Linked List Operations

Get creative: If you were explaining a linked list to a
friend who isn’t in CS106B, what would you use as
a good analogy?

https://pollev.com/cs106bpolls

"If you were explaining a linked list to a friend who isn't in

CS106B, what would you use as a good analogy?

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm

Roadmap

arrays

dynamic memory
management

linked data structures

Life after CS106B/

How can we write code to

Today'’s

examine and manipulate

g uestion the structure of linked lists?

1. Review

Today'’s

. 2. Advanced Linked List
topics

Operations

a. Traversal

b. Insertion (multiple ways!)
c. Deletion (if time)

Review

[intro to linked lists]

Abstract Data

What is the interface for the user?
Structures

C
O _— e == = _— s =
—
o Data Organization
E How is our data organized? 9 .
4+ Strategies
n
e
(©
G
o What stores our data? Dot Fundamental C++
2 (arrays, linked lists) ointers move Data Storage
D u¢ acrocs this
> |
) éouna’arg/
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data

What is the interface for the user?
Structures

C
O _— e == = _— s =
—
o Data Organization
E How is our data organized? 9 .
-+ Strategies
n
e
©
G
o What stores our data? ‘ Fundamental C++
W (,) These are built Data Storage
Q on top of
> .
@ ,bom?‘err./ —_—— - -1— _——— -
—
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data

What is the interface for the user?
Structures

C
O _— —_— _— —_— —_— _— —_— -_—
—
o Data Organization
E How is our data organized? 9 .
- Strategies
n
e
©
G
O What stores our data?
7))
— arrays,
O (array)
>
m _— —_— _— —_— —_— _— —_— -_—
—
How is data represented electronically? Computer
(RAM) Hardware

What is a linked list?

e Alinked list is a chain of nodes, used to store a sequence of data.
e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence

o Alink to the next node in the list

e We can traverse the list by starting at the first node and repeatedly following its
link.

e The end of the list is marked with some special indicator.

A linked list!

Data

Link

Data

Link

Data

Link

Cabifornia’

NULLp

The Node struct

struct Node {
string data;
Node* next;

Pointer to a node

|
*
o /
B JOxfca0b000
Z

list

Node* 1list = new Node;
list->data = "someData";
list->next = nullptr;

. Data" Cabiforria’
someData NUL [P

Q¢ .

| |

The arrow notation (=) dereferencesc
AND accesces the field for pointere
that point to structe specifically.

New: Node struct constructor 7he Vode struct also has
conveniently defined that

allowe vs fo accomlb//d\ thic in one line.

Californa’
g — "someData" e
'/ T S
2 B

list

Node* list = new Node("someData", nullptr);

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

Implementing an ADT using a Linked List

e Alinked list can be the fundamental data storage backing for an ADT in much
the same the same way an array can.

e We saw that linked lists function great as a way of implementing a stack!

e Three operations:

o push() - Listinsertion and list rewiring
o pop() - List deletion and list rewiring
o Destructor — List traversal and list deletion

Linked list traversal

e Temporary pointers into lists are very helpful!
o When processing linked lists iteratively, it's common to introduce pointers that point to cells in
multiple spots in the list.
o This is particularly useful if we’re destroying or rewiring existing lists.

e Using awhile loop with a condition that checks to see if the current pointer is
nullptr is the prevailing way to traverse a linked list.

printList()

How does it work?

int main() {

Node* list = readList();
printList(list);

/* other list things happen... */

int main() {

Node* list = readList();
printList(list);

/* other list things happen... */

int main() {

Node* list = readList();

printList(list);
/* other list things happen... */
léIH!HHIII
list
"Jenny" "Kylie"

e

"Trip"

(-

Cobiformia’

~ NULL#

int main() {

Node* list = readList();

printList(list);
/* other list things happen... */
léIH!HHIII
list
"Jenny" "Kylie"

e

"Trip"

(-

Cobiformia’

~ NULL#

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

—
E Oxab40 '

1i::",;:>

"J en nyll

e

(-

n Kylie"

"Trip"

(-

Califorria’
NULLP™

W\ .

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

—
E Oxab40 '

1i::",;:>

"J en nyll

e

(-

n Kylie"

"Trip"

(-

Califorria’
NULLP™

W\ .

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

—
E Oxab40 '

1i::",;:>

"J en nyll

e

(-

n Kylie"

"Trip"

(-

Califorria’
NULLP™

W\ .

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

E'
1i:j",;:>

Jenny

"Jenny" / "Kylie"
(-

"Trip"

(-

Califorria’

NULLere

W\ .

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

E'
1i:j",;:>

Jenny

"Jenny" / "Kylie"
(-

"Trip"

(-

Califorria’

NULLere

W\ .

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

E Oxbc70

list

cout << list->data << endl;

"Jenny"
lir/

"Kylie"

Jenny

Cobiformia’

NULLP™

"Trip" /
(-

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

E Oxbc70

list

cout << list->data << endl;

"Jenny"
lir/

"Kylie"

Jenny

Cobiformia’

NULLP™

"Trip" /
(-

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

E Oxbc70

list

cout << list->data << endl;

"Jenny"
lir/

"Kylie"

Jenny

Cobiformia’

NULLP™

"Trip" /
(-

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

E Oxbc70 '

list

"J e n nyll

(-

e

n Kylie"

Jenny
Kylie

"Trip"

(-

Cobiformia’

~ NULL#

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

E Oxbc70 '

list

"J e n nyll

(-

e

n Kylie"

Jenny
Kylie

"Trip"

(-

Cobiformia’

~ NULL#

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

—
E 0x40f0 '

list

"J e n nyll

(-

e

n Kylie"

Jenny
Kylie

"Trip"

(-

Cobiformia’

~ NULL#

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

—
E 0x40f0 '

list

"J e n nyll

(-

e

n Kylie"

Jenny
Kylie

"Trip"

(-

Cobiformia’

~ NULL#

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

—
E 0x40f0 '

list

"J e n nyll

(-

e

n Kylie"

Jenny
Kylie

"Trip"

(-

Cobiformia’

~ NULL#

int

main() {

void printList(Node* list) {
while (list != nullptr) {

cout << list->data << endl;

list = list->next;

—
E 0x40f0 '

list

"Jenny"
&

"Kylie"

Jenny
Kylie
Trip

"Trip"

(-

Cobiformia’

~ NULL#

int

main() {

void printList(Node* list) {
while (list != nullptr) {

cout << list->data << endl;

list = list->next;

—
E 0x40f0 '

list

"Jenny"
&

"Kylie"

Jenny
Kylie
Trip

"Trip"

(-

Cobiformia’

~ NULL#

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

|
E nullptr '

list

Jenny
Kylie
Trip

"J e n nyll

(-

e

n Kylie"

"Trip"

(-

Cobiformia’

~ NULL#

int

main() {

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

|
E nullptr '

list

Jenny
Kylie
Trip

"J e n nyll

(-

e

n Kylie"

"Trip"

(-

Cobiformia’

~ NULL#

int main() {

Node* list = readList();

printList(list);
/* other list things happen... */
léIH!HHIII
list
"Jenny" "Kylie"

e

Jenny
Kylie
Trip

Cobiformia’

NULLP™

"Trip" /
(-

int main() {

Node* list = readList();

printList(list);
/* other list things happen... */
léIH!HHIII
list
"Jenny" "Kylie"

e

Jenny
Kylie
Trip

Cobiformia’

NULLP™

"Trip" /
(-

Summary

e Linked lists are chains of Node structs, which are connected by pointers.
o Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

e Common traversal strategy

o While loop with a pointer that starts at the front of your list
o Inside the while loop, reassign the pointer to the next node

e Common bugs
o Be careful about the order in which you delete and rewire pointers!
o It’s easy to end up with dangling pointers or memory leaks (memory that hasn’t been
deallocated but that you not longer have a pointer to)
o Use nullptr wisely!

g% r/todayilearned

r i L el S . Ol
Posted by u/shaka_sulu * 8h

TIL a California man got

'NULL as a personalized \' l J L l
license plate hoping that -
'NULL would confuse the N
computer system. Instead, when cops

left the plate number info empty on a
ticket or citation, the fine went to him.
He got over $12k fines sent to him his
first year.

arstechnica.com Cabiforni

ULETR

How can we write code to
examine and manipulate the
structure of linked lists?

Linked List Operations
Revisited

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

Linked List Traversal

(revisited)

Traversal utility functions

e Freeing a linked list

e Printing a linked list

e Measuring the length of a list

Measuring a Linked
List

Measuring a Linked List

e Similar to arrays, a linked list does not have the capability to automatically
report back its own "size."

e The following code is NOT valid, since list is simply a pointer

Node* list = readList();
cout << list.size() << endl; // WRONG! BAD!

e Let's write a function that allows us to calculate the number of nodes in a
linked list!

int lengthOof() {...}

Attendance ticket:
https://tinyurl.com/lengthOfList

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/lengthOfList

lengthOf ()
Let's code it!

Linked Lists and
Recursion

Rethinking Linked Lists

e On Monday, we mentioned that the Node struct that defined the contents of a
linked list was define

Rethinking Linked Lists

e On Monday, we mentioned that the Node struct that defined the contents of a
linked list was define

struct Node {
string data;
Node* next;

Rethinking Linked Lists

e On Monday, we mentioned that the Node struct that defined the contents of a
linked list was define

struct Node {
string data;
Node* next;

e This struct definition gives us some insight into the fact that the overall concept
of a linked list can be expressed recursively.

A Linked List is Either..

Diagram created by Keith Schwarz

A Linked List is Either..

~an emply list,
represenfed by

nullptr, Or..

Diagram created by Keith Schwarz

A Linked List is Either..

.an empty list,
represenfed by
nullptr, Or..
a single linked list . at another linked
cell that points.. list.

Diagram created by Keith Schwarz

Printing a List Revisited

Printing a List Revisited

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

Printing a List Revisited

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

void printListRec(Node* list) {
/* Base Case: There's nothing

to print if the list is empty. */
if (list == nullptr) return;

/* Recursive Case: Print the
first node, then the rest of the
list. */

cout << list->data << endl;

printListRec(list->next);

Pitfalls of Recursive List Traversal

e Recursion can be a really elegant way to write code for a list traversal!
However, recursion is not always the optimal problem-solving strategy...

Pitfalls of Recursive List Traversal

e Note that the recursive solution generates one recursive call for every element
in the list, meaning that a list with n elements would require n stack frames.

Pitfalls of Recursive List Traversal

e What is the stack frame limit on most computers?
o You explored this on assignment 3 — for most computers it is somewhere in the range of 16-64K

Pitfalls of Recursive List Traversal

e With a recursive strategy, the size of the list we're able to process is limited by
the stack frame capacity — we can't process lists longer than 16-64K elements!

Pitfalls of Recursive List Traversal

Jakeaway: Any linked list operations
involving traversal of the whole list are
better done { This holds ecpecially
true on the ascignment — don't try to
implement any of the fict helper Functions

recursively!

Linked List Traversal Takeaways

e Using awhile loop with a condition that checks to see if the current pointer is
nullptr is the prevailing way to traverse a linked list.

e Temporary pointers into lists are very helpful!
o When processing linked lists iteratively, it's common to introduce pointers that point to cells in multiple
spots in the list.
o This is particularly useful if we’re destroying or rewiring existing lists while traversing.

e When traversing but not editing a list, we often pass a pointer parameter by value
into a utility function.

e lterative traversal offers the most flexible, scalable way to write utility functions that
are able to handle all different sizes of linked lists.

Linked List Insertion

Insertion at the front
(prepend)

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a
linked list.

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a
linked list.

|
E Oxab40 '

list

) Cobiformin”

"Jenny" "Kylie" "Trip N UL L
e i

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a
linked list.

|
E Oxab40 '

list

"Julie" "Jenny" / "Kylie" / "Trip" / gﬁﬁT_METR
1 [| |s

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a
linked list.

—
E 0x26b0 '

list

"Julie" / "Jenny" / "Kylie" / "Trip" / gﬁ&ﬁaﬁ}},‘
| | (-

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a

linked list.
e This is similar to the push() function we implemented on Monday, but now

we're writing a standalone function to do this on an arbitrary list. Let's code it!

—
E 0x26b0 '

list

"Julie" "Jenny" "Kylie" "Trip" - NULLP.TR
W

prependTo()
Let's code it!

What went wrong?

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

list

(Cabiforria’

NULLp

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

list

(Cabiforria’

NULLp

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
"Trip"

list data

ik /

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
"Trip"

list data

ik /

int main() {

Node* lis;]
= void prependTo(Node* list, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
return 0;

list;

newNode->next
ﬂ' list = newNode;
= E ﬂ ' E . ' % '
0x40f0 "Tri p"

list newNode data

(T £)

NULLP @

~ -

int main() {

Node* 1is;)
1 void prependTo(Node* list, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
return 0;

list;

newNode->next
ﬂ' list = newNode;
= E ﬂ ' E . ' % '
0x40f0 "Tri p"

list newNode data

(T £)

NULLP @

~ -

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
0x40f0 "Trip"

list newNode data

T / "Trip"
N

) 4
"@
3 -

~ -

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
0x40f0 "Trip"

list newNode data

T / "Trip"
N

) 4
"@
3 -

~ -

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
0x40f0 "Trip"

list newNode data

"Trip"

(Collifornia’

NULLp (6

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
0x40f0 "Trip"

list newNode data

"Trip"

(Collifornia’

NULLp (6

int main() {
Node* lis;]]
void prependTo(Node* list, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
return 0;
newNode->next = list;
list = newNode;
}
0x40f0 0x40f0 "Trip"
list newNode data

"Trip"

(Califorria’

NULLPTR 'il

int main() {

Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

list

|

Cotiformia’

NULL™ =

"Trip"

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

list

(Califorria’

NULL™ =

| just got
yeeted into
the land of
leaked

memory...

"Trip

Pointers by Value

e Unless specified otherwise, function

pointer in —
arguments in C++ are passed by main

value — this includes pointers!

e A function that takes a pointer as an
argument gets a copy of the

, pointer in
pointer. function l '7

e We can change where the copy
points, but not where the original
pointer points.

Pointers by Reference

Pointers by Reference

e To solve our earlier problem, we can

Pointers by Reference

e To solve our earlier problem, we can

e Qur new function:

void prependTo(Node*& list, string data) {
Node* newNode = new Node;
newNode->data = data;

newNode->next = list;
list = newNode;

Pointers by Reference

e To solve our earlier problem, we can

e Qur new function:

void prependTo(, string data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = list;

Pointers by Reference

e To solve our earlier problem, we can

e Qur new function:

void prependTo(, string data) {
Node* newNode = new Node;
newNode->data = data;
TA/S’ IS a
newNode->next = list; IF we change where list
) pointe in this function, the
changes will ctick!

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

list

(Cabiforria’

NULLp

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

list

(Cabiforria’

NULLp

int main() {
Node* lis; .]
void prependTo (Ll WEE3d, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
ret rn 9;
- newNode->next = list;
list = newNode;
}
data

(Califorria’

NULLp

int main() {
Node* lis; .]
void prependTo (Ll WEEJd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
ret rn 9;
- newNode->next = list;
list = newNode;
}
data

(Califorria’

NULLp

int main() {
Node* lis; .]
void prependTo (Ll WEEJd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
ret rn 9;
- newNode->next = list;
list = newNode;
}
newNode data

N &
NULE =

a %
%y e - -
=

int main() {
Node* lis; .]
void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
ret rn 9;
- newNode->next = list;
list = newNode;
}
newNode data

N &
NULE =

a %
%y e - -
=

int main() {
Node* lis;]
1 void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
t 0;
re — newNode->next = list;
list = newNode;
}
newNode data
"Trip"
Colliforria’
(NUL[P™ @

int main() {
Node* lis;]
1 void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
t 0;
re — newNode->next = list;
list = newNode;
}
newNode data
"Trip"
Colliforria’
(NUL[P™ @

int main() {
Node* lis;]
1 void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
t 0;
re — newNode->next = list;
list = newNode;
}
newNode data
"Trip"
Colliforria’
N+ (il

int main() {
Node* lis;]
1 void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
t 0;
re — newNode->next = list;
list = newNode;
}
newNode data
"Trip"
Colliforria’
N+ (il

int main() {
Node* lisj]
ode® lis void prependTo (Ll WEERd, string data) {
prependTo

Node* newNode = new Node;

rependTo
greﬁendTo newNode->data = data;
return O; .
newNode->next = list;

list = newNode;

'
]
list E 0x40f0 ' % "Trip" '

newNode data

"Trip"

[NULLPTR - 'il

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Jenny");
return 0;

0x40f0 '

list

"Trip"

(NULLPTR - ~ (@

int main() {

Node* list = nullptr; | am no longer
prependTo(list, "Trip"); lost — Yee
prependTo(list, "Kylie"); Haw!
prependTo(list, "Jenny");

return 0;

=

list

"Trl p"

(NULL"TR‘ e (i

Pointers by Reference Summary

e If you pass a pointer into a function by value, you can change the contents at

the object you point at, but not which object you point at.
o How do you change the contents? Dereferencing!
o Butyou don’t have access to the original pointer if it's passed by value.

Pointers by Reference Summary

e If you pass a pointer into a function by value, you can change the contents at
the object you point at, but not which object you point at.

e If you pass a pointer into a function by reference, you can also change which

object is pointed at.
o The utility function will now edit the original pointer, just like when we passed ADTs by
reference!

Pointers by Reference Summary

e If you pass a pointer into a function by value, you can change the contents at
the object you point at, but not which object you point at.

e If you pass a pointer into a function by reference, you can also change which
object is pointed at.

e When passing in pointers by reference, be careful not to change the pointer
unless you really want to change where it’s pointing!

Insertion at the end
(append)

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

|
E Oxab40 '

list

Jenny” "Kylie" "Trip" / aﬁaﬁﬁ}_m
|i|—/ lil—/ 118

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a

linked list.
"Julie"
E Oxab40 ' li'

list

Jenny” "Kylie" "Trip" / aﬁ&fm}_ﬁ
|i|~/ lir/ 118

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

|
E Oxab40 '

. (-
st . | { WM?

"Jenny "Kylie "Trip NULLPTR
|i|~/ lir/ | 1§

"Julie"

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

|
E Oxab40 '

. (-
e § | { WM>

"Jenny "Kylie "Trip NULLPTR
|i|~/ lil—/ | 1§

1. Create a cell whose
next field is nullptr.

"Julie"

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

1. Create a cell whose
next field is nullptr.
2. Find the last cell in the

n s n
p— list. Julie
E Oxab40 ' lil\

list
"Jenny" "Kylie" "Trip" { ?fﬁﬁ}})
i

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a

linked list.
1. Create a cell whose
next field is nullptr.
2. Find the last cell in the e
p— list. Julie
Oxabd 3. Change where the last
cell points. lil‘
list
) { Cobiformin’

"Jenny" "Kylie" "Trip NU L LPTR
|i|~/ lil—/ [1§

appendTo()
Let's code it!

appendTo() Takeaways

e Appending to the end of a linked list has a lot of tricky edge cases!
o We must pass the pointer by reference to account for the case where we're adding
to an empty list and need to update the head pointer.
o We have to be careful about our while loop condition to make sure that we never
dereference a null pointer!

o We have to be careful with our usage of pointers by reference and make sure to
maintain a local iterator pointer to traverse the list.

e Being able to reason about all of these cases becomes much easier if we draw out
diagrams and carefully trace the values of different pointers over time.
o Note: Check out slides 56-124 of for visualizations of the right and
wrong ways of coding up the append function!

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/21/Slides21.pdf

Unresolved Issue

e What is the big-O complexity of appending to the back of a linked list using our
algorithm?

Unresolved Issue

e What is the big-O complexity of appending to the back of a linked list using our
algorithm?

e Answer: 0 (n), where nis the number of elements in the list, since we have to
find the last position each time.

Unresolved Issue

e What is the big-O complexity of appending to the back of a linked list using our
algorithm?

e Answer: 0 (n), where nis the number of elements in the list, since we have to
find the last position each time.

e This seems suspect — O (n) for a single insertion is pretty bad! Can we do

better?
o Find out after the break!

Summary

e Linked lists can be used outside classes - you’ll do this on Assignment 5!

e Think about when you want to pass pointers by reference in order to edit the
original pointer and to avoid leaking memory.

e We can add to a linked list by either prepending or appending.
o Prepending is faster but results in a reversed order of items (things added earlier

are at the back of the list)
o Appending (as we’ve learned so far) requires traversing all items but maintains

order (things added earlier are at the front of the list)

Announcements

Announcements

e Assignment 4 is due today. Assignment 3 revisions are due Friday, July 29.

e Assignment 5 will be released by the end of the day.
o YEAH Hours will be tomorrow on Wednesday, July 27 at 5pm in Hewlett 103.

e Lecture this Thursday will be open project work timel
o Jenny and | will be having open OH in NVIDIA if you have questions.
o We’ll also set up areas in the lecture hall where you can discuss projects by topic so you can
get feedback and ideas from your classmates.

O Attendance is optional.

e The deadline to change your grading basis is this Friday, July 29 at 5pm.

Linked List Insertion

(continued)

Two ways to add (so far)

e Insertion at the front: prependTo()
o Prepending is faster but results in a reversed order of items (things added earlier
are at the back of the list)

e Insertion at the back: appendTo()

o Appending requires traversing all items but maintains order (things added earlier
are at the front of the list)

void nameOfAddFunction(, string data) {

}
D

Unresolved Issue

e What is the big-O complexity of appending to the back of a linked list using our
algorithm?

e Answer: 0 (n), where nis the number of elements in the list, since we have to
find the last position each time.

e This seems suspect — O (n) for a single insertion is pretty bad! Can we do
better?

A more efficient
append

A more efficient appendTo()

e Earlier, we saw an O(n) appendTo() that added to the back of a linked list. We
can do better!

e What if we know we’re going to add many things in some maintained order?

e Specifically, we’ll use the example of adding items from a vector into linked list.

Attempt #1

Node* createlListWithAppend(Vector<string> values) {
if (values.isEmpty()) {
return nullptr;

}
Node* head = new Node(values[@], nullptr);

for (int 1 = 1; 1 < values.size(); i++) {
appendTo(head, values[i]);
}

return head;

Attempt #1. What’s the runtime? (poll)

Node* createlListWithAppend(Vector<string> values) {
if (values.isEmpty()) {
return nullptr;

}
Node* head = new Node(values[@], nullptr); A. O(N)
B. O(N?)
for (int i = 1; i < values.size(); i++) { C. O(N3)
appendTo(head, values[i]); D. 0(log N)

}

return head;

@ When poll is active, respond at pollev.com/cs106bpolls

What's the runtime?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Attempt #1. What’s the runtime? (poll)

Node* createlListWithAppend(Vector<string> values) {
if (values.isEmpty()) {
return nullptr;

}
Node* head = new Node(values[@], nullptr); A. O(N)
B. O(N?)
for (int i = 1; i < values.size(); i++) { C. O(N3)
appendTo(head, values[i]); D. 0(log N)

}

return head;

Attempt #2:
createlListWithTailPtr()
Let's code it!

How does it work?

int main() {
Vector<string> values = {"Jenny", "Kylie", "Trip"};
Node* list = createListWithTailPtr(values);

/* Do other list-y things here, like printing/freeing the list. */
return O;

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;

Node* head = new Node(values[@], nullptr); {("Jenny",
" Kyl ie",

Node* cur = head; "Trip")

for (int 1 = 1; i < values.size(); i++) { P

Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;
cur = newNode;

}

return head;

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;

Node* head = new Node(values[@], nullptr); {("Jenny",
" Kyl ie",

Node* cur = head; "Trip")

for (int 1 = 1; i < values.size(); i++) { P

Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;
cur = newNode;

}

return head;

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;

Node* head = new Node(values[@], nullptr); {("Jenny",
" Kyl ie",

Node* cur = head; "Trip")

for (int 1 = 1; i < values.size(); i++) { P

Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;
cur = newNode;

}

return head;

Node* createListWithTailPtr(Vector<string> values) {
if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nU11ptr)3*-FUennyﬁ
" Kyl ie",
Node* cur = head; "Trip™)
for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode,

cur = newNode;
} 0x26b0
return head

} head

Cobiformia’

"Jenny" / ﬂ{ NULLPTR

Node* createListWithTailPtr(Vector<string> values) {
if (values.isEmpty()) return nullptr;
Node* head = new Node(values[O], nU11ptr)3*-FUennyﬁ
" Kyl ie",
Node* cur = head; "Trip™)
for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode,

cur = newNode;
} 0x26b0
return head

} head

Cobiformia’

"Jenny" / ﬂ{ NULLPTR

Node* createListWithTailPtr(Vector<string> values) {
if (values.isEmpty()) return nullptr;
Node* head = new Node(values[@], nullptr); {"Jenny",

Node* cur = head;
for (int 1 = 1; i < values.size(); i++) {
Node* newNode
cur->next =
cur = newNode;

}

return head;

newNode,

" Kyl ie",
"Trip"]

= new Node(values[i], nullptr);

%

Node

E 0x26b0 ' ' 0x26b0 '

head

4/

"J e n ny"

~

Cobiformia’

NULLP

-

Node* createListWithTailPtr(Vector<string> values) {
if (values.isEmpty()) return nullptr;
Node* head = new Node(values[@], nullptr); {"Jenny",

Node* cur = head;
for (int 1 = 1; i < values.size(); i++) {
Node* newNode
cur->next =
cur = newNode;

}

return head;

newNode,

" Kyl ie",
"Trip"]

= new Node(values[i], nullptr);

%

Node

E 0x26b0 ' ' 0x26b0 '

head

4/

"J e n ny"

~

Cobiformia’

NULLP

-

Node* createListWithTailPtr(Vector<string> values) {
if (values.isEmpty()) return nullptr;
Node* head = new Node(values[@], nullptr); {"Jenny",

Node* cur = head;
for (int 1 = 1; i < values.size(); i++) {
Node* newNode
cur->next =
cur = newNode;

}

return head;

newNode,

" Kyl ie",
"Trip"]

= new Node(values[i], nullptr);

%

Node

E 0x26b0 ' ' 0x26b0 '

head

4/

"J e n ny"

~

Cobiformia’

NULLP

-

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr); {("Jenny",

" Kyl ie",
Node* cur = head; "Trip")
for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;

cur = newNode;
} 0x26b0 0x26b0 Oxbc70
return head;

} head newNode

%

Node

{/

"J e n ny"

{ Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr); {("Jenny",

" Kyl ie",
Node* cur = head; "Trip")
for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;

cur = newNode;
} 0x26b0 0x26b0 Oxbc70
return head;

} head newNode

%

Node

{/

"J e n ny"

{ Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr); {("Jenny",

" Kyl ie",
Node* cur = head; "Trip")
for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;

cur = newNode;
} 0x26b0 0x26b0 Oxbc70
return head;

} head newNode

%

Node

{/ po

llJenny" "Kylie"

/

{ Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr); {("Jenny",

" Kyl ie",
Node* cur = head; "Trip")
for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;

cur = newNode;
} 0x26b0 0x26b0 Oxbc70
return head;

} head newNode

%

Node

{/ po

llJenny" "Kylie"

/

{ Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr);

Node* cur = head;
for (int 1 = 1; i < values.size(); i++) {
new Node(values[i], nullptr);

E 0x26b0 ' ' Oxbc70 ' E Oxbc70 '

Node* newNode
newNode;
cur = newNode;

cur->next

}

return head;

%

\

{"Jenny",
" Kyl ie",
"Tl’ip"]

newNode

/

"J e n ny"

n Kylie"

!

Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr);

Node* cur = head;
for (int 1 = 1; i < values.size(); i++) {
new Node(values[i], nullptr);

E 0x26b0 ' ' Oxbc70 ' E Oxbc70 '

Node* newNode
newNode;
cur = newNode;

cur->next

}

return head;

%

\

{"Jenny",
" Kyl ie",
"Tl’ip"]

newNode

/

"J e n ny"

n Kylie"

!

Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {
Node* cur = head;

{"Jenny",
" Kyl ie",
"Tl’ip"]

if (values.isEmpty()) return nullptr; “\\\\\>
for (int 1 = 1; i < values.size(); i++) {

Node* head = new Node(values[©0], nullptr);
Node* newNode = new Node(values[i], nullptr);

cur->next = newNode;
cur = newNode;
¥ 0x26b0 ol oxbc70
return head; 2
} head
"Jenny" "Kylie"

!

Cabifornaa’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {
Node* cur = head;

{"Jenny",
" Kyl ie",
"Tl’ip"]

if (values.isEmpty()) return nullptr; “\\\\\>
for (int 1 = 1; i < values.size(); i++) {

Node* head = new Node(values[©0], nullptr);
Node* newNode = new Node(values[i], nullptr);

cur->next = newNode;
cur = newNode;
} 0x26b0 ol oxbc70
return head; 2
} head
"Jenny" "Kylie"

Cabifornaa’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {
Node* cur = head;

{"Jenny",
" Kyl ie",
"Tl’ip"]

if (values.isEmpty()) return nullptr; “\\\\\>
for (int 1 = 1; i < values.size(); i++) {

Node* head = new Node(values[©0], nullptr);
Node* newNode = new Node(values[i], nullptr);

cur->next = newNode;
cur = newNode;
} 0x26b0 ol oxbc70
return head; 2
} head
"Jenny" "Kylie"

!

Cabifornaa’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr); {("Jenny",

" Kyl ie",
Node* cur = head; "Trip")
for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;

cur = newNode;
} 0x26b0 Oxbc70 0x40f0
return head;

} newNode

%

/

"Trip

{ Cabifornia’

NULLP™

-

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr); {("Jenny",

" Kyl ie",
Node* cur = head; "Trip")
for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;

cur = newNode;
} 0x26b0 Oxbc70 0x40f0
return head;

} newNode

%

/

"Trip

{ Cabifornia’

NULLP™

-

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr);

Node* cur = head;
for (int 1 = 1; i < values.size(); i++) {
new Node(values[i], nullptr);

E 0x26b0 ' ' Oxbc70 ' E (0)17:T0) (o] '

Node* newNode
newNode;
cur = newNode;

cur->next

}

return head;

%

\ {"Jenl‘IY",
"Kylie",

"Trip"]

newNode

/

"J e n ny"

n Kylie"

"Trip

-

—

Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr);

Node* cur = head;
for (int 1 = 1; i < values.size(); i++) {
new Node(values[i], nullptr);

E 0x26b0 ' ' Oxbc70 ' E (0)17:T0) (o] '

Node* newNode
newNode;
cur = newNode;

cur->next

}

return head;

%

\ {"Jenl‘IY",
"Kylie",

"Trip"]

newNode

/

"J e n ny"

n Kylie"

"Trip

-

—

Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {
if (values.isEmpty()) return nullptr;

Node* head = new Node(values[©0], nullptr);-\\\\\\biguennyﬁ

" Kyl ie",
Node* cur = head; "Trip")
for (int 1 = 1; i < values.size(); i++) {

Node* newNode = new Node(values[i], nullptr);

cur->next newNode;
E 0x26b0 ' ' 0x40f0

cur = newNode;

%

} 3 E 0x40f0 '
return head; 2
} head newNode
"Jenny" "Kylie" "Trlp"

— i

-

—

Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {
if (values.isEmpty()) return nullptr;

Node* head = new Node(values[©0], nullptr);-\\\\\\biguennyﬁ

" Kyl ie",
Node* cur = head; "Trip")
for (int 1 = 1; i < values.size(); i++) {

Node* newNode = new Node(values[i], nullptr);

cur->next newNode;
E 0x26b0 ' ' 0x40f0

cur = newNode;

%

¥ 3 E 0x40f0 '
return head; 2
} head newNode
"Jenny" "Kylie" "Trlp"

— i

-

—

Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr); {("Jenny",

" Kyl ie",
Node* cur = head; "Trip")

for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;

cur = newNode;
¥ 0x26b0 0x40f0
return head;

} head

%

Node

/ l

"Jenny" HKylie" "Trip"

— i

—

Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr); {("Jenny",

" Kyl ie",
Node* cur = head; "Trip")

for (int i = 1; 1 < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;

cur = newNode;
} 0x26b0 0x40f0
return head;

} head

%

Node

/ l

"Jenny" HKylie" "Trip"

— i

—

Cabifornia’

NULLP™

Node* createListWithTailPtr(Vector<string> values) {

if (values.isEmpty()) return nullptr;
Node* head = new Node(values[©0], nullptr); {("Jenny",

" Kyl ie",
Node* cur = head; "Trip")

for (int 1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;

cur = newNode;
} 0x26b0 0x40f0
return head;

} head

%

Node

/ l

"Jenny" HKylie" "Trip"

— i

—

Cabifornia’

NULLP™

int main() {

Vector<string> values = {"Jenny",
Node* list = createListWithTailPtr(values);

lleliell,

"Tr‘ip"};

/* Do other list-y things here, like printing/freeing the list. */

return 0;
list
"Jenny" 1] Kylie" "Trlp"

’/////”

-

-

—

Cabifornaa’

NULLP™

We just built a linked list
with the

N
O(n) time. Awesome!

Manipulating the
middle of a list

Insertion/deletion in the middle of a list

e Why might we want this?
o To maintain a particular sorted order of the list
o To find and remove a particular element in the list

Insertion/deletion in the middle of a list

e Why might we want this?
o To maintain a particular sorted order of the list
o To find and remove a particular element in the list

e We’re going to write two functions:
o alphabeticalAdd(Node*& list, string data)
o remove(Node*& list, string dataToRemove)

Insertion/deletion in the middle of a list

e Why might we want this?
o To maintain a particular sorted order of the list
o To find and remove a particular element in the list

e \We're going to write two functions:

o alphabeticalAdd(Node*& list, string data)
o remove(Node*& list, string dataToRemove)

Note that well need to pass ovr

list by reference!

alphabeticalAdd() —
Let’'s code it!

Linked List Deletion

remove() —
Check it out at home!

Takeaways for advanced linked list manipulation

While traversing to where you want to add/remove a node, you’ll often want to

. :
keep track of both a current pointer and a previous pointer

This makes rewiring easier between the two!
This also means you have to check that neither is nullptr before dereferencing

' Oxbc70 l l 0x40f0 '

prev
. , Coifornia’
"Kylle" "Trlp" NULLPTR

/ (i (i

@)
(@)

Node*
Node*

E . '/:e‘nny"
0x26b0

head '—«

Linked list summary

e You've now learned lots of ways to manipulate linked lists!
o Traversal
o Rewiring
o Insertion (front/back/middle)
o Deletion (front/back/middle)

® You've seen linked lists in classes and outside classes, and pointers passed by
value and passed by reference.

e Assignment 5 will really test your understanding of linked lists.
o Draw lots of pictures!
o Test small parts of your code at a time to make sure individual operations are working correctly.

What's next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

—

Diagnostic

Life after CS106B/

algorithmic recursive
testing analysis problem-solving

Sorting Algorithms!

INEFFECTIVE SORTS

DEFINE. HALFHEARTEDMERGESORT (LisT):

IF LENGH(LIST) < 2:

RETORN LIST
PIOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDMERGE S0RT (LIST(: PNOTJ;
B = HALFHEARTEDMERGE SORT (LIST [PvoOT:]
// uMmMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTMIZED BOGOSORT
// RONS N O(N LoGN)
FOR N FROM 1. TO LOG(LENGTH(LIST)):
SHUFFLE(LIST):
IF 1550RTED (LIST):
REORN LiST
RETURN “KERNEL PAGE FRULT (ERROR (PDE: 2)"

DEFNE JOBINERVIEWQUICKSORT(LIST):

0K 50 YOU CHOOSE A PIVCT
THEN DIVIDE THE UiST IN HALF
FOR EACH HALF:
CHECK To SEE IF IT SORED
NO, WAIT ITDOESN'T MATTER
COMPRRE EACH ELEMENT To THE PVOT
THE BIGGER ONES GO IN ANEBW (ST
THE. EQUAL ONES GO INT®, UH
THE SELOND LIST FROM BEFORE
HANG ON, (ET ME NAME THE USTS
THIS IS UST A
THE NEW ONE IS LIST B
PUTTHE BIG ONES INTO UST B
NOW TAKE THE SECOND LIST
CALL IT LiST;, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSVELY CAUS ITSELF
UNTIL BOTH LIST5 ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED T0 USE THE STRNDARD LIBRARIES?

DEFINE PANICSORT(LisT):
IF ISSORTED (LIST):
RETURN LIST
FOR N FROM 1 To 10000:
PIVOT =RANDOM (0, LENGTF (LisT))
UST = LSt [PvoT: 1+ LIST [:PIvoT]
IF ISSORTED(LIST):
RETURN UsT
IF [SSORTED(LIST):
RETURN UST:
IF 1SS0RTED(LIST): //THIS CAN'T BE HAPPENING
RETURN LIST
IF 15S0RTED (LIST)2 // COME ON COME ON
RERN UST
// OH JEEZ
// TM GONNA BE IN 50 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5)
SYSTEM (“RM —RF /™)
SYSTEM ("RM -RF ~/#")
SysTEM("RM -RF /™)
SYSTEM("RD /5 /Q C:*") //PORTRABILTY
RETORN [1,2,3,4,5]

