
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics

Introducing C++

 Hamilton example
› In QT Creator (the IDE for our class)
› Function prototypes
› <iostream> and cout
› C++ characters and strings
› Testing

 TODO this week:
› Sign ups for section will open on Thursday, Sept. 29 at 5pm PT at

cs198.stanford.edu. They will close on Sunday, Oct. 2 at 5pm PT. Section meetings
start week 2

› Assignment 0 is due Friday, Sept. 30 at 11:59pm
› Qt Installation Help Session on 3rd floor of Durand Building on Thursday, Sept. 29

from 7-9pm

Go to
pollev.com/cs106b

to join class practice
questions

Go to
edstem.org/

to join live lecture
Q&A with Julie

http://cs198.stanford.edu/
http://cs106b.stanford.edu/assignments/0-namehash

First C++ program (from Monday)

/*
* hello.cpp
* This program prints a welcome message
* to the user.
*/

#include <iostream>
#include "console.h"
using namespace std;

int main() {
cout << "Hello, world!" << endl;
return 0;

}

helloWorld

C++ math functions (2.1)

#include <cmath>

Function name Description (returns)

abs(value) absolute value

ceil(value) rounds up

floor(value) rounds down

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

pow(base, exp) base to the exp power

round(value) nearest whole number

sqrt(value) square root

sin(value)
cos(value)
tan(value)

sine/cosine/tangent of
an angle in radians

Live coding in Qt

H A M I L T O N K I N G G E O R G E
E X A M P L E

Hamilton Code Demo:
What essential skills did we just see?

 You must use function prototypes for your helper functions (if you
want to keep main at the top, which is good style)

 You can write input/output with:

› cout (<iostream>)

 cout uses the << operator

› Remember: the arrows point in the way the data is “flowing”

› These aren’t like HTML tags or C++ parentheses () or
curly braces {} in that they don’t need to “match”

 Good style: const int to make int constants

› (in demo, not previous slides)

› No “magic numbers”!

› Works for other types too (const double)

Live Coding
concept review

F U N C T I O N P R O T O T Y P E S

A simple C++
program
(ERROR)

simple.cpp #include <iostream>
#include "console.h"
using namespace std;

int main() {
myFunction(); // compiler is unhappy with this line
return 0;

}

void myFunction() {
cout << "myFunction!!" << endl;

}

A simple C++
program
(Fix option 1)

simple.cpp #include <iostream>
#include "console.h"
using namespace std;

void myFunction() {
cout << "myFunction!!" << endl;

}

int main() {
myFunction(); // compiler is happy with this line now
return 0;

}

A simple C++
program
(Fix option 2)

simple.cpp #include <iostream>
#include "console.h"
using namespace std;

void myFunction(); // this is called a function prototype

int main() {
myFunction(); // compiler is happy with this line now
return 0;

}

void myFunction() {
cout << "myFunction!!" << endl;

}

A simple C++
program
(Fix option 2)

simple.cpp #include <iostream>
#include "console.h"
using namespace std;

void myFunction(); // this is called a function prototype

int main() {
myFunction(); // compiler initially ok with this line…
return 0;

}

// …but sad when it realizes it was tricked and you
// never gave a definition of myFunction!!

Live Coding
concept review

S T R I N G S A N D
C H A R A C T E R S I N C + +

Using cout and strings

int main(){

string s = "ab";

s = s + "cd";

cout << s << endl;

return 0;

}

13

• This prints “abcd”

• The + operator
concatenates strings in
the way you’d expect.

• But…SURPRISE!…this one
doesn’t work.

int main(){

string s = "ab" + "cd";

cout << s << endl;

return 0;

}

String literals vs. C++ string objects

 In this class, we will interact with two types of strings:

› String literals are just hard-coded string values:

• "hello!" "1234" "#nailedit"

• Even though old C style, we still need to use it to write string literals

• They have no methods that do things for us

• (object-oriented programming didn’t exist back in the day of C)

› String objects are objects with lots of helpful methods and operators:

• string s;

• string piece = s.substr(0,3);

• s.append(t); //or, equivalently: s += t;

C++ standard string object member functions (3.2)

#include <string>

string name = "Donald Knuth";
if (name.find("Knu") != string::npos) {

name.erase(5, 6);
}

Member function name Description

s.append(str) add text to the end of a string

s.compare(str) return -1, 0, or 1 depending on relative ordering

s.erase(index, length) delete text from a string starting at given index

s.find(str)

s.rfind(str)

first or last index where the start of str appears in
this string (returns string::npos if not found)

s.insert(index, str) add text into a string at a given index

s.length() or s.size() number of characters in this string

s.replace(index, len, str) replaces len chars at given index with new text

s.substr(start, length) or
s.substr(start)

the next length characters beginning at start
(inclusive); if length omitted, grabs till end of string

“Father of Algorithms”
“Yoda of Silicon Valley”

Donald Knuth

BFFs!

 Probably the most famous living
computer scientist

 Stanford faculty (emeritus)

 Still lives on campus and comes to
Gates building about once a week

 You’ll see him on his bike

C++ standard string object member functions (3.2)
#include <string>

Exercise: Write a line of code that pulls out the part of a string that is inside
parentheses, assuming input variable str has the form "(blahblah)"
where blahblah is any pattern of characters.

string insidePart = ______________________________;

Member function name Description

s.append(str) add text to the end of a string

s.compare(str) return -1, 0, or 1 depending on relative ordering

s.erase(index, length) delete text from a string starting at given index

s.find(str)

s.rfind(str)

first or last index where the start of str appears in
this string (returns string::npos if not found)

s.insert(index, str) add text into a string at a given index

s.length() or s.size() number of characters in this string

s.replace(index, len, str) replaces len chars at given index with new text

s.substr(start, length) or
s.substr(start)

the next length characters beginning at start
(inclusive); if length omitted, grabs till end of string

Exercise solutions:

Exercise: Write a line of code that pulls out the part of a string that is inside
parentheses, assuming variable str has the form "(blahblah)" where
blahblah is any pattern of characters.

string insidePart = ___;

Stanford library helpful string processing (read 3.7)

#include "strlib.h"

 Unlike the previous ones, these take the string as a parameter.

Function name Description

endsWith(str, suffix)
startsWith(str, prefix)

returns true if the given string begins or ends with the
given prefix/suffix text

integerToString(int)
realToString(double)
stringToInteger(str)
stringToReal(str)

returns a conversion between numbers and strings

equalsIgnoreCase(s1, s2) true if s1 and s2 have same chars, ignoring casing

toLowerCase(str)
toUpperCase(str)

returns an upper/lowercase version of a string

trim(str) returns string with surrounding whitespace removed

Today’s Topics

Introducing C++

 Hamilton example
› In QT Creator (the IDE for our class)
› Function prototypes
› <iostream> and cout
› C++ characters and strings
› Testing

 TODO this week:
› Sign ups for section will open on Thursday, Sept. 29 at 5pm PT at

cs198.stanford.edu. They will close on Sunday, Oct. 2 at 5pm PT. Section meetings
start week 2

› Assignment 0 is due Friday, Sept. 30 at 11:59pm
› Qt Installation Help Session on 3rd floor of Durand Building on Thursday, Sept. 29

from 7-9pm

http://cs198.stanford.edu/
http://cs106b.stanford.edu/assignments/0-namehash

