
The Knapsack Problem
An example of recursive optimization

"Hard" Problems

"Hard" Problems

● There are many different categories of problems in computer science that are
considered to be "hard" to solve.
○ Formally, these are known as "NP-hard" problems. Take CS103 to learn more!

"Hard" Problems

● There are many different categories of problems in computer science that are
considered to be "hard" to solve.
○ Formally, these are known as "NP-hard" problems. Take CS103 to learn more!

● For these categories of problems, there exist no known "good" or "efficient"
ways to generate the best solution to the problem. The only known way to
generate an exact answer is to try all possible solutions and select the best
one.
○ Often times these problems involve finding permutations (O(n!) possible solutions) or

combinations (O(2^n) possible solutions)

"Hard" Problems

● There are many different categories of problems in computer science that are
considered to be "hard" to solve.
○ Formally, these are known as "NP-hard" problems. Take CS103 to learn more!

● For these categories of problems, there exist no known "good" or "efficient"
ways to generate the best solution to the problem. The only known way to
generate an exact answer is to try all possible solutions and select the best
one.
○ Often times these problems involve finding permutations (O(n!) possible solutions) or

combinations (O(2^n) possible solutions)

● Backtracking recursion is an elegant way to solve these kinds of problems!

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets (with additional constraints!)
○ Generating combinations
○ And many, many more

The Knapsack Problem

The Knapsack Problem

● Imagine yourself in a new lifestyle as a professional wilderness survival expert

The Knapsack Problem

● Imagine yourself in a new lifestyle as a professional wilderness survival expert

The Knapsack Problem

● Imagine yourself in a new lifestyle as a professional wilderness survival expert

● You are about to set off on a challenging expedition, and you need to pack
your knapsack (or backpack) full of supplies.

The Knapsack Problem

● Imagine yourself in a new lifestyle as a professional wilderness survival expert

● You are about to set off on a challenging expedition, and you need to pack
your knapsack (or backpack) full of supplies.

● You have a list full of supplies (each of which has a survival value and a weight
associated with it) to choose from.

The Knapsack Problem

● Imagine yourself in a new lifestyle as a professional wilderness survival expert

● You are about to set off on a challenging expedition, and you need to pack
your knapsack (or backpack) full of supplies.

● You have a list full of supplies (each of which has a survival value and a weight
associated with it) to choose from.

● Your backpack is only sturdy enough to hold a certain amount of weight.

The Knapsack Problem

● Imagine yourself in a new lifestyle as a professional wilderness survival expert

● You are about to set off on a challenging expedition, and you need to pack
your knapsack (or backpack) full of supplies.

● You have a list full of supplies (each of which has a survival value and a weight
associated with it) to choose from.

● Your backpack is only sturdy enough to hold a certain amount of weight.

● Question: How can you maximize the survival value of your backpack?

Solve a small knapsack
example

The "Greedy" Approach

What happens if you always choose to include the item with the highest value that
will still fit in your backpack?

 Rope
- Value: 3
- Weight: 2

 Axe
- Value: 4
- Weight: 3

 Tent
- Value: 5
- Weight: 4

 Canned food
- Value: 6
- Weight: 5

The "Greedy" Approach

What happens if you always choose to include the item with the highest value that
will still fit in your backpack?

 Rope
- Value: 3
- Weight: 2

 Axe
- Value: 4
- Weight: 3

 Tent
- Value: 5
- Weight: 4

 Canned food
- Value: 6
- Weight: 5

Bag is full!

The "Greedy" Approach

What happens if you always choose to include the item with the highest value that
will still fit in your backpack?

 Rope
- Value: 3
- Weight: 2

 Axe
- Value: 4
- Weight: 3

 Tent
- Value: 5
- Weight: 4

 Canned food
- Value: 6
- Weight: 5

Why doesn’t this work?

The "Greedy" Approach

What happens if you always choose to include the item with the highest value that
will still fit in your backpack?

 Rope
- Value: 3
- Weight: 2

 Axe
- Value: 4
- Weight: 3

 Tent
- Value: 5
- Weight: 4

 Canned food
- Value: 6
- Weight: 5

Items with lower individual
values may sum to a higher

total value!

The Recursive Approach

Idea: Enumerate all subsets of weight <= 5 and pick the one with best total
value.

The Recursive Approach

Idea: Enumerate all subsets of weight <= 5 and pick the one with best
total value.

This is generating combinations!

How do we approach this
problem?

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

The Recursive Approach

Idea: Enumerate all combinations and pick the one with best total value.

The Recursive Approach

Idea: Enumerate all combinations and pick the one with best total value.

Our final backtracking use case: “Pick one best solution”!
(i.e. optimization)

The Recursive Approach

Idea: Enumerate all combinations and pick the one with best total value.

We’ll need to keep track of the total value we’re building up,
but for this version of the problem, we won’t worry about

finding the actual best subset of items itself.

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

Problem Setup

int fillBackpack(Vector<BackpackItem>& items, int targetWeight);

● Assume that we have defined a custom BackpackItem struct, which packages
up an item’s survivalValue (int) and weight (int).

● We need to return the max value we can get from a combination of items
under targetWeight.

Problem Setup

int fillBackpack(Vector<BackpackItem>& items, int targetWeight);

● Assume that we have defined a custom BackpackItem struct, which packages
up an item’s survivalValue (int) and weight (int).

● We need to return the max value we can get from a combination of items
under targetWeight.

We need a helper function!

Pseudocode

● We need a helper function!

int fillBackpackHelper(Vector<BackpackItem>& items,

 int capacityRemaining, int curValue);

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

What defines our knapsack decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given item in our combination?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The total value so far
○ The remaining elements to choose from
○ The remaining capacity (weight) in the backpack

What defines our knapsack decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given item in our combination?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The total value so far
○ The remaining elements to choose from
○ The remaining capacity (weight) in the backpack

This should look very
similar to our previous
combinations problem!

Pseudocode

● Recursive case:
○ Select an unconsidered item.
○ Recursively calculate the values both with and without the item.
○ Return the higher value.

● Base cases:
○ No remaining capacity in the knapsack → return 0

(not a valid combination with weight <= 5)
○ No more items to choose from → return current value

Let’s code it!
(if time allows)

Challenge extensions
on knapsack

Challenge #1: Improving our efficiency

● For efficiency, we’ll use an index to keep track of which items we’ve already
looked at inside items:

int fillBackpackHelper(Vector<BackpackItem>& items,

 int capacityRemaining, int curValue,

 int index);

Our adjusted pseudocode

● Recursive case:
○ Select an unconsidered item based on the index.
○ Recursively calculate the values both with and without the item.
○ Return the higher value.

● Base cases:
○ No remaining capacity in the knapsack → return 0

(not a valid combination with weight <= 5)
○ No more items to choose from → return current value

Challenge #2: Tracking our items

● What if we wanted to know what combination of items resulted in the best
value?

● Think about which answers to which questions in our recursive backtracking
strategy would change.

Takeaways

● Finding the best solution to a problem (optimization) can often be thought of as
an additional layer of complexity/decision making on top of the recursive
enumeration we've seen before

● For "hard" problems, the best solution can only be found by enumerating all
possible options and selecting the best one.

● Creative use of the return value of recursive functions can make applying
optimization to an existing function straightforward.

