
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics

Recursion Week continues!

 Today, two applications of recursion:

› Binary Search (one of the fundamental algorithms of CS)

• We saw the idea of this on Wed, but today we’ll code it up

• Callback to Big-O discussion

› Generating sequences

• *cough* Assignment 3 *cough*

Next time:

 More recursion! It’s Recursion Week!

 Like Shark Week, but more nerdy

Binary Search Refresher

(R E C A L L F R O M W E D N E S D A Y ’ S
L E C T U R E)

Does this list of numbers contain X?

Context: we have a collection of numbers in a Vector, in sorted order.

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

 Efficiency Hack: Jump to the middle of the Vector and look there to find:

› X (answer Yes)

› A number greater than X (rule out entire second half of Vector)

› A number less than X (rule out entire first half of Vector)

 Key observation: with *one* comparison, you ruled out *N/2* of the N cells in
the Vector!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Does this list of numbers contain X?

Context: we have a collection of numbers in a Vector, in sorted order.

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

 Extreme Efficiency Hack: Keep jumping to the middle!

› Let’s say our first jump to the middle found a number less than X, so we ruled
out the whole first half:

› Now jump to the middle of the remaining second half:

 Key observation: we do one piece of work, then delegate the rest. Recursion!!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Binary Search
Implementation

N O W W E U N D E R S T A N D T H E
A P P R O A C H .

W H A T D O E S T H E C O D E L O O K
L I K E ?

The recursive function pattern

Always two parts:

Base case:

• This problem is so tiny, it’s hardly a problem anymore! Just give answer.

Recursive case:

• This problem is still a bit large, let’s (1) bite off just one piece, and (2)
delegate the remaining work to recursion.

Translated to code

int factorial(int n) {

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet!

return n * factorial(n - 1);

}

}

From
previous
lecture

 We’ll write the real C++ code together on Friday, but here’s the outline/pseudocode of
how it works:

bool binarySearch(Vector<int>& data, int key)
{

if (data.size() == 0) {
return false;

}
if (key == data[midpoint]) {

return true;
} else if (key < data[midpoint]) {

return binarySearch(data[first half only], key);
} else {

return binarySearch(data[second half only], key);
}

}

Binary Search pseudocode

Base case: we shrank the search
problem so tiny it no longer exists!

Do one piece of work
(comparison)

Delegate the rest
of the work

Recursive case:

bool binarySearch(Vector<int>& data, int key) {

// want to keep passing same data by reference for efficiency,

// but then how do we cut in half?

return binarySearch(data, key, 0, data.size() - 1); // 2 new params

}

bool binarySearch(Vector<int>& data, int key, int start, int end) {

}

Recursive Function Design Tip: Wrapper function

 When we want to write a recursive function that needs more book-keeping
data passed around than an outsider user would want to worry about, do
this:

1. Write the function as you need to for correctness, using any extra book-
keeping parameters you like, in whatever way you like.

2. Make a second function that the outside world sees, using only the minimum
number of parameters, and have it do nothing but call the recursive one.

 Called a “wrapper” function because it’s like pretty outer packaging.

bool binarySearch(Vector<int>& data, int key) {

// want to keep passing same data by reference for efficiency,

// but then how do we cut in half?

return binarySearch(data, key, 0, data.size() - 1); // 2 new params

}

bool binarySearch(Vector<int>& data, int key, int start, int end) {

if (start > end) {

return false;

}

int mid = (start + end) / 2;

if (key == data[mid]) {

return true;

} else if (key < data[mid]) {

return binarySearch(data, key, _________, _________);

} else {

return binarySearch(data, key, _________, _________);

}

}

Your Turn:
What goes on the blanks below, to

divide the remaining searchable region
of our vector in half?

bool binarySearch(Vector<int>& data, int key) {

// want to keep passing same data by reference for efficiency,

// but then how do we cut in half?

return binarySearch(data, key, 0, data.size() - 1); // 2 new params

}

bool binarySearch(Vector<int>& data, int key, int start, int end) {

if (start > end) {

return false;

}

int mid = (start + end) / 2;

if (key == data[mid]) {

return true;

} else if (key < data[mid]) {

return binarySearch(data, key, _________, _________);

} else {

return binarySearch(data, key, _________, _________);

}

}

bool binarySearch(const Vector<int>& data, int key) {

// want to keep passing same data by reference for efficiency,

// but then how do we cut in half?

return binarySearch(data, key, 0, data.size() - 1); // 2 new params

}

bool binarySearch(const Vector<int>& data, int key, int start, int end) {

if (start > end) {

return false;

}

int mid = (start + end) / 2;

if (key == data[mid]) {

return true;

} else if (key < data[mid]) {

return binarySearch(data, key, start, mid - 1);

} else {

return binarySearch(data, key, mid + 1, end);

}

}

Binary Search performance
Q. We saw the test
take a long time to

run for 1M, but it
reports 0.000 secs.
What’s going on??

Binary Search performance
Q. We saw the test
take a long time to

run for 1M, but it
reports 0.000 secs.
What’s going on??

Answer:
log_2(10K) ~= 13
log_2(100K) ~= 16
log_2(1M) ~= 20

…on a computer that
does billions of operations

per second!

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)
1,048,576

(.0003s)
1.80 x 10308

30 2,700,000,000
84,591,843,105

(28s)
7,290,000,000,000,000,

000 (77 years)
1.962227 x
10812,780,998

2n is clearly infeasible, but look at
log2n—only a tiny fraction of a second!

Big-O Key Take-Aways:

 NOT worth doing: Optimization of your code that just trims a bit

› Like that +/-1 handshake—we don’t need to worry ourselves about it!

› Just write clean, easy-to-read code!!!!!

 MAY be worth doing: Optimization of your code that changes Big-O

› If performance of a particular function is important, focus on this!

› (but if performance of the function is not very important, for example it will
only run on small inputs, focus on just writing clean, easy-to-read code!!)

 (Also remember that efficiency is not necessarily a virtue—first and foremost
focus on correctness, both technical and ethical/moral/societal justice)

Heads or Tails?

G E N E R A T I N G S E Q U E N C E S

Heads or Tails?

 You flip a coin 5 times

 What are all the possible heads/tails
sequences you could observe?

› TTTTT

› HHHHH

› THTHT

› HHHHT

› etc…

 We want to write a program to fill a Vector
with strings representing each of the
possible sequences.

void generateAllSequences(int length, Vector<string>& allSequences)
{

string sequence;
generateAllSequences(length, allSequences, sequence);

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
generateAllSequences(length, allSequences, sequence);

}

Generating all possible coin flip sequences

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
generateAllSequences(length, allSequences, sequence);

}

Your Turn: coin flip sequences

 Q: Of these sequences (all of which should be included in allSequences), which
sequence appears first in allSequences? Last?

› TTTTT, HHHHH, THTHT, HHHHT

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
generateAllSequences(length, allSequences, sequence);

}

Your Turn: coin flip sequences

 Q: What would happen if we didn’t do the erase (highlighted above)? Which of the
following sequences would we NOT generate? Which additional sequences would we
generate (that we shouldn’t)?

› TTTTT, HHHHH, THTHT, HHHHT

