Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Today’s Topics

Abstract Data Types
= |asttime: Whatisan ADT? And two ADTs: Vector, Grid
* This time: More ADTs!

» Stack

> Queue

> Application of Stack

= Announcements:
> Sections are starting this afternoon!

* Check your assigned section or do late registration at cs198.stanford.edu
> Assignment 1 due Friday

Stanford University

Stacks

OUR NEXT ORDERED ADT
IT USES “LIFO” ORDER
(LAST-IN, FIRST-0UT)

Stanford University

Source: http://www.flickr.com/photos/35237093334@N01/409465578/
Author: http://www.flickr.com/people/35237093334@N01 Peter Kazanjy]

New ADT: Stack

#include "stack.h"

Stack<string> recentCalls;
recentCalls.push("Neel");

recentCalls.push("Julie");

recentCalls.push("Esteban");
recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {
cout << recentCalls.pop() << " ";

Stanford University

Source: http://www.flickr.com/photos/35237093334@N01/409465578/
Author: http://www.flickr.com/people/35237093334@N01 Peter Kazanjy]

New ADT: Stack

#include "stack.h"

Stack<string> recentCalls;
recentCalls.push("Neel");

recentCalls.push("Julie");

recentCalls.push("Esteban");

recentCalls.push("Minh"); “Why do | need Stack??

I could have done that with a Vector!”
while (!recentCalls.isEmpty()) —ADT skeptic

cout << recentCalls.pop() <

Stanford University

Stack and \lector, side-by-side

Stack<string> recentCalls;
recentCalls.push("Neel");
recentCalls.push("Julie");
recentCalls.push("Esteban");
recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {

cout << recentCalls.pop() << " ";

Neel Julie Esteban Minh

Vector<string> recentCalls;
recentCalls.add("Neel");
recentCalls.add("Julie");
recentCalls.add("Esteban");
recentCalls.add("Minh");

while (!recentCalls.isEmpty()) {

string last = recentCalls[recentCalls.size() - 1];
cout << last << " ";

recentCalls.remove(recentCalls.size() - 1);

Stanford University

Stack and \lector, side-by-side

Stack<string> recentCalls;
recentCalls.push("Neel");
recentCalls.push("Julie");
recentCalls.push("Esteban");
recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {
cout << recentCalls.pop() <<

)

Neel Julie Esteban Minh

Vector<string> recentCalls;
recentCalls.add("Neel");
recentCalls.add("Julie");
recentCalls.add("Esteban");
recentCalls.add("Minh");

while (!recentCalls.isEmpty()) {
string last = recentCalls[recentCalls
cout << last << " ";
recentCalls.remove(recentCalls.size()

.size() - 1];

- 1);

This Vector code isn’t terrible, but it is harder to read quickly, and is probably more error prone.

o You need to think carefully about which end of the Vector to use as the top of the stack (8t or
size()-1%), and performance impacts

o It would be easy to forget the “-1” when you print/remove size()-1t

Queues

FIFO - FIRST IN, FIRST OUT
(OR “FIRST COME, FIRST
SERVE”)

Stanford University

Front of queue Back of queue
(next to be (most recently

Queues

queue: First-In, First-Out ("FIFO")

» Elements stored in order they were
added

» Can add only to the back,
can only examine/remove frontmost £
element e

. dequeue, peek
queue operations queue, p 1 2 3| enaueue

= enqueue: Addanelement to the back
» dequeue: Remove the front element
= peek: Examine the front element

Stanford University

The Queue class

#include "queue.h"

g .dequeue() removes front value and returns it;
throws an error if queue is empty
g.enqueue(value) places given value at back of queue
qg.isEmpty() returns true if queue has no elements
q.peek() returns front value without removing;
throws an error if queue is empty
g.size() returns number of elements in queue

" Queue<int> q;

= g.enqueue(42);
= g.enqueue(-3);
= g.enqueue(17);

// {} front -> back
// {42}

// {42, -3}

// {42, -3, 17}

= cout << q.dequeue() << endl; // 42 (q is {-3, 17})
= cout << q.peek() << endl; // -3 (q is {-3, 17})
= cout << q.dequeue() << endl; // -3 (q is {17})

Stanford University

As usual, for more
information check

The Queue class

course website!

Paperless

AN CS106| Eoscsenfoum \bstractions

b7 Fall Quarter 202
Lecture MWF 11

#include "queue.h"

Stanford Library Documentation

q.dequeue() removes front value andret i
throws an error if queueise =~ o s
g.enqueue(value) places given value at back of e
qg.isEmpty() returns true if queue has no elements
q.peek() returns front value without removing;
throws an error if queue is empty
g.size() returns number of elements in queue
= Queue<int> q; // {} front -> back
= g.enqueue(42); // {42}
= g.enqueue(-3); // {42, -3}
= g.enqueue(17); // {42, -3, 17}
= cout << q.dequeue() << endl; // 42 (q is {-3, 17})
= cout << q.peek() << endl; // -3 (q is {-3, 17})

= cout << g.dequeue() << endl; // -3 (q is {17}) Stanford University

Application of Stacks

WE’VE SEEN ONE (BUFFERING
INPUT NAMES AND GIVING
THEM BACK IN REVERSE).

WHAT ELSE ARE STACKS GOOD

FOR?

Stanford University

Operator Precedence and Syntax Trees Go to

pollev.com/cs106b
to respond!

lgnoring operator precedence rules, what are all the
distinct results for the following arithmetic expression?

= 3*3+3*3

Stanford University

Reverse Polish Notation

Ambiguities don’t existin RPN

Also called “postfix” because the operator goes after
the operands

Postfix (RPN):

= 43%43%+
Equivalent Infix:
" (473)+(4*3)

http://commons.wikimedia.org/wiki/File:Hewlett-Packard 48GX Scientific Graphing Calculator.jpg

Stanford University

http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

Reverse Polish Notation

(Wuvie »

1
St

5
o)
l !
A T e el

Hia.org/wiki/File:Hewlett-Packard 48GX Scientific Graphing Calculator.jpg

#b.

#TBT: Mein 1991, | was 12 years old Stanford University

http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

Reverse Polish Notation

This postfix expression:

" 437725%++

Is equivalent to this infix expression:
A. ((4*3)+(7*2)) +5

B. (4*3)+((7+2)+5)

C. (4%3)+(7+(2%5))

D. Other/none/more than one

p://commons.wikimedia.org/wiki/File:Hewlett-Packard 48GX Scientific Graphing Calculator.jpg

Stanford University

http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

Stacks and RPN

= Evaluate this expression with the help of a stack

> Encounter a number? PUSH it

> Encounter an operator? POP two numbers and PUSH result
" 43%T725%++

12

12

12

Stanford University

Stacks and RPN

= Evaluate this expression with the help of a stack
> Encounter a number? PUSH it
> Encounter an operator? POP two numbers and PUSH result
" 43*725%++
Contents of the stack,
reading from top down:

(A) 7, 12
B) 10,7, 12

12

12

12

(B)
(C) 10,5,2,7, 12
(D) Other

Stanford University

Stacks and RPN

= Evaluate this expression with the help of a stack

> Encounter a number? PUSH it

> Encounter an operator? POP two numbers and PUSH result
" 43%T725%++

12 || 7 2 12
12

12

= Question: what are some signs that an expression is badly formatted?
Stanford University

Final code of parser

bool caleulate(string expression, int& result)
{
Stack<int> memory;
// Examine each character of 1dinput, left to right
for (char ¢ : expression) {
// if digit, store it
if (dsdigit(c)) {
int value = charTolnteger(c);
memory.push(value);
// if operator, perform operation
} else if (isSupportedOperator(c) && memory.size() >= 2) {
int rhs = memory.pop();
int lhs = memory.pop();
memory.push (applyOperator(lhs, c, rhs));
// otherwise parse error
} else {
return false;

by
}
// should be single number in memory, that's our answer
if (memory.size() != 1) {
return false;
3

result = memory.pop();

return truej;

) Stanford University

