
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics

More ADTs!

 Map

› Code example: counting words in text

 Containers-within-containers

› Shallow copy vs. deep copy

Maps

(n o t l i k e t h e d r i v i n g
d i r e c t i o n s k i n d o f

m a p s t h o u g h)

Associative containers

• Map

• Set

• Lexicon

Not as concerned with order but with association

 Map: associates keys with values (each could be any type)

 Set: associates keys with membership (in or out)

› Lexicon: a set of strings, with special internal optimizations for that

Lexicon

"under" "of"

"over"
"to"

"between"

"above"
"in"

"below"
"by"

"on"

"Cynthia"

"Neel"

"Julie"
"321-101-0000"

"878-333-1234"

"404-999-8765"

Map

"through"

keys values

Set

2 4

16

2048

256
51232

64

1024

Stanford library Map (selected member functions)

void put(KeyType& key, ValueType& value);
bool containsKey(KeyType& key);
ValueType get(KeyType& key);
ValueType operator [](KeyType& key);

#include "map.h"

Map<string, string> phone; // Map takes two(!) template parameters

phone["Cynthia"] = "321-101-0000"; // two syntax options for adding new item

phone.put("Julie", "878-333-1234");

if (phone.containsKey("Cynthia") && phone.containsKey("Julie")) {

cout << phone["Cynthia"] << endl; // two syntax options for getting item

cout << phone.get("Julie") << endl;

cout << phone["MTL"] << endl; // what would this do??

}

Map Code Example

T a b u l a t i n g w o r d
c o u n t s

Map programming exercise

Write a program to count the number of occurrences of each unique word in a
text file (e.g. Poker by Zora Neale Hurston). Then do two things with those
counts:

 Words that occur many times:

› Print all words that appeared in the book at least 100 times, in
alphabetical order

 Query mode:

› Give us a word and we report how many times that word appeared in the
book (potentially call this function to query the counts many times)

7

Map programming exercise

Write a program to count the number of occurrences of each unique word in a
text file (e.g. Poker by Zora Neale Hurston).

 The user gives us a word and we report how many times that word appeared
in the book (potentially many such queries).

What would be a good design for this problem?
A. Map<int, string> wordCounts;

B. Map<Vector<string>, Vector<int>> wordCounts;

C. Map<Vector<int>, Vector<string>> wordCounts;

D. Map<string, int> wordCounts;

E. Map<string, Vector<int>> wordCounts;

F. Other/none/more

8

Write a program to count the number of occurrences of each unique word in a text
file (e.g. Poker by Zora Neale Hurston).

9

// We are given a vector that is just the
// the book, broken into pieces based on
// spaces between words. The type is:
// Vector<string> words;

Map<string, int> wordCounts;
for (string word : words) {

// record count here
}

How can we record the count?
(In other words, what goes in the place marked
“record count here” in the code at right?)

A. wordCounts[word] += word;

B. wordCounts[word] += 1;

C. wordCounts[word]++;

D. B and C are good, but you need to
first detect new (never seen before)
words so you can start at zero before
you start adding +1

E. Other/none/more

Write a program to count the number of occurrences of each unique word in a text
file (e.g. Poker by Zora Neale Hurston).

 The user types a word and we report how many times that word appeared in the book
(repeat in a loop until quit).

10

What happens if queryWord is not a word in the book?
 Will the program crash?
 What other issue(s) besides crash do you foresee?

// userWord is a word the user typed into the console
cout << userWord << " appears " << wordCounts[userWord] << " times" << endl;

Write a program to count the number of occurrences of each unique word in a text
file (e.g. Poker by Zora Neale Hurston).

 Report all words that appeared in the book at least 100 times, in alphabetical order

11

Does this work for our alphabetical order requirement?
 Yes!
 Stanford library Map returns its keys in sorted order

for (string word : wordCounts) {
if (wordCounts[word] >= FREQUENCY_THRESHOLD) {

cout << word << "\t" << wordCounts[word] << endl;
}

}

How do we measure
“faster” in Computer

Science?

N O T A S S I M P L E A S Y O U M I G H T
T H I N K …

15

Recall our discussion of performance with the Vector
add vs. Insert…

Your turn: Vector performance

 Answer: (D) Something else! (about 50x)
› In addition to analyzing the code and predicting number of writes needed, we can also

time the code using our Stanford 106B test system.
› Check the code bundle for class today for runnable version!

/* * * * * * Test Cases * * * * * */
PROVIDED_TEST("Timing comparison")
{

int size = 500000;
TIME_OPERATION(size, runInsert(size));
TIME_OPERATION(size, runAdd(size));

}

void runInsert(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.insert(0, i);
}

}

void runAdd(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.add(i);
}

}

Performance analysis
technique 1:

Benchmarking
(actually run it, and

time it)

Your turn: Vector performance

 Answer: (D) Something else! (about 50x)

› Number of times a number is written in a box:

• OPTION 1:

– First loop iteration: 1 write

– Next loop iteration: 2 writes … continued…

– Formula for sum of numbers 1 to N = (N * (N + 1)) / 2

– (don’t worry if you don’t know this formula, we only expected a ballpark
estimate)

– 100 * (100 + 1) / 2 = 10,100 / 2 = 5,050

• OPTION 2:

– First loop iteration: 1 write

– Next loop iteration: 1 write … continued…

– 100

Performance analysis
technique 2:

Counting the precise
number of writes to

memory

Big-O: our primary performance analysis technique

 Big-O analysis in computer science is a way of counting the number of
“steps” needed to complete a task

› Doesn’t really consider how “big” each step is

› Doesn’t consider how fast the computer’s CPU or other hardware
components are

› Doesn’t involve any actual measurement of the time elapsed for any real
code in any way

 But despite all that, really useful for making broad comparisons between
different approaches

Efficiency as a virtue?

 In computer science, we tend to obsess about efficiency, but it’s worth
taking a step back and asking ourselves, is efficiency always a virtue?

› Racing to be first to the finish line, but with an answer that’s wrong, isn’t
helpful!

› That might seem obvious, but it happens *all the time* in real tech products

Google image search

Another example…

The danger of a cheap solution: Twitter cropping

In the summer of 2020, Twitter
users noticed something
strange about Twitter’s
new photo cropping
algorithm that is supposed
to choose the most
important/interesting part
of the image

Given a too-tall image, it
selects which part to show

It picked the Senator
McConnell (the white
man), not President
Obama

Maybe in case of
a tie, it just

chooses the top
of the photo?

The danger of a cheap solution: Twitter cropping

In the summer of 2020, Twitter
users noticed something
strange about Twitter’s
new photo cropping
algorithm that is supposed
to choose the most
important/interesting part
of the image

Given a too-tall image, it
selects which part to show

It picked the Senator
McConnell (the white
man), not President
Obama

Nope! It still picks
McConnell when
Obama is on top!

Efficiency as a virtue?

 In each of these cases, companies chose an algorithm that would reach the
desired product outcome in a way that is the most efficient, for some
business and/or computer science definition of efficient, but came up with
answers that were “wrong” (problematic) in ways that are significant for
society

 How can we balance cost (which is what efficiency is really about in
capitalism) with correctness and justice for society?

 Reflect on this in your Assignment 2!

