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Today’s Topics

Abstract Data Types
= |asttime: Whatisan ADT? And two ADTs: Vector, Grid
* This time: More ADTs!

» Stack

> Queue

> Application of Stack

=  Announcements:
> Sections are starting this afternoon!

* Check your assigned section or do late registration at cs198.stanford.edu
> Assignment 1 due Friday
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Stacks

OUR NEXT ORDERED ADT
IT USES “LIFO” ORDER
(LAST-IN, FIRST-0UT)
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Source: http://www.flickr.com/photos/35237093334@N01/409465578/
Author: http://www.flickr.com/people/35237093334@N01 Peter Kazanjy]

New ADT: Stack

#include "stack.h"

Stack<string> recentCalls;
recentCalls.push("Neel");

recentCalls.push("Julie");

recentCalls.push("Esteban");
recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {
cout << recentCalls.pop() << " ";
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Source: http://www.flickr.com/photos/35237093334@N01/409465578/
Author: http://www.flickr.com/people/35237093334@N01 Peter Kazanjy]

New ADT: Stack

#include "stack.h"

Stack<string> recentCalls;
recentCalls.push("Neel");

recentCalls.push("Julie");

recentCalls.push("Esteban");

recentCalls.push("Minh"); “Why do | need Stack??

I could have done that with a Vector!”
while (!recentCalls.isEmpty()) —ADT skeptic

cout << recentCalls.pop() <
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Stack and \lector, side-by-side

Stack<string> recentCalls;
recentCalls.push("Neel");
recentCalls.push("Julie");
recentCalls.push("Esteban");
recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {

cout << recentCalls.pop() << " ";

Neel Julie Esteban Minh

Vector<string> recentCalls;
recentCalls.add("Neel");
recentCalls.add("Julie");
recentCalls.add("Esteban");
recentCalls.add("Minh");

while (!recentCalls.isEmpty()) {

string last = recentCalls[recentCalls.size() - 1];
cout << last << " ";

recentCalls.remove(recentCalls.size() - 1);
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Stack and \lector, side-by-side

Stack<string> recentCalls;
recentCalls.push("Neel");
recentCalls.push("Julie");
recentCalls.push("Esteban");
recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {
cout << recentCalls.pop() <<

)

Neel Julie Esteban Minh

Vector<string> recentCalls;
recentCalls.add("Neel");
recentCalls.add("Julie");
recentCalls.add("Esteban");
recentCalls.add("Minh");

while (!recentCalls.isEmpty()) {
string last = recentCalls[recentCalls
cout << last << " ";
recentCalls.remove(recentCalls.size()

.size() - 1];

- 1);

This Vector code isn’t terrible, but it is harder to read quickly, and is probably more error prone.

o You need to think carefully about which end of the Vector to use as the top of the stack (8t or
size()-1%), and performance impacts

o It would be easy to forget the “-1” when you print/remove size()-1t




Queues

FIFO - FIRST IN, FIRST OUT
(OR “FIRST COME, FIRST
SERVE”)
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Front of queue Back of queue
(next to be (most recently

Queues

queue: First-In, First-Out ("FIFO")

» Elements stored in order they were
added

» Can add only to the back,
can only examine/remove frontmost £
element e

. dequeue, peek
queue operations queue, p 1 2 3| enaueue

= enqueue: Addanelement to the back
» dequeue: Remove the front element
= peek: Examine the front element
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The Queue class

#include "queue.h"

g .dequeue() removes front value and returns it;
throws an error if queue is empty
g.enqueue(value) places given value at back of queue
qg.isEmpty() returns true if queue has no elements
q.peek() returns front value without removing;
throws an error if queue is empty
g.size() returns number of elements in queue

" Queue<int> q;

= g.enqueue(42);
= g.enqueue(-3);
= g.enqueue(17);

// {} front -> back
// {42}

// {42, -3}

// {42, -3, 17}

= cout << q.dequeue() << endl; // 42 (q is {-3, 17})
= cout << q.peek() << endl; // -3 (q is {-3, 17})
= cout << q.dequeue() << endl; // -3 (q is {17})
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As usual, for more
information check

The Queue class

course website!

Paperless

AN CS106| Eoscsenfoum \bstractions

b7  Fall Quarter 202
Lecture MWF 11

#include "queue.h"

Stanford Library Documentation

q.dequeue() removes front value andret i
throws an error if queueise =~ o s
g.enqueue(value) places given value at back of e
qg.isEmpty() returns true if queue has no elements
q.peek() returns front value without removing;
throws an error if queue is empty
g.size() returns number of elements in queue
= Queue<int> q; // {} front -> back
= g.enqueue(42); // {42}
= g.enqueue(-3); // {42, -3}
= g.enqueue(17); // {42, -3, 17}
= cout << q.dequeue() << endl; // 42 (q is {-3, 17})
= cout << q.peek() << endl; // -3 (q is {-3, 17})

= cout << g.dequeue() << endl; // -3 (q is {17}) Stanford University



Application of Stacks

WE’VE SEEN ONE (BUFFERING
INPUT NAMES AND GIVING
THEM BACK IN REVERSE).

WHAT ELSE ARE STACKS GOOD

FOR?
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Operator Precedence and Syntax Trees Go to

pollev.com/cs106b
to respond!

lgnoring operator precedence rules, what are all the
distinct results for the following arithmetic expression?

= 3*3+3*3
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Reverse Polish Notation

Ambiguities don’t existin RPN

Also called “postfix” because the operator goes after
the operands

Postfix (RPN):

= 43%43%+
Equivalent Infix:
" (473)+(4*3)

http://commons.wikimedia.org/wiki/File:Hewlett-Packard 48GX Scientific Graphing Calculator.jpg
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http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

Reverse Polish Notation
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Hia.org/wiki/File:Hewlett-Packard 48GX Scientific Graphing Calculator.jpg

#b.

#TBT: Mein 1991, | was 12 years old Stanford University



http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

Reverse Polish Notation

This postfix expression:

" 437725%++

Is equivalent to this infix expression:
A. ((4*3)+(7*2)) +5

B. (4*3)+((7+2)+5)

C. (4%3)+(7+(2%5))

D. Other/none/more than one

p://commons.wikimedia.org/wiki/File:Hewlett-Packard 48GX Scientific Graphing Calculator.jpg
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Stacks and RPN

= Evaluate this expression with the help of a stack

> Encounter a number? PUSH it

> Encounter an operator? POP two numbers and PUSH result
" 43%T725%++

12

12

12
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Stacks and RPN

= Evaluate this expression with the help of a stack
> Encounter a number? PUSH it
> Encounter an operator? POP two numbers and PUSH result
" 43*725%++
Contents of the stack,
reading from top down:

(A) 7, 12
B) 10,7, 12

12

12

12

(B)
(C) 10,5,2,7, 12
(D) Other
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Stacks and RPN

= Evaluate this expression with the help of a stack

> Encounter a number? PUSH it

> Encounter an operator? POP two numbers and PUSH result
" 43%T725%++

12 || 7 2 12
12

12

= Question: what are some signs that an expression is badly formatted?
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Final code of parser

bool caleulate(string expression, int& result)
{
Stack<int> memory;
// Examine each character of 1dinput, left to right
for (char ¢ : expression) {
// if digit, store it
if (dsdigit(c)) {
int value = charTolnteger(c);
memory.push(value);
// if operator, perform operation
} else if (isSupportedOperator(c) && memory.size() >= 2) {
int rhs = memory.pop();
int lhs = memory.pop();
memory.push (applyOperator(lhs, c, rhs));
// otherwise parse error
} else {
return false;

by
}
// should be single number in memory, that's our answer
if (memory.size() != 1) {
return false;
3

result = memory.pop();

return truej;
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