Programming Abstractions
CS1068B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Today’s Topics

Recursion!

= Functions calling functions

Next time:

= More recursion! It’s Recursion Week!
> Like Shark Week, but more nerdy

Announcements:

= Today is Indigenous Peoples Day

> Indigenous students in our class who wish to take the day off for
reflection and observance are encouraged to do so.

> We encourage others to set aside some time today to learn about
the accomplishments, hardships, and current issue advocacy of

Indigenous people locally and around the world. Stanford University

RECURSION
RECURSION
RECURSION
RECURSION

RECURSION
RECURSION

Here we go again

Recursion! RECURSION

Stanford University

Factorial!

n=nn-1)n-2)n-3)(n—4) ...(3)(2)(1)

This could be areally long expression!

Recursion is a technique for tackling large or complicated problems by
just “eating” one “bite” of the problem at a time.

Stanford University

Factorial!
nn=nn-1)n-2)n-3)((n—-4)..(2)(1)

An alternate mathematical formulation:

n':{ 1 ifn=1

nn-—1)! otherwise

Translated to code

int factorial(int n) {

if (n == 1) {
return 1;
} else {

return n * someFunctionThatKnowsFactorialOfNMinus1();

}

Stanford University

Factorial!
n=nnh-1n-2)(n-3)(n—4)

An alternate mathematical formulation:

m:{ 1 ifn=1

nn-—1)! otherwise

Translated to code

int factorial(int n) {

if (n == 1) {
return 1;
} else {

return n * factorial(n - 1);

}

~(2)(1)

Stanford University

The recursive function pattern

Always two parts:

Base case:
* This problem is so tiny, it’s hardly a problem anymore! Just give answer.
Recursive case:

» This problem is still a bit large, let’s (1) bite off just one piece, and (2)
delegate the remaining work to recursion.

Translated to code

int factorial(int n) {
if (n == 1) { // Easy! Return trivial answer
return 1;
} else { // Not easy enough to finish yet!
return n * factorial(n - 1);

} Stanford University

The recursive function pattern

Recursive case:

» This problem is still a bit large, let’s (1) bite off just one piece, and
(2) delegate the remaining work to recursion.

int factorial(int n) {
if (n == 1) { // Easy! Return trivial answer
return 1;

} else { t easy enough to finish yet!
return ctorial(n - 1);

Do one of the many, many

multiplications required for
factorial.

Stanford University

The recursive function pattern

Recursive case:

» This problem is still a bit large, let’s (1) bite off just one piece, and
(2) delegate the remaining work to recursion.

int factorial(int n) {

if (n == 1) { // Easy! Return trivial answer

return 1;
t o a0 finish yet!

} else { ‘
£ I

return
Do one of the many, many Delegate all the other

multiplications required for multiplications to the
factorial. recursive call.

Stanford University

Digging deeper in the recursion

Looking at how recursion works “under the hood”

Stanford University

Factorial!

int factorial(int n) {
cout << n << endl; // **Added for this question**
if (n == 1) { // Easy! Return trivial answer
return 1;
} else { // Not easy enough to finish yet!
return n * factorial(n - 1);

}

What is the third thing printed when we call factorial(4)?
Al

N

B.
C.
D.
E. Other/none/more

Stanford University

How does this look in memory?
A little background...

= Acomputer’s memory is like a giant Vector/array, and like a Vector, we start
counting atindex ©.

= We typically draw memory vertically (rather than horizontally like a Vector),
with index @ at the bottom.

= Atypical laptop’s memory has billions of these indexed slots (one byte
each)

8,000,000, 000

0

* Take CS107 to learn much more!! Stanford University

How does this look in memory?
A little background...

= Broadly speaking, we divide memory into regions:
= Text: the program’s own code (needs to be in memory so it can run!)
= Heap: we’ll learn about this later in CS106B!
= Stack: thisis where local variables for each function are stored.

Stack

Heap

Text

4]
* Take CS107 to learn much more!! Stanford University

How does this look in memory?

Memory |24, 0) Recursive code
int factorial(int n) {
myfunction()x: E cout << n << endl;
xfac: 0 if (n == 1) return 1;
factorial() n:| 4 else return n * factorial(n - 1);
}

void myfunction(){
int x = 4;
int xfac = 0;
xfac = factorial(x);

Text, Heap

Stanford University

(A) (B) (C)

Memory Memory Memory
main() main() main()
myfunction()x: | 4 myfunction()x: | 4 myfunction()x: | 4
xfac: | o xfac: | o xfac: | o
factorial() n:| 4 factorial() n:| 3 factorial()n:| 3,4
3

factorial() n:

Text, Heap Text, Heap Text, Heap

(D) Other/none of the above

Stanford University

Fun fact:
The “stack” part of memory is a stack

Function call = push a stack frame
Function return = pop a stack frame

* Take CS107 to learn much more!!

Stanford University

The “stack” part of memory is a stack

Recursive code

» int factorial(int n) {
myfunction()x: | 4 cout << n << endl;

xfac: | o if (n == 1) return 1;

factorial() n:| 4 else return n * factorial(n - 1);
: }

main()

void myfunction(){
int x = 4;
int xfac = 0;
xfac = factorial(x);

Text, Heap

Stanford University

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {
cout << n << endl;
if (n == 1) return 1;
else return n * factorial(n - 1);

main()

myfunction()x:
xfac:

factorial() n:)

Wil > jollbd

factorial() n:

void myfunction(){
int x = 4;
int xfac = 0;
xfac = factorial(x);

Text, Heap

Stanford University

The “stack” part of memory is a stack

main()
myfunction()x: | 4
xfac: | o
factorial() n:| 4
factorial() n:| 3
factorial() n:T

Text, Heap

Recursive code Answer: 31

int factorial(int n) { thing
cout << n << endl; printed is 2
if (n == 1) return 1;
else return n * factorial(n - 1);

}

void myfunction(){
int x = 4;
int xfac = 0;
xfac = factorial(x);

Stanford University

The “stack” part of memory is a stack

main() Recursive code

. int factorial(int n) {
myfunction()x: | 4 cout << n << endl;

xfac: | o if (n == 1) return 1;
k 1 —_ .
factorial() n:| 4 } else return n factorial(n 1);
factorial() n:| 3
. | void myfunction(){

factorial() n:| 2 int x = 4;
factorial() n:| 1 int xfac = @;

A }

Text, Heap

Stanford University

Factorial!

Recursive code

What is the fourth
value ever returned int factorial(int n) {

cout << n << endl;
when we call if (n == 1) return 1;

factor‘ial(4)? else return n * factorial(n - 1);
A 4 }
B. 6 void myfunction(){
C. 10 int x = 4;
D. 24 int xfac = 0;
E. Other/none/more xfac = factorial(x);

) }

than one

Stanford University

The “stack” part of memory is a stack

main() Recursive code

. int factorial(int n) {
myfunction()x: | 4 cout << n << endl;

xfac: | o if (n == 1) return 1;
k 1 —_ .
factorial() n:| 4 } else return n factorial(n 1);
factorial() n:| 3
. | void myfunction(){

factorial() n:| 2 int x = 4;
factorial() n:| 1 int xfac = @;

Return 1x-Fac = factorial(x);
}

Text, Heap

Stanford University

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {
cout << n << endl;
if (n == 1) return 1;
else return n * factorial(n - 1);

main()

myfunction()x:
xfac:

factorial() n:

}
factorial() n:

N Wil > jollbd

void myfunction(){
int x = 4;
Return 2.

int xfac = 0;
xfac = factorial(x);

factorial() n:

Text, Heap

Stanford University

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {

main()

myfunction()x: | 4 cout << n << endl;

xfac: | o if (n == 1) return 1;
factorial() n:| 4 } else return n * factorial(n - 1);
factorial() n:| 3 Return 6

void myfunction(){
int x = 4;
int xfac = 0;
xfac = factorial(x);

Text, Heap

Stanford University

The “stack” part of memory is a stack

main() Recursive code

int factorial(int n) {
cout << n << endl;
if (n == 1) return 1;
else return n * factorial(n - 1);

Return’ 24

myfunction()x: | 4
xfac:

factorial() n:

Answer; 4th
thing returned
is 24

void myfunction(){
int x = 4;
int xfac = 0;
xfac = factorial(x);

Text, Heap

Stanford University

Factorial!

Iterative version Recursive version

int factorial(int n) { int factorial(int n) {

int £ = 1; if (n == 1) return 1;
while (n > 1) { else return n * factorial(n - 1);
f = f * n; }

= - 1;] . .
n=n NOTE: sometimes iterative can be

much faster because it doesn’t
have to push and pop stack frames.
Method calls have overhead in
terms of space and time (to set up
and tear down).

}

return f;

Stanford University

