
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics

Abstract Data Types

 Last time: What is an ADT? And two ADTs: Vector, Grid

 This time: More ADTs!

› Stack

› Queue

› Application of Stack

 Announcements:

› Sections are starting this afternoon!

• Check your assigned section or do late registration at cs198.stanford.edu

› Assignment 1 due Friday

Stacks

O U R N E X T O R D E R E D A D T

I T U S E S “ L I F O ” O R D E R

(L A S T - I N , F I R S T - O U T)

New ADT: Stack

#include "stack.h"

Stack<string> recentCalls;

recentCalls.push("Neel");

recentCalls.push("Julie");

recentCalls.push("Esteban");

recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {

cout << recentCalls.pop() << " ";

}

Source: http://www.flickr.com/photos/35237093334@N01/409465578/
Author: http://www.flickr.com/people/35237093334@N01 Peter Kazanjy]

New ADT: Stack

#include "stack.h"

Stack<string> recentCalls;

recentCalls.push("Neel");

recentCalls.push("Julie");

recentCalls.push("Esteban");

recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {

cout << recentCalls.pop() << " ";

}

Source: http://www.flickr.com/photos/35237093334@N01/409465578/
Author: http://www.flickr.com/people/35237093334@N01 Peter Kazanjy]

“Why do I need Stack??
I could have done that with a Vector!”

—ADT skeptic

6

Stack and Vector, side-by-side

Stack<string> recentCalls;

recentCalls.push("Neel");

recentCalls.push("Julie");

recentCalls.push("Esteban");

recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {

cout << recentCalls.pop() << " ";

}

Vector<string> recentCalls;

recentCalls.add("Neel");

recentCalls.add("Julie");

recentCalls.add("Esteban");

recentCalls.add("Minh");

while (!recentCalls.isEmpty()) {

string last = recentCalls[recentCalls.size() – 1];

cout << last << " ";

recentCalls.remove(recentCalls.size() – 1);

}

0 1 2 3

Neel Julie Esteban Minh

7

Stack and Vector, side-by-side

Stack<string> recentCalls;

recentCalls.push("Neel");

recentCalls.push("Julie");

recentCalls.push("Esteban");

recentCalls.push("Minh");

while (!recentCalls.isEmpty()) {

cout << recentCalls.pop() << " ";

}

Vector<string> recentCalls;

recentCalls.add("Neel");

recentCalls.add("Julie");

recentCalls.add("Esteban");

recentCalls.add("Minh");

while (!recentCalls.isEmpty()) {

string last = recentCalls[recentCalls.size() – 1];

cout << last << " ";

recentCalls.remove(recentCalls.size() – 1);

}

0 1 2 3

Neel Julie Esteban Minh

This Vector code isn’t terrible, but it is harder to read quickly, and is probably more error prone.

 You need to think carefully about which end of the Vector to use as the top of the stack (0th or
size()-1th), and performance impacts

 It would be easy to forget the “-1” when you print/remove size()-1th

Queues

F I F O – F I R S T I N , F I R S T O U T
(O R “ F I R S T C O M E , F I R S T

S E R V E ”)

Queues

queue: First-In, First-Out ("FIFO")

 Elements stored in order they were
added

 Can add only to the back,
can only examine/remove frontmost
element

queue operations

 enqueue: Add an element to the back

 dequeue: Remove the front element

 peek: Examine the front element

front back

1 2 3
enqueuedequeue, peek

Front of queue
(next to be

helped)

Back of queue
(most recently

joined)

The Queue class

#include "queue.h"

 Queue<int> q; // {} front -> back

 q.enqueue(42); // {42}

 q.enqueue(-3); // {42, -3}

 q.enqueue(17); // {42, -3, 17}

 cout << q.dequeue() << endl; // 42 (q is {-3, 17})

 cout << q.peek() << endl; // -3 (q is {-3, 17})

 cout << q.dequeue() << endl; // -3 (q is {17})

q.dequeue() removes front value and returns it;
throws an error if queue is empty

q.enqueue(value) places given value at back of queue

q.isEmpty() returns true if queue has no elements

q.peek() returns front value without removing;
throws an error if queue is empty

q.size() returns number of elements in queue

The Queue class

#include "queue.h"

 Queue<int> q; // {} front -> back

 q.enqueue(42); // {42}

 q.enqueue(-3); // {42, -3}

 q.enqueue(17); // {42, -3, 17}

 cout << q.dequeue() << endl; // 42 (q is {-3, 17})

 cout << q.peek() << endl; // -3 (q is {-3, 17})

 cout << q.dequeue() << endl; // -3 (q is {17})

q.dequeue() removes front value and returns it;
throws an error if queue is empty

q.enqueue(value) places given value at back of queue

q.isEmpty() returns true if queue has no elements

q.peek() returns front value without removing;
throws an error if queue is empty

q.size() returns number of elements in queue

As usual, for more
information check

course website!

Application of Stacks

W E ’ V E S E E N O N E (B U F F E R I N G
I N P U T N A M E S A N D G I V I N G
T H E M B A C K I N R E V E R S E) .

W H A T E L S E A R E S T A C K S G O O D
F O R ?

Operator Precedence and Syntax Trees

Ignoring operator precedence rules, what are all the
distinct results for the following arithmetic expression?

 3 * 3 + 3 * 3

Go to
pollev.com/cs106b

to respond!

Reverse Polish Notation

Ambiguities don’t exist in RPN

Also called “postfix” because the operator goes after
the operands

Postfix (RPN):

 4 3 * 4 3 * +

Equivalent Infix:

 (4*3) + (4*3)

http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

Reverse Polish Notation

Ambiguities don’t exist in RPN

Also called “postfix” because the operator goes after
the operands

Postfix (RPN):

 4 3 * 4 3 * +

Equivalent Infix:

 (4*3) + (4*3)

http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

#TBT: Me in 1991, I was 12 years old

http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

Reverse Polish Notation

This postfix expression:

 4 3 * 7 2 5 * + +

Is equivalent to this infix expression:

A. ((4*3) + (7*2)) + 5

B. (4*3) + ((7+2) + 5)

C. (4*3) + (7 + (2*5))

D. Other/none/more than one

http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

http://commons.wikimedia.org/wiki/File:Hewlett-Packard_48GX_Scientific_Graphing_Calculator.jpg

Stacks and RPN

 Evaluate this expression with the help of a stack

› Encounter a number? PUSH it

› Encounter an operator? POP two numbers and PUSH result

 4 3 * 7 2 5 * + +

4 3

4

12* 7

12

2

7

12

*5

2

7

12

Stacks and RPN

 Evaluate this expression with the help of a stack

› Encounter a number? PUSH it

› Encounter an operator? POP two numbers and PUSH result

 4 3 * 7 2 5 * + +

4 3

4

12* 7

12

2

7

12

* ?

?

?

?

?

?

Contents of the stack,
reading from top down:

(A) 7, 12

(B) 10, 7, 12

(C) 10, 5, 2, 7, 12

(D) Other

5

2

7

12

Stacks and RPN

 Evaluate this expression with the help of a stack

› Encounter a number? PUSH it

› Encounter an operator? POP two numbers and PUSH result

 4 3 * 7 2 5 * + +

 Question: what are some signs that an expression is badly formatted?

4 3

4

12* 7

12

2

7

12

* 10

7

12

17

12

295

2

7

12

Final code of parser

