
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics

Recursion!

 Functions calling functions

Next time:

 More recursion! It’s Recursion Week!

› Like Shark Week, but more nerdy

Announcements:

 Today is Indigenous Peoples Day

› Indigenous students in our class who wish to take the day off for
reflection and observance are encouraged to do so.

› We encourage others to set aside some time today to learn about
the accomplishments, hardships, and current issue advocacy of
Indigenous people locally and around the world.

Recursion!
The exclamation point isn’t there only
because this is so exciting; it also relates to
our first recursion example….

Factorial!

𝒏! = 𝒏 𝒏 − 𝟏 𝒏 − 𝟐 𝒏 − 𝟑 𝒏 − 𝟒 … (𝟑)(𝟐)(𝟏)

This could be a really long expression!

Recursion is a technique for tackling large or complicated problems by
just “eating” one “bite” of the problem at a time.

Factorial!

𝒏! = 𝒏 𝒏 − 𝟏 𝒏 − 𝟐 𝒏 − 𝟑 𝒏 − 𝟒 … (𝟐)(𝟏)

An alternate mathematical formulation:

𝑛! = ቊ
1 𝑖𝑓 𝑛 = 1

𝑛 𝒏 − 𝟏 ! 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Translated to code

int factorial(int n) {

if (n == 1) {

return 1;

} else {

return n * someFunctionThatKnowsFactorialOfNMinus1();

}

}

Factorial!

𝒏! = 𝒏 𝒏 − 𝟏 𝒏 − 𝟐 𝒏 − 𝟑 𝒏 − 𝟒 … (𝟐)(𝟏)

An alternate mathematical formulation:

𝑛! = ቊ
1 𝑖𝑓 𝑛 = 1

𝑛 𝒏 − 𝟏 ! 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Translated to code

int factorial(int n) {

if (n == 1) {

return 1;

} else {

return n * factorial(n - 1);

}

}

The recursive function pattern

Always two parts:

Base case:

• This problem is so tiny, it’s hardly a problem anymore! Just give answer.

Recursive case:

• This problem is still a bit large, let’s (1) bite off just one piece, and (2)
delegate the remaining work to recursion.

Translated to code

int factorial(int n) {

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet!

return n * factorial(n - 1);

}

}

The recursive function pattern

Recursive case:

• This problem is still a bit large, let’s (1) bite off just one piece, and
(2) delegate the remaining work to recursion.

int factorial(int n) {

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet!

return n * factorial(n - 1);

}

}

Do one of the many, many
multiplications required for

factorial.

The recursive function pattern

Recursive case:

• This problem is still a bit large, let’s (1) bite off just one piece, and
(2) delegate the remaining work to recursion.

int factorial(int n) {

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet!

return n * factorial(n - 1);

}

}

Do one of the many, many
multiplications required for

factorial.

Delegate all the other
multiplications to the

recursive call.

Digging deeper in the recursion
Looking at how recursion works “under the hood”

10

Factorial!

What is the third thing printed when we call factorial(4)?
A. 1
B. 2
C. 3
D. 4
E. Other/none/more

int factorial(int n) {

cout << n << endl; // **Added for this question**

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet!

return n * factorial(n - 1);

}

}

How does this look in memory?
A little background…

 A computer’s memory is like a giant Vector/array, and like a Vector, we start
counting at index 0.

 We typically draw memory vertically (rather than horizontally like a Vector),
with index 0 at the bottom.

 A typical laptop’s memory has billions of these indexed slots (one byte
each)

0

8,000,000,000

…

* Take CS107 to learn much more!!

How does this look in memory?
A little background…

 Broadly speaking, we divide memory into regions:

 Text: the program’s own code (needs to be in memory so it can run!)

 Heap: we’ll learn about this later in CS106B!

 Stack: this is where local variables for each function are stored.

Heap

Stack

0
Text

* Take CS107 to learn much more!!

How does this look in memory?

Memory Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:

0

4

0

Memory Memory Memory
(A) (B) (C)

(D) Other/none of the above

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

main()

Text, Heap

factorial() n: 3

myfunction()x:

xfac:
4

0

main()

Text, Heap

factorial()n: 3, 4

myfunction()x:

xfac:
4

0

factorial() n: 3

Fun fact:
The “stack” part of memory is a stack

Function call = push a stack frame

Function return = pop a stack frame

* Take CS107 to learn much more!!

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

factorial() n: 2

Answer: 3rd

thing
printed is 2

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

factorial() n: 2

factorial() n: 1

Factorial!

Recursive code

What is the fourth
value ever returned
when we call
factorial(4)?
A. 4
B. 6
C. 10
D. 24
E. Other/none/more

than one

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

The “stack” part of memory is a stack

Recursive code

Return 1

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

factorial() n: 2

factorial() n: 1

The “stack” part of memory is a stack

Recursive code

Return 2

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

factorial() n: 2

The “stack” part of memory is a stack

Recursive code

Return 6

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

The “stack” part of memory is a stack

Recursive code

Return 24

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

Answer: 4th

thing returned
is 24

Factorial!

Iterative version

int factorial(int n) {

int f = 1;

while (n > 1) {

f = f * n;

n = n – 1;

}

return f;

}

Recursive version

NOTE: sometimes iterative can be
much faster because it doesn’t
have to push and pop stack frames.
Method calls have overhead in
terms of space and time (to set up
and tear down).

int factorial(int n) {

if (n == 1) return 1;

else return n * factorial(n – 1);

}

