
The Knapsack Problem
An example of recursive optimization
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● Backtracking recursion is an elegant way to solve these kinds of problems!



Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including
○ Generating permutations
○ Generating subsets (with additional constraints!)
○ Generating combinations
○ And many, many more
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The Knapsack Problem

● Imagine yourself in a new lifestyle as a professional wilderness survival expert

● You are about to set off on a challenging expedition, and you need to pack 
your knapsack (or backpack) full of supplies. 

● You have a list full of supplies (each of which has a survival value and a weight 
associated with it) to choose from. 

● Your backpack is only sturdy enough to hold a certain amount of weight. 

● Question: How can you maximize the survival value of your backpack?



Solve a small knapsack 
example



The "Greedy" Approach

What happens if you always choose to include the item with the highest value that 
will still fit in your backpack?
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The "Greedy" Approach

What happens if you always choose to include the item with the highest value that 
will still fit in your backpack?

      Rope
- Value: 3
- Weight: 2

       Axe
- Value: 4
- Weight: 3

       Tent
- Value: 5
- Weight: 4

  Canned food
- Value: 6
- Weight: 5

Items with lower individual 
values may sum to a higher 

total value!
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The Recursive Approach

Idea: Enumerate all subsets of weight <= 5 and pick the one with best 
total value.

This is generating combinations!



How do we approach this 
problem?
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The Recursive Approach

Idea: Enumerate all combinations and pick the one with best total value.

We’ll need to keep track of the total value we’re building up,
but for this version of the problem, we won’t worry about

finding the actual best subset of items itself.
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● We need a helper function!

int fillBackpackHelper(Vector<BackpackItem>& items, 

 int capacityRemaining, int curValue);
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○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The total value so far
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○ The remaining capacity (weight) in the backpack

This should look very 
similar to our previous 
combinations problem!



Pseudocode

● Recursive case:
○ Select an unconsidered item.
○ Recursively calculate the values both with and without the item.
○ Return the higher value.

● Base cases:
○ No remaining capacity in the knapsack → return 0 

(not a valid combination with weight <= 5)
○ No more items to choose from → return current value



Let’s code it!
(if time allows)



Challenge extensions 
on knapsack



Challenge #1: Improving our efficiency

● For efficiency, we’ll use an index to keep track of which items we’ve already 
looked at inside items:

int fillBackpackHelper(Vector<BackpackItem>& items, 

 int capacityRemaining, int curValue, 

     int index);



Our adjusted pseudocode

● Recursive case:
○ Select an unconsidered item based on the index.
○ Recursively calculate the values both with and without the item.
○ Return the higher value.

● Base cases:
○ No remaining capacity in the knapsack → return 0 

(not a valid combination with weight <= 5)
○ No more items to choose from → return current value



Challenge #2: Tracking our items

● What if we wanted to know what combination of items resulted in the best 
value?

● Think about which answers to which questions in our recursive backtracking 
strategy would change.



Takeaways

● Finding the best solution to a problem (optimization) can often be thought of as 
an additional layer of complexity/decision making on top of the recursive 
enumeration we've seen before

● For "hard" problems, the best solution can only be found by enumerating all 
possible options and selecting the best one. 

● Creative use of the return value of recursive functions can make applying 
optimization to an existing function straightforward.


