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Today’s Topics

Recursion Week continues!
= Today, two applications of recursion:
> Binary Search (one of the fundamental algorithms of CS)
» We saw the idea of this on Wed, but today we’ll code it up
 Callback to Big-O discussion
> Generating sequences
e *cough* Assignment 3 *cough*

Next time:
= More recursion! It’s Recursion Week!
= Like Shark Week, but more nerdy
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Binary Search Refresher

(RECALL FROM WEDNESDAY’S
LECTURE)
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Does this list of numbers contain X?

Context: we have a collection of numbersin a Vector, in sorted order.
0 1 (2 |3 |4 86 |7 |8 |9 |10
2 7 8 13 25 29 33 51 89 90 95
= Efficiency Hack: Jump to the middle of the Vector and look there to find:
> X (answer Yes)
> Anumber greater than X rule out entire second half of Vector)

> Anumber less than X (rule out entire first half of Vector)

= Key observation: with *one* comparison, you ruled out *N/2* of the N cells in
the Vector! Stanford University




Does this list of numbers contain X?

Context: we have a collection of numbersin a Vector, in sorted order.
0 |1 |2 |3 |4 86 |7 |8 |9 |10
2 7 8 13 25 29 33 51 89 90 95

= Extreme Efficiency Hack: Keep jumping to the middle!

> Let’s say our first jump to the middle found a number less than X, so we ruled
out the whole first half:

0 11 2 3 /a5 6 |7 |8 |9 [10

2 7 8 13 25 29 33 51 89 90 95
>~ Now jump to the middle of the remaining second half:

0 11 12 3 14 |5 |6 7 M9 (10

2 7 8 13 25 33 51 90 95

29 89

= Key observation: we do one piece of work, then delegate the rest. Recursion!!
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Binary Search
Implementation

NOW WE UNDERSTAND THE
APPROACH.

WHAT DOES THE CODE LOOK
LIKE?
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The recursive function pattern

v From Always two parts:

SSUEENER Base case:

lecture * This problemis so tiny, it’s hardly a problem anymore! Just give answer.

Recursive case:

« This problem is still a bit large, let’s (1) bite off just one piece, and (2)
delegate the remaining work to recursion.



Binary Search pseudocode

=  We’ll write the real C++ code together on Friday, but here’s the outline/pseudocode of
how it works:

bool binarySearch(Vector<int>& data, int key)

{ m .

if (data.size() == @) { - Base case: w-eshrankthesearfzh '
return false; problem so tiny it no longer exists!

} o Recursive case:

if (key == data[midpoint]) {
return true; _ Do one piece of work

} else if (key < data[midpoint]) { — | (comparison)
return binarySearch(datal[first half only], key);

} else { _ Delegate the rest
return binarySearch(data[second halfonly], key); of the work

} _
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bool binarySearch(Vector<int>& data, int key) {
// want to keep passing same data by reference for efficiency,
// but then how do we cut in half?
return binarySearch(data, key, 0, data.size() - 1); // 2 new params

bool binarySearch(Vector<int»>& data, int key, int start, int end) {

} Stanford University



Recursive Function Design Tip: Wrapper function

= When we want to write a recursive function that needs more book-keeping
data passed around than an outsider user would want to worry about, do
this:

1. Write the function as you need to for correctness, using any extra book-
keeping parameters you like, in whatever way you like.

2. Make a second function that the outside world sees, using only the minimum
number of parameters, and have it do nothing but call the recursive one.

= Called a “wrapper” function because it’s like pretty outer packaging.
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bool binarySearch(Vector<int>& data, int key) {
// want to keep passing same data by reference for efficiency,
// but then how do we cut in half?
return binarySearch(data, key, 0, data.size() - 1); // 2 new params

bool binarySearch(Vector<int»>& data, int key, int start, int end) {
if (start > end) {
return false;
}
int mid = (start + end) / 2;
if (key == data[mid]) {
return true;
} else if (key < data[mid]) {

return binarySearch(data, key, s )5
} else {
return binarySearch(data, key, s )5

} Stanford University



bool binarySearch(Vector<int>& data, int key) {
// want to keep passing same data by reference for efficiency,
// but then how do we cut in half?
return binarySearch(data, key, 0, data.size() - 1); // 2 new params

bool binarySearch(Vector<int»>& data, int key, int start, int end) {
if (start > end) {

return false; Your Turn:

) What goes on the blanks below, to

int mid = (start + end) / 2;

if (key == data[mid]) {
return true;

} else if (key < data[mid]) {

divide the remaining searchable region
of our vector in half?

return binarySearch(data, key, ’ )5
} else {
return binarySearch(data, key, ’ )5

} Stanford University



bool binarySearch(const Vector<int>& data, int key) {
// want to keep passing same data by reference for efficiency,
// but then how do we cut in half?
return binarySearch(data, key, 0, data.size() - 1); // 2 new params

bool binarySearch(const Vector<int>& data, int key, int start, int end) {
if (start > end) {
return false;
}
int mid = (start + end) / 2;
if (key == data[mid]) {
return true;
} else if (key < data[mid]) {
return binarySearch(data, key, start, mid - 1);
} else {
return binarySearch(data, key, mid + 1, end);

} Stanford University



Binary Search performance

B ' SimpleTest BinarySearch Q. We Saw the teSt
Tests from PROVIDED_TEST take a long time to

run for 1M, but it

Correct (PROVIDED_TEST, binsearch.cpp:88) Basic correctness: found value
reports 0.000 secs.

Correct (PROVIDED_TEST, binsearch.cpp:93) Basic correctness: missing value W h at,s g0| N g on 7?

Correct (PROVIDED_TEST, binsearch.cpp:98) Edge case: found first value

Correct (PROVIDED_TEST, binsearch.cpp:103) Edge case: found last value

Correct (PROVIDED_TEST, binsearch.cpp:108) Timing on 10K elements

Line 112 TIME OPERATION binarySearch(data, 5) (size = 10000) completed in 0.000 secs

100000) completed in 0.000 secs

1000000) completed in 0.000 secs

Stanford University

Correct (PROVIDED_TEST, binsearch.cpp:115) Timing on 100K elements

Line 119 TIME OPERATION binarySearch(data, 5) (size

Correct (PROVIDED_TEST, binsearch.cpp:122) Timing on 1M elements

Line 126 TIME OPERATION binarySearch(data, 5) (size

Passed 7 of 7 tests. Great!




Binary Search performance

B ' SimpleTest BinarySearch

Q. We saw the test

Tests from PROVIDED TEST

Correct (PROVIDED_TEST, binsearch.cpp:88) Basic correctness: found value
Correct (PROVIDED_TEST, binsearch.cpp:93) Basic correctness: missing value
Correct (PROVIDED_TEST, binsearch.cpp:98) Edge case: found first value
Correct (PROVIDED_TEST, binsearch.cpp:103) Edge case: found last value

Correct (PROVIDED_TEST, binsearch.cpp:108) Timing on 10K elements

Line 112 TIME OPERATION binarySearch(data, 5) (size = 10000) compl

Correct (PROVIDED_TEST, binsearch.cpp:115) Timi

Line 119 TIME OPERATION binarySg
log 2(10K) ~= 13
log 2(100K) ~= 16

Line 126 TIME OPERATION binarySs log_Z(lM) ~= 20

Correct (PROVIDED_TEST, binsearch.cpp:122)

...on a computer that
Passed 7 of 7 tests. Great! does billions of operations
per second!

take a long time to
run for 1M, but it

reports 0.000 secs.
What’s going on??

eted in 0.000 secs
eted in 0.000 secs

eted in 0.000 secs
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16 16
64 256
256 65,536

1,024 | 4,294,967,296

4,096 1.84 x 10%?
16,384 3.40 x 1038
65,536 1.16 x 1077

262,144 1.34 x 101>

2" is clearly infeasible, but look at 10 1,048,576 L 80 x 10%08
log,n—only a tiny fraction of a second! s) (.0003s)

591,843,105 | 7,290,000,000,000,000, 1.962227 x
30| 2,700,000,000 | (28s) 000 (77 years) 10812,780,998
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Big-O Key Take-Aways:

= NOT worth doing: Optimization of your code that just trims a bit
> Like that +/-1 handshake—we don’t need to worry ourselves about it!

= MAY be worth doing: Optimization of your code that changes Big-O
» If performance of a particular function is important, focus on this!

» (but if performance of the function is not very important, for example it will
only run on small inputs, focus on just writing clean, easy-to-read code!!)

= (Also remember that efficiency is not necessarily a virtue—first and foremost
focus on correctness, both technical and ethical/moral/societal justice)
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Heads or Tails?

GENERATING SEQUENCES
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Heads or Tails?

" Youflip acoin5times

= What are all the possible heads/tails
sequences you could observe?

> TTTTT
> HHHHH
> THTHT
> HHHHT
> etc...

=  We want to write a program to fill a Vector
with strings representing each of the
possible sequences.
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Generating all possible coin flip sequences

void generateAllSequences(int length, Vector<string>& allSequences)

{
string sequence;
generateAllSequences(length, allSequences, sequence); |

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

{

}

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;
}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";

All 1 th, allsS , 5 . .
} generateAllSequences(leng allSequences, sequence) Stanford University




Your Turn: coin flip sequences

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

= Q: Of these sequences (all of which should be included in allSequences), which
sequence appears firstin allSequences? Last?

> TTTTT, HHHHH, THTHT, HHHHT
Stanford University




Your Turn: coin flip sequences

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

= Q:What would happen if we didn’t do the erase (highlighted above)? Which of the
following sequences would we NOT generate? Which additional sequences would we

generate (that we shouldn’t)?
> TTTTT, HHHHH, THTHT, HHHHT Stanford University




