Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Today’s Topics

Recursion Week continues!
= Today, two applications of recursion:
> Binary Search (one of the fundamental algorithms of CS)
» We saw the idea of this on Wed, but today we’ll code it up
 Callback to Big-O discussion
> Generating sequences
e *cough* Assignment 3 *cough*

Next time:
= More recursion! It’s Recursion Week!
= Like Shark Week, but more nerdy

Stanford University

Binary Search Refresher

(RECALL FROM WEDNESDAY’S
LECTURE)

Stanford University

Does this list of numbers contain X?

Context: we have a collection of numbersin a Vector, in sorted order.
0 1 (2 |3 |4 86 |7 |8 |9 |10
2 7 8 13 25 29 33 51 89 90 95
= Efficiency Hack: Jump to the middle of the Vector and look there to find:
> X (answer Yes)
> Anumber greater than X rule out entire second half of Vector)

> Anumber less than X (rule out entire first half of Vector)

= Key observation: with *one* comparison, you ruled out *N/2* of the N cells in
the Vector! Stanford University

Does this list of numbers contain X?

Context: we have a collection of numbersin a Vector, in sorted order.
0 |1 |2 |3 |4 86 |7 |8 |9 |10
2 7 8 13 25 29 33 51 89 90 95

= Extreme Efficiency Hack: Keep jumping to the middle!

> Let’s say our first jump to the middle found a number less than X, so we ruled
out the whole first half:

0 11 2 3 /a5 6 |7 |8 |9 [10

2 7 8 13 25 29 33 51 89 90 95
>~ Now jump to the middle of the remaining second half:

0 11 12 3 14 |5 |6 7 M9 (10

2 7 8 13 25 33 51 90 95

29 89

= Key observation: we do one piece of work, then delegate the rest. Recursion!!

Stanford University

Binary Search
Implementation

NOW WE UNDERSTAND THE
APPROACH.

WHAT DOES THE CODE LOOK
LIKE?

Stanford University

The recursive function pattern

v From Always two parts:

SSUEENER Base case:

lecture * This problemis so tiny, it’s hardly a problem anymore! Just give answer.

Recursive case:

« This problem is still a bit large, let’s (1) bite off just one piece, and (2)
delegate the remaining work to recursion.

Binary Search pseudocode

= We’ll write the real C++ code together on Friday, but here’s the outline/pseudocode of
how it works:

bool binarySearch(Vector<int>& data, int key)

{ m .

if (data.size() == @) { - Base case: w-eshrankthesearfzh '
return false; problem so tiny it no longer exists!

} o Recursive case:

if (key == data[midpoint]) {
return true; _ Do one piece of work

} else if (key < data[midpoint]) { — | (comparison)
return binarySearch(datal[first half only], key);

} else { _ Delegate the rest
return binarySearch(data[second halfonly], key); of the work

} _

Stanford University

bool binarySearch(Vector<int>& data, int key) {
// want to keep passing same data by reference for efficiency,
// but then how do we cut in half?
return binarySearch(data, key, 0, data.size() - 1); // 2 new params

bool binarySearch(Vector<int»>& data, int key, int start, int end) {

} Stanford University

Recursive Function Design Tip: Wrapper function

= When we want to write a recursive function that needs more book-keeping
data passed around than an outsider user would want to worry about, do
this:

1. Write the function as you need to for correctness, using any extra book-
keeping parameters you like, in whatever way you like.

2. Make a second function that the outside world sees, using only the minimum
number of parameters, and have it do nothing but call the recursive one.

= Called a “wrapper” function because it’s like pretty outer packaging.

Stanford University

bool binarySearch(Vector<int>& data, int key) {
// want to keep passing same data by reference for efficiency,
// but then how do we cut in half?
return binarySearch(data, key, 0, data.size() - 1); // 2 new params

bool binarySearch(Vector<int»>& data, int key, int start, int end) {
if (start > end) {
return false;
}
int mid = (start + end) / 2;
if (key == data[mid]) {
return true;
} else if (key < data[mid]) {

return binarySearch(data, key, s)5
} else {
return binarySearch(data, key, s)5

} Stanford University

bool binarySearch(Vector<int>& data, int key) {
// want to keep passing same data by reference for efficiency,
// but then how do we cut in half?
return binarySearch(data, key, 0, data.size() - 1); // 2 new params

bool binarySearch(Vector<int»>& data, int key, int start, int end) {
if (start > end) {

return false; Your Turn:

) What goes on the blanks below, to

int mid = (start + end) / 2;

if (key == data[mid]) {
return true;

} else if (key < data[mid]) {

divide the remaining searchable region
of our vector in half?

return binarySearch(data, key, ’)5
} else {
return binarySearch(data, key, ’)5

} Stanford University

bool binarySearch(const Vector<int>& data, int key) {
// want to keep passing same data by reference for efficiency,
// but then how do we cut in half?
return binarySearch(data, key, 0, data.size() - 1); // 2 new params

bool binarySearch(const Vector<int>& data, int key, int start, int end) {
if (start > end) {
return false;
}
int mid = (start + end) / 2;
if (key == data[mid]) {
return true;
} else if (key < data[mid]) {
return binarySearch(data, key, start, mid - 1);
} else {
return binarySearch(data, key, mid + 1, end);

} Stanford University

Binary Search performance

B ' SimpleTest BinarySearch Q. We Saw the teSt
Tests from PROVIDED_TEST take a long time to

run for 1M, but it

Correct (PROVIDED_TEST, binsearch.cpp:88) Basic correctness: found value
reports 0.000 secs.

Correct (PROVIDED_TEST, binsearch.cpp:93) Basic correctness: missing value W h at,s g0| N g on 7?

Correct (PROVIDED_TEST, binsearch.cpp:98) Edge case: found first value

Correct (PROVIDED_TEST, binsearch.cpp:103) Edge case: found last value

Correct (PROVIDED_TEST, binsearch.cpp:108) Timing on 10K elements

Line 112 TIME OPERATION binarySearch(data, 5) (size = 10000) completed in 0.000 secs

100000) completed in 0.000 secs

1000000) completed in 0.000 secs

Stanford University

Correct (PROVIDED_TEST, binsearch.cpp:115) Timing on 100K elements

Line 119 TIME OPERATION binarySearch(data, 5) (size

Correct (PROVIDED_TEST, binsearch.cpp:122) Timing on 1M elements

Line 126 TIME OPERATION binarySearch(data, 5) (size

Passed 7 of 7 tests. Great!

Binary Search performance

B ' SimpleTest BinarySearch

Q. We saw the test

Tests from PROVIDED TEST

Correct (PROVIDED_TEST, binsearch.cpp:88) Basic correctness: found value
Correct (PROVIDED_TEST, binsearch.cpp:93) Basic correctness: missing value
Correct (PROVIDED_TEST, binsearch.cpp:98) Edge case: found first value
Correct (PROVIDED_TEST, binsearch.cpp:103) Edge case: found last value

Correct (PROVIDED_TEST, binsearch.cpp:108) Timing on 10K elements

Line 112 TIME OPERATION binarySearch(data, 5) (size = 10000) compl

Correct (PROVIDED_TEST, binsearch.cpp:115) Timi

Line 119 TIME OPERATION binarySg
log 2(10K) ~= 13
log 2(100K) ~= 16

Line 126 TIME OPERATION binarySs log_Z(lM) ~= 20

Correct (PROVIDED_TEST, binsearch.cpp:122)

...on a computer that
Passed 7 of 7 tests. Great! does billions of operations
per second!

take a long time to
run for 1M, but it

reports 0.000 secs.
What’s going on??

eted in 0.000 secs
eted in 0.000 secs

eted in 0.000 secs

Stanford University

v

16 16
64 256
256 65,536

1,024 | 4,294,967,296

4,096 1.84 x 10%?
16,384 3.40 x 1038
65,536 1.16 x 1077

262,144 1.34 x 101>

2" is clearly infeasible, but look at 10 1,048,576 L 80 x 10%08
log,n—only a tiny fraction of a second! s) (.0003s)

591,843,105 | 7,290,000,000,000,000, 1.962227 x
30| 2,700,000,000 | (28s) 000 (77 years) 10812,780,998

Stanford University

Big-O Key Take-Aways:

= NOT worth doing: Optimization of your code that just trims a bit
> Like that +/-1 handshake—we don’t need to worry ourselves about it!

= MAY be worth doing: Optimization of your code that changes Big-O
» If performance of a particular function is important, focus on this!

» (but if performance of the function is not very important, for example it will
only run on small inputs, focus on just writing clean, easy-to-read code!!)

= (Also remember that efficiency is not necessarily a virtue—first and foremost
focus on correctness, both technical and ethical/moral/societal justice)

Stanford University

Heads or Tails?

GENERATING SEQUENCES

Stanford University

Heads or Tails?

" Youflip acoin5times

= What are all the possible heads/tails
sequences you could observe?

> TTTTT
> HHHHH
> THTHT
> HHHHT
> etc...

= We want to write a program to fill a Vector
with strings representing each of the
possible sequences.

Stanford University

Generating all possible coin flip sequences

void generateAllSequences(int length, Vector<string>& allSequences)

{
string sequence;
generateAllSequences(length, allSequences, sequence); |

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

{

}

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;
}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";

All 1 th, allsS , 5 . .
} generateAllSequences(leng allSequences, sequence) Stanford University

Your Turn: coin flip sequences

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

= Q: Of these sequences (all of which should be included in allSequences), which
sequence appears firstin allSequences? Last?

> TTTTT, HHHHH, THTHT, HHHHT
Stanford University

Your Turn: coin flip sequences

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

= Q:What would happen if we didn’t do the erase (highlighted above)? Which of the
following sequences would we NOT generate? Which additional sequences would we

generate (that we shouldn’t)?
> TTTTT, HHHHH, THTHT, HHHHT Stanford University

