
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics
Introducing C++

 Finish in-class string exercise
 Hamilton example (continued)

› Style, defining constants
› Testing

 Parameter passing in C++
› Pass by value semantics
› Pass by reference
› const

 TODO this week:
› Sign ups for section are open at cs198.stanford.edu. They will close on Sunday, Oct 2nd at 5PM

PT. Section meetings start week 2.
› Assignment 0 is due today, Friday, Sept 30th at 11:59PM. There is a 48-hour grace period for

assignment 0.
› Assignment 1 will go out today and be due in 1 week.

NEW! Go to
pollev.stanford.edu,

join class “cs106b”

Go to
edstem.org

to join live lecture
Q&A with Julie

http://cs198.stanford.edu/
http://cs106b.stanford.edu/assignments/0-namehash

C++ standard string object member functions (3.2)
#include <string>

Exercise: Write a line of code that pulls out the part of a string that is inside
parentheses, assuming input variable str has the form "(blahblah)"
where blahblah is any pattern of characters.

string insidePart = ______________________________;

Member function name Description

s.append(str) add text to the end of a string

s.compare(str) return -1, 0, or 1 depending on relative ordering

s.erase(index, length) delete text from a string starting at given index

s.find(str)

s.rfind(str)

first or last index where the start of str appears in
this string (returns string::npos if not found)

s.insert(index, str) add text into a string at a given index

s.length() or s.size() number of characters in this string

s.replace(index, len, str) replaces len chars at given index with new text

s.substr(start, length) or
s.substr(start)

the next length characters beginning at start
(inclusive); if length omitted, grabs till end of string

Exercise solutions:

Exercise: Write a line of code that pulls out the part of a string that is inside
parentheses, assuming variable str has the form "(blahblah)" where
blahblah is any pattern of characters.

string insidePart = ___;

Respond at
pollev.com/cs106b

Stanford library helpful string processing (read 3.7)
#include "strlib.h"

 Unlike the previous ones, these take the string as a parameter.

› C++ string class example: str.substr(0, 2);

› Stanford string library example: endsWith(".jpg");

 That’s because we here at Stanford wrote these functions, and they are not
official C++ string class methods.

Function name Description

endsWith(str, suffix)
startsWith(str, prefix)

returns true if the given string begins or ends with the
given prefix/suffix text

integerToString(int)
realToString(double)
stringToInteger(str)
stringToReal(str)

returns a conversion between numbers and strings

equalsIgnoreCase(s1, s2) true if s1 and s2 have same chars, ignoring casing

toLowerCase(str)
toUpperCase(str)

returns an upper/lowercase version of a string

trim(str) returns string with surrounding whitespace removed

Hamilton Code
(continued):

Style and Testing

J U S T A S I M P O R T A N T A S
W R I T I N G T H E C O D E I S
W R I T I N G I T W E L L A N D
W R I T I N G G O O D T E S T S

Hamilton Code Style Notes

 Descriptive function and variable names
› Even someone who doesn’t know code would have a pretty good idea what a

function called “generate lyrics” does!
 Proper indentation

› Even though C++ relies on the {} and not indentation (!)
› Pro tip: in Qt Creator, select all then do CTRL-I (PC) or Cmd-I (Mac)

 One space between operators and variables
› Write i < 3, not i<3
› Coders were social distancing before it was cool
› Again, we do this even though C++ doesn’t rely on it for parsing

 Define constants at the top of your file for any special values
› Example: const int DAT_FREQ = 3;
› Helps the reader understand what the value means or where it comes from
› If you use the value in several places, only need to change it in one place

Writing Good Tests

 “Good” means thorough: covers all code paths and cases

 But don’t just add loads of tests for the sake of having many—each should
have a purpose

 Be extra attentive to unusual circumstances

 These will vary, specific to the function you are testing, but common
examples include:

› Integer inputs: negative numbers, zero, very large numbers

› String inputs: very short strings (length 0 or 1), very long strings

Writing Good Tests

 A QA engineer is a software developer who specializes in writing tests and
finding bugs in other engineers’ code

CS106B Testing Framework

 We provide a framework for testing your code in this class

 More details on the website 

 Quick version:

 In main(), write:
› runSimpleTests(SELECTED_TESTS);

 Write tests as:
› EXPECT_EQUAL(functionBeingTested(input), expectedOutput);

› EXPECT_EQUAL(generateLyrics(2), "Da Da ");

 Your Turn: What are some good test cases for our Hamilton code?

CS106B Testing Framework

 We provide a framework for testing your code in this class

 More details on the website 

 Quick version:

 In main(), write:
› runSimpleTests(SELECTED_TESTS);

 Write tests as:
› EXPECT_EQUAL(functionBeingTested(input), expectedOutput);

› EXPECT_EQUAL(generateLyrics(2), "Da Da ");

 Your Turn: What are some good test cases for our Hamilton code?

Respond at
pollev.com/cs106b

C++ Parameter Passing

T W O P A R A D I G M S :

P A S S B Y V A L U E

P A S S B Y R E F E R E N C E

"Pass by value"
(default behavior of parameters)

#include <iostream>

void foo(int n);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int n) {

n++;

}

13

What is printed?

A. 5

B. 6

C. Error or something else

Respond at
pollev.com/cs106b

"Pass by value"
(default behavior of parameters)

#include <iostream>

void foo(int n);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int n) {

n++;

}

14

What is printed?

A. 5

B. 6

C. Error or something else

Correct answer: 5
The function foo takes

the value of main’s
variable num as input,
but the change in foo

only happens to a
local copy named n.

"Pass by value"
(default behavior of parameters)

#include <iostream>

void foo(int n);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int n) {

n++;

}

15

#include <iostream>

void foo(int n);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int num) {

num++;

}

Q: Does the answer
change if our variable in
foo is called num also?

A: NO, this version also
prints 5, because foo’s
variable is still a local

copy only.

"Pass by reference"

#include <iostream>

void foo(int &num);

int main(){

int num = 5;

foo(num);

cout << num << endl;

return 0;

}

void foo(int &n) {

n++;

}

16

 This one prints 6!

 I like to think of the & as a
rope lasso that grabs the
input parameter and drags it
into the function call
directly, rather than making
a copy of its value and then
leaving it in place.

Your turn!
void mystery(int c, int& a, int b) {

cout << b << " + " << c << " = " << a << endl;
a++;
b--;

}

int main() {
int a = 4;
int b = 7;
int c = -2;

mystery(b, a, c);
mystery(c, b, 3);
mystery(b, c, b + a);
return 0;

}

What does this print?

Respond at pollev.com/cs106b

Why though??

 We’ve looked at the how of pass-by-reference, but we haven’t yet discussed
the why.

 We’ll see some examples of when this feature comes especially in handy next
week when we learn about containers for data!

Ethics in CS106B

E T H I C A L D E C I S I O N - M A K I N G
F R A M E W O R K S

E T H I C S O F S T R I N G S !

Ethics in CS106B

 This will be a recurring series throughout the quarter, and will tie in to your
homework assignments

 What to watch for in your Assignment 1 ethics video:

› Meet your guide, Katie Creel! Dr. Creel has degrees in computer science,
moral philosophy, and history of science in society.

› Learn about some philosophical frameworks for making ethical
decisions, which we will be a formal guide for our thinking throughout the
quarter

› Consider the ethical implications of C++ variable types char and string,
which you just learned about

• That’s right, even something as simple as strings has ethical concerns!

