Programming Abstractions
CS106B

Cynthia Lee
Julie Zelenski

Stanford University

Today’s Topics

Abstract Data Types

= Whatisan ADT?

= Vector ADT

= Grid ADT

= Next time: Stack, Queue ADTs

= Announcements:
> Section begins this week!

» Section assignments will be completed by 5:00 PM on Tuesday, October 4, 2022.
You will receive an email by that time with your section assignment and you will be
able to view your section assignment on this page.

> Assignment 1 due Friday
» Do not use STL classes like vector, map, etc. for assignment 1 (or ever in this class).

» We also strongly recommend against using any Stanford library ADTs (except as directed). We
carefully design these assignments to exercise certain skills learned in the class up to the date the
assignment is released, so trust us, (a) you don’t need them, (b) if you think you need them then you
are missing a nice clean solution that takes a different approach (think topics we did cover in week 1,
such as strings).

Stanford University

ADTs

Stanford University

ADTs = “Abstract Data Types”

= Language-independent models of common containers

> In other words, we try to focus on the aspects of the ADT that transcend
whether we happen to be using it in C++, Java, Python, or some other
language

= ADTs encompass both the nature of the data and ways of accessing it

= ADTs form a rich vocabulary of nouns (nature of the data) and verbs
(ways of accessing it), often drawing on analogies to make their use
intuitive

> Skillful ADT use gives code added readability!

Stanford University

Types of ADTs

= When we say the “nature of the data,” we mean questions like:
> Isthe data ordered in some way?

* Could/should you be able to say about the data that this element is the
“first” one, and this other piece is the “tenth” one?

» Is the data paired or matched in some way?

e Could/should you be able to say about the data that this element A
goes with element B (not D), and this element C goes with element D
(not B)?

» When we say “ways of accessing it,” we mean questions like:

> Isitimportant to be able to add and remove data during the course of
use, or do we assume we have the whole collection from the beginning?

» Isitimportant to be able to search for any piece of data in the collection,
orisitenough to always take the first available one?

Stanford University

Types of ADTs

= When we say the “nature of the data,” y
> Is the data ordered in some way?

* Could/should you be able to say 2
“first” one, and this other piece is th

» Is the data paired or matched in some way?

* Could/should you be able to say about the 08
goes with element B (not D), and this element
(not B)?

» When we say “ways of accessing it,” we mean questions like:

> Isitimportant to be able to add and remove data during the course of
use, or do we assume we have the whole version from the beginning?

» Isitimportant to be able to search for any piece of data in the collection,
orisitenough to always take the first available one?

We’ll talk about ADTs in this
category on Friday.

roes with element D

Stanford University

Vector:
Our First ADT!

Stanford University

Vector ADT

= ADT abstraction similar to an array or list

You’re probably thinking, “Hey, there was something like that in the
language | studied before!”

> This shouldn’t be a surprise—remember that ADTs are defined as
conceptual abstractions that are language-independent

We will use Stanford library vector (there is also an STL vector, which will
not use—watch out for capitalization!)

Stanford University

Stanford Library Vector

= Wedeclare one like this:

> #include "vector.h" // note quotes to mean Stanford version
> Vector<string> lines; // note uppercase V here

= This <> syntaxis called template syntax
> In C++, template containers must be homogenous (all items the same type)
> The type goes in the <> after the class name Vector

// Example: initialize a vector containing 5 integers
Vector<int> nums {42, 17, -6, 0, 28};

index 0 1 2 3 4

value 42 17 -6 0 28

Stanford University

Vector

= Examples of declaring a Vector:
> Vector<int> pset3Scores;
> Vector<double> measurementsData;
> Vector<string> names;

index 0 1 2 3

= Examples of using a Vector: value 98 | 85 | 90 | 92
> pset3Scores.add(98);
> pset3Scores.add(85);
> pset3Scores.add(92);
» cout << pset3Scores[0] << endl; // prints 98
> cout << pset3Scores[pset3Scores.size() - 1] << endl; // prints 92
> pset3Scores.insert(2, 90);
> cout << pset3Scores[2] << " " << pset3Scores[3] << endl; // prints 90 92

Stanford University

Pro Tip: Read the documentation

‘CSIOGB COURSE ADMIN RESOURCES LECTURES ASSIGNMENTS SECTIONS ASSESSMEN
LalR
CS106| Edviscussion Forum \bstractions
Paperless

Fall Quarter 202
Lecture MWF 11 Qt Installation Guide
C++ Reference
Stanford Library Documentation
ANNOUNCEMENTS

To view details of any of our

Style Guide
st s anpa g s meek TestingGuide Stanford library implementations
Last updated yesterday by Neel
o Submission Checklist of ADTs, go to the course website:
ectures
* Monday, September 27th: Vecto Textbaok Reso.urces tab’
i Stanford Library Reference

Stanford University

Vector Performance

A LITTLE PEEK AT HOW
VECTORS WORK BEHIND
THE SCENES

Stanford University

Your turn: Vector performance

= Warm-up question: tell a neighbor what the contents of the vector look
like at the end of each of OPTION 1 and at the end of OPTION 2. (As shown,

v starts out empty in both cases)

Vector<int> v;

for (int 1 = 0; 1 < 100; i++) {
v.insert(®, i); // OPTION 1

}

Vector<int> v;

for (int 1 = 0; i < 100; i++) {
v.add(i); // OPTION 2

}

value | 99 | 98 | 97 | 96 | 95

value 0 1 2 3 4

Stanford University

Your turn: Vector performance

= Compare how many times we write a number into one “box” of the Vector,
in these two codes. Write can be the original write, or because it had to
move over one place. (As shown, v starts out empty in both cases)

Vector<int> v; Vector<int> v;
for (int 1 = 0; i < 100; i++) { |for (int 1 = 0; 1 < 100; i++) {
v.insert(@, i); // OPTION 1 v.add(i); // OPTION 2
} }
A. They both write in a box about the same number of times
B. One writes about 2x as many times as the other Since B and C don’t say which
C. One writes about 5x as many times as the other option writes more than the
. other, if you pick one of those,
D. Something else!

be sure to address that in your

Answer now on pollev.com/cs106b ! group discussion!

Stanford University

Performance Warning Vector insert/remove

= v.insert(2, 42)
> shift elements right to make room for the new element

value 3 8 9 7 5 value 3 8 142 | 9 7 5

= v.remove(l)
> shift elements left to cover the space left by the removed element

%
L4

7 e
value 3 |+s8 (42| 9 7 5 value 3 1421 9 7 5
V4

= These operations are slower the more elements they need to shift
Stanford University

Your turn: Vector performance

= Answer: (D) Something else! (about 50x)

> In addition to analyzing the code and predicting number of writes needed, we can also
time the code using our Stanford 106B test system.

> Check the code bundle for class today for runnable version!

void runInsert(int size) /* * ¥ * *x % Taest Cases * * * * * %/
{ PROVIDED_TEST("Timing comparison™)
Vector<int> v; {
for (int i = @; i < size; i++) { int size = 500000;
v.insert(0, i); TIME_OPERATION(size, runInsert(size));
} - TIME_OPERATION(size, runAdd(size));
) NS)
void runAdd(int size)
{
Vector<int> v;
for (int i = 9; i < size; i++) {
v.add(i); \
} L A Seanford Universt
} - tanford University

Your turn: Vector performance

= Answer: (D) Something else! (about 50x)

> In addition to analyzing the code and predicting number of writes needed, we can also
time the code using our Stanford 106B test system.

> Check the code bundle for class today for runnable version!

void runInsert(int size) /¥ * *x ¥ % * Taest Cases * * * * * */
{ PROVIDED_TEST("Timing comparison™)
Vector<int> v; {
for (int i = @; i < size; i++) { int size = 500000;
v.insert(0, i); TIME_OPERATION(size, runInsert(size));
} TIME_OPERATION(size, runAdd(size));
B! SimpleTest VectorPerformance — O X
‘{’°1d runAdd(int size) Tests from PROVIDED_TEST
V ec t or< i nt > V; g:;:':;:] !(;PROVIDED_TEST, vectortest.cpp:éfZ) Timinlg comparison of add() at the end and insert() at the
For (int i = 05 i < size; i) { || OAf HESEEE MGG el CEUS)
} v.add(i); Tests from STUDENT_TEST
} Correct (STUDENT_TEST, vectortest.cpp:48)

Your turn: Vector performance

= Answer: (D) Something else! (about 50x)
> Number of times a number is written in a box:
* OPTION 1:
First loop iteration: 1 write
Next loop iteration: 2 writes ... continued...
Formula for sum of numbers1toN=(N*(N+1))/2

(don’t worry if you don’t know this formula, we only expected a ballpark
estimate)

100 *(100+1)/2=10,100/2=5,050

* OPTION 2:
— First loop iteration: 1 write
— Next loop iteration: 1 write ... continued...
- 100

Stanford University

Vector performance and parameter passing

= Pro Tip: always use pass-by-reference for containers like Vector (and Grid,
which we’ll see next) in this class!

> For efficiency reasons—don’t want to make a big copy every time with pass-
by-value!

void printFirst(Vector<int>& input) {
cout << input[0] << endl;

}

void printFirst100Times(Vector<int>& input) {
for (int i = 0; 1 < input.size(); i++) {
printFirst(input); // very expensive if not for &

}

Stanford University

Grid container

ESSENTIALLY A MATRIX
(LINEAR ALGEBRA FANS
CELEBRATE NOW)

Stanford University

Grid

= ADT abstraction similar to an array of arrays (matrix)
= Many languages have a version of this

> (remember, ADTs are conceptual abstractions that are language-
independent)

= |n C++we declare one like this: #include "grid.h"

Grid<int> chessboard;
Grid<int> image;
Grid<double> realMatrix;

Stanford University

Code Reading Exercise: Grids and loops and loop

void printMe(Grid<int>& grid, int row, int col) {
for (int r = row - 1; r <= row + 1; r++) {
for (int ¢ = col - 1; c <= col + 1; c++) {
if (grid.inBounds(r, c)) {

} cout << grid[r][c] <« 5) 1) 0 0

} 110|212

cout << endl; 0 0 0 1 1

} 212|222

} How many 0’s does this print (A) Noneor 1 1|10} 1]1
withinputrow = 2,col = 3?7 (B) 20r3
(and grid as shown on right) (C) 4or5

(D) 6or7

Stanford University

Handy loop idiom: iterating over “neighbors” in a Grid

void printNeighbors(Grid<int>& grid, int row, int col) {
for (int r = row - 1; r <= row + 1; r++) {
for (int ¢ = col - 1; c <= col + 1; c++) {
if (grid.inBounds(r, c)) {

cout <« gpj_d[r-][c] << " " row - 1 row -1 row - 1
col-1 col+0 col+1

}
} row + 0 row row + 0
cout << endl; col-1 col col+1

}

} row + 1 row + 1 row + 1
col-1 col+0 col+1

These nested for loops generate all the pairs in the cross product {-1,0,1} x {-1,0,1}, and we can
add these as offsets to a (r,c) coordinate to generate all the neighbors (note: often want to test
for and exclude the (0,0) offset, which is “myself” not a neighbor) Stanford University

