heap)

● A pointer is just a type of variable that stores a memory address!

● When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.

● To get the value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).

Pointers and Memory

● Every variable you create has an address in memory on your computer (either
on the stack or the heap)

● A pointer is just a type of variable that stores a memory address!

● When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.

● To get the value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).

http://www.youtube.com/watch?v=5VnDaHBi8dM

Today: Using pointers
in practice

How can we use pointers to organize non-contiguous
memory on the heap?

Today: Using pointers
in practice

Today: Using pointers
in practice
How can we use pointers to organize non-contiguous
memory on the heap?

Not arrays!

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Pointers move
us across this
boundary!

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

These are built
on top of
pointers!

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Our focus for
today!

What’s wrong with arrays?

int* tenInts = new int[10];

The OS will find a
contiguous array for
10 integers and give
you that memory
back

Credit: Neel Kishnani, Chris Gregg

https://docs.google.com/presentation/d/128i5NSGLWlrIsLhXw8NDfAvUYRsxeilxAnMnw_r2nvc/edit#slide=id.g125b2f8e9b8_0_217

The remove() operation

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

The remove() operation

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 -3 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 -3 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 -3 27 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 -3 27 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The insert() operation

106 -3 27 ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The insert() operation

106 -3 27 ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

The insert() operation

106 -3 27 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

The insert() operation

106 -3 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

The insert() operation

106 106 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

The insert() operation

106 106 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

The insert() operation

198 106 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

Can we do better?

● A way to store elements as a sequence even if they’re not physically next to
each other on the computer memory

○ So we can easily insert new elements into the list
○ So we can easily remove elements from the list
○ So we can easily resize the list
○ (So we don’t have to mass copy elements and shift them over or shift them into a new block of

memory)

Can we do better?

● Nope. Class for the rest of the quarter is cancelled; computing as we know it
has been a standstill since 1954.

(just kidding)

What is a linked list?

What is a linked list?

● A linked list is a chain of nodes.

What is a linked list?

● A linked list is a chain of nodes.

● Each node contains two pieces of information:
○ Some piece of data that is stored in the sequence
○ A link to the next node in the list

What is a linked list?

● A linked list is a chain of nodes.

● Each node contains two pieces of information:
○ Some piece of data that is stored in the sequence
○ A link to the next node in the list

● We can traverse the list by starting at the first node and repeatedly following its
link.

Node

Data

Link

Pointer to a node

Data

Link0xfca0b000

ptr

Pointer to a node that points to a node

Data

Link0xfca0b000

ptr

Data

Link

Pointer to a node that points to a node that points to a node

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

Pointer to a node that points to a node that points to a node

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

???

A linked list!

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

PTR

Why use linked lists?

● More flexible than arrays!
○ Since they’re not contiguous, they’re easier to rearrange.

● We can efficiently splice new elements into the list or remove existing
elements anywhere in the list. (We’ll see how shortly!)

● We never have to do a massive copy step.

● But linked lists still have many tradeoffs and are not always the best data
structure!

Linked lists in C++

The Node struct

struct Node {

 string data;

 Node* next;

}

The Node struct

struct Node {

 string data;

 Node* next;

}

● The structure is defined recursively! (both the Node and the linked list itself)

The Node struct

struct Node {

 string data;

 Node* next;

}

● The structure is defined recursively! (both the Node and the linked list itself)

● The compiler can handle the fact that in the definition of the Node there is a
Node* because it knows it is simply a pointer.

○ (It would be impossible to recursively define the Node with an actual Node object inside the
struct.)

Pointer to a node

string data

Node* next

0xfca0b000

list

N
od

e*

Node* list = new Node;

Pointer to a node

string data

Node* next

0xfca0b000

list

N
od

e*

Node* list = new Node;

How do we update
these values (i.e. the
Node itself)?

Pointer to a node

"someData"

Node* next

0xfca0b000

list

N
od

e*

Node* list = new Node;

(*list).data = "someData";

Pointer to a node

"someData"

Node* next

0xfca0b000

list

N
od

e*

Node* list = new Node;

(*list).data = "someData";
Use * to dereference the
pointer to get the Node
struct.

Pointer to a node

"someData"

Node* next

0xfca0b000

list

N
od

e*

Node* list = new Node;

(*list).data = "someData";
Use dot (.) notation to
update the data field of
the struct.

Pointer to a node

"someData"

0xfca0b000

list

N
od

e*

Node* list = new Node;

(*list).data = "someData";

(*list).next = nullptr;

PTR

Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;

(*list).data = "someData";

(*list).next = nullptr;

There’s an easier way!

"someData" PTR

Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;

list->data = "someData";

list->next = nullptr;

"someData" PTR

Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;

list->data = "someData";

list->next = nullptr;

The arrow notation (->) dereferences
AND accesses the field for pointers
that point to structs specifically.

"someData" PTR

Announcements

Announcements

● Final project proposals were due yesterday. We will try to have feedback to
you by Thursday or Friday.
○ In the meantime, make sure to take a look at the project timeline to stay

on track!
○ Next milestone: Sunday Aug 7

● Assignment 4 is due tomorrow (with 24 hour grace period).
● Assignment 5 is out tomorrow!

○ Good use of the debugger is essential in this assignment. Use the
techniques in the warm-up to help you uncover those tricky memory bugs!

How do we use linked lists in a
class?

Common linked lists operations

● Traversal
○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

Implementing a Stack

Note: You could do this with an array! This is just for the
sake of getting practice with linked lists.

Stack as a linked list

● We’ll keep a pointer Node* top that points to the “top” element in our stack.
○ This member var will get initialized to nullptr when our stack is empty!

Stack as a linked list

● We’ll keep a pointer Node* top that points to the “top” element in our stack.
○ This member var will get initialized to nullptr when our stack is empty!

● Our linked list nodes will be connected from the top to the bottom of our stack.

Stack as a linked list

● We’ll keep a pointer Node* top that points to the “top” element in our stack.
○ This member var will get initialized to nullptr when our stack is empty!

● Our linked list nodes will be connected from the top to the bottom of our stack.

● Our stack will specifically hold integers, so our Node struct will hold an int
type for our data field:

struct Node {

 int data;

 Node* next;

}

Three Stack operations

● push()

● pop()

● Destructor

Three Stack operations

● push()

● pop()

● Destructor

Common linked lists operations

● Traversal
○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion (at the front)
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

push()

● Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack

myStack.push(7); // we want the result to be {9, 8, 7}

● Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack

myStack.push(7); // we want the result to be {9, 8, 7}

push()

8

0xfca0b000

top

9 PTR

N
od

e*

How our linked list starts:

● Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack

myStack.push(7); // we want the result to be {9, 8, 7}

push()

8

0xfca0b000

top

9 PTR

N
od

e*

7

Goal:

Let’s code push()!

Live Activity Summary

● We strongly recommend watching the live recording of the coding activity, as
the code and explanations contextualize the following diagrams

Initial State (beginning of push() function)

Node *temp = new Node;
temp->data = 7;

Node *temp = new Node;
temp->data = 7;
top = temp; // INCORRECT

Node *temp = new Node;
temp->data = 7;
temp->next = top;

Node *temp = new Node;
temp->data = 7;
temp->next = top;
top = temp;

Three Stack operations

● push()

● pop()

● Destructor

Common linked lists operations

● Traversal
○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

● Now we want to remove the top value:

...

myStack.pop(); // we want the result to be {9, 8}

pop()

8

0xfca0b000

top

9 PTR

N
od

e*

7

Starting state of the list:

● Now we want to remove the top value:

...

myStack.pop(); // we want the result to be {9, 8}

pop()

8

0xfca0b000

top

9 PTR

N
od

e*

Goal:

Let’s code pop()!

Initial State (beginning of pop() function)

top = top->next; // INCORRECT

Node* temp = top;

Need photo, i missed it

Node* temp = top;
top = top->next;
delete temp;

Attendance ticket:
https://tinyurl.com/willthiscodework

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/willthiscodework

Three Stack operations

● push()

● pop()

● Destructor

Common linked lists operations

● Traversal
○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

Destructor

● We have to make sure we delete all of the Nodes.

● The top pointer should be nullptr when we’re done.

0xfca0b000

top

N
od

e*
PTR

Let’s code the
destructor!

IntStack takeaways

● Linked lists are chains of Node structs, which are connected by pointers.
○ Since the memory is not contiguous, they allow for fast rewiring between nodes (without

moving all the other Nodes like an array might).

● Common traversal strategy
○ While loop with a pointer that starts at the front of your list
○ Inside the while loop, reassign the pointer to the next node

● Common bugs
○ Be careful about the order in which you delete and rewire pointers!
○ It’s easy to end up with dangling pointers or memory leaks (memory that hasn’t been

deallocated but that you not longer have a pointer to)

How do we manipulate linked
lists?

Linked list utility functions

● We’ve now seen linked lists in the context of classes, where we used a linked
list as the data storage underlying an implementation of a Stack.

Linked list utility functions

● We’ve now seen linked lists in the context of classes, where we used a linked
list as the data storage underlying an implementation of a Stack.

● However, linked lists are not limited only to use within classes. In fact, the next
assignment will ask you to implement "standalone" linked list functions that
operate on provided linked lists, outside the context of a class.

Linked list utility functions

● We’ve now seen linked lists in the context of classes, where we used a linked
list as the data storage underlying an implementation of a Stack.

● However, linked lists are not limited only to use within classes. In fact, the next
assignment will ask you to implement "standalone" linked list functions that
operate on provided linked lists, outside the context of a class.

● This is the paradigm that we will work under for the several functions. In doing
so, we'll gain a little more flexibility to get practice with many different linked
list operations and build our linked list toolbox!

Common linked lists operations

● Traversal
○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

Linked List Traversal

Traversal utility functions

● Freeing a linked list

● Printing a linked list

● Measuring the length of a list

Traversal utility functions

● Freeing a linked list
○ Very similar to the destructor we just saw!

● Printing a linked list

● Measuring the length of a list

Freeing linked lists,
the wrong way

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

"Kylie" "Trip" PTR"Jenny"

0xab40

list

N
od

e*

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

"Kylie" "Trip" PTR"Jenny"

0xab40

list

N
od

e*

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

delete

Dynamic
Deallocation!

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

N
od

e*

"Kylie" "Trip" PTR

0xab40

list

N
od

e*

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR

Undefined
Behavior!

Freeing linked lists,
the right way (intuition)

void freeList(Node* list) {
 while (list != nullptr) {

 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

0xab42

next

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

0xab42

next

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

0xab42

next

Freeing linked lists,
the right way from the
top

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} nullptr

list

N
od

e*

PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} nullptr

list

N
od

e*

PTR

N
od

e*

nullptr

All memory
freed! Wooo!

Traversal utility functions

● Freeing a linked list

● Printing a linked list

● Measuring the length of a list

Printing a linked list

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

● There are two main ways to do so: using the debugger and printing to the
console

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

● There are two main ways to do so: using the debugger and printing to the
console

● First attempt: What is the result of the following code? (Poll)
/* Creates a list with contents "Hello" -> "World" -> nullptr */

Node* list = createList();

cout << list << endl;

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

● There are two main ways to do so: using the debugger and printing to the
console

● First attempt: What is the result of the following code? (Poll)
/* Creates a list with contents "Hello" -> "World" -> nullptr */

Node* list = createList();

cout << list << endl; Answer: Some memory address is
printed! We can't predict the exact value.

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

● There are two main ways to do so: using the debugger and printing to the
console

● First attempt (directly printing list pointer) unsuccessful.

● Second attempt: Let's write a function to print the list!

printList()
Let's code it!

How does it work?

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

Jenny

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

Jenny

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Jenny

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Jenny

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Jenny

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Jenny
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Jenny
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Jenny
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Jenny
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Jenny
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Jenny
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Jenny
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

nullptr

Jenny
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

nullptr

Jenny
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

Jenny
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Jenny"

Jenny
Kylie
Trip

Traversal utility functions

● Freeing a linked list

● Printing a linked list

● Measuring the length of a list
○ We’ll go over this is as a warmup on Friday!

Summary

Linked lists can be used in standalone utility
functions or in the context of classes!

Common linked lists operations

● Traversal
○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

Linked list traversal takeaways

● Temporary pointers into lists are very helpful!
○ When processing linked lists iteratively, it’s common to introduce pointers that point to cells in

multiple spots in the list.
○ This is particularly useful if we’re destroying or rewiring existing lists.

● Using a while loop with a condition that checks to see if the current pointer is
nullptr is the prevailing way to traverse a linked list.

A linked list

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

PTR

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

More on linked lists!

