Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Today’s topics:

= Recursion Week Fortnight continues!
= Today:

> Loops + recursion for generating sequences and combinations
= Upcoming:

> Loops + recursion for recursive backtracking

Stanford University

Heads or Tails?

GENERATING SEQUENCES

Stanford University

Heads or Tails?

" Youflip acoin5times

= What are all the possible heads/tails
sequences you could observe?

> TTTTT
> HHHHH
> THTHT
> HHHHT
> etc...

= We want to write a program to fill a Vector
with strings representing each of the
possible sequences.

Stanford University

Generating all possible coin flip sequences

void generateAllSequences(int length, Vector<string>& allSequences)

{
string sequence;
generateAllSequences(length, allSequences, sequence); |

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

{

}

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;
}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";

All 1 th, allsS , 5 . .
} generateAllSequences(leng allSequences, sequence) Stanford University

Your Turn: coin flip sequences

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

= Q: Of these sequences (all of which should be included in allSequences), which
sequence appears firstin allSequences? Last?

> TTTTT, HHHHH, THTHT, HHHHT
Stanford University

Helpful mental models for recursion: the call stack, and the call tree

Remember we used this to help us Remember we used this to help us
understand Factorial recursion: understand Fibonacci recursion:

main

() NeS
myfunction()x: | 4
xfac: | o N=3
factorial() n:| 4
factorial() n:| 3 N=2 N=1
=0
N=1 N=0

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

sequence:

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)

{
// base case: this sequence is full-length and ready to add

‘ if (sequence.size() == length) {

allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";
generateAllSequences(length, allSequences, sequence);

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

sequence: | "H"

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

‘ sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";
generateAllSequences(length, allSequences, sequence);

Text, Heap

Stanford University

Call stack for our Heads/Tails code

— Recursive code
sequence: H)) .
void generateAllSequences(int length, Vector<string>&
sequence: "H" allSequences, string sequence)

{

-

Remember how pass-by-value
works is that the function being
called gets its own copy of the
data, so we start with both
functions having the same string. "

// base case: this sequence is full-length and ready to add

if (sequence.size() == length) {
allSequences.add(sequence);

return;

cases: add H or T and continue
IIHII;
equences(length, allSequences, sequence);

Text, Heap generateAllSequences(length, allSequences, sequence);

Stanford University

Call stack for our Heads/Tails code

— Recursive code
sequence: H)) .
void generateAllSequences(int length, Vector<string>&
sequence: | "HH" allSequences, string sequence)

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

‘ sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";
generateAllSequences(length, allSequences, sequence);

Text, Heap

Stanford University

Call stack for our Heads/Tails code

sequence: | "H"
sequence: | "HH"
sequence: | "HH"

Text, Heap

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)

{

-

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

Stanford University

Call stack for our Heads/Tails code

— Recursive code
sequence: H)) .
void generateAllSequences(int length, Vector<string>&
sequence: | "HH" allSequences, string sequence)
{
sequence: | "HHH" // base case: this sequence is full-length and ready to add

if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

‘ sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";
generateAllSequences(length, allSequences, sequence);

Text, Heap

Stanford University

Call stack for our Heads/Tails code

sequence: | "H"

sequence: | "HH"
sequence: | "HHH"
sequence: | "HHH"

Text, Heap

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)

{

-

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

Stanford University

Call stack for our Heads/Tails code

Recursive code
sequence: | "H"
void generateAllSequences(int length, Vector<string>&
sequence: | "HH" allSequences, string sequence)
{
sequence: | "HHH" // base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
sequence: | "HHHH" allSequences.add(sequence);
return;
}

// recursive cases: add H or T and continue

- sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

Text, Heap

generateAllSequences(length, allSequences, sequence);

Stanford University

Call stack for our Heads/Tails code

Finally hit base case!

Add this sequence
HHHH to our list of

Ty Recursive code _ :
BERIE void generateAllSequences(int length), pOSS”JkECOH1tOSS
sequence: | "HH" allSequences, string sequence) sequences of Iength
{ 4, and return.

sequence: | "HHH" // base case: this sequence is f

‘ if (sequence.size() == length) {
sequence: | "HHHH" : allSequences.add(sequence);

return;

sequence: }

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

Text, Heap

generateAllSequences(length, allSequences, sequence);

Stanford University

Call stack for our Heads/Tails code

Most recent stack
sequence: | "H" o ?

q frame |30Fn3€d off l11Sequences(int length, Vector<string>&
"HH" the stack when we |[EESTa RN
returned.

Recursive code

sequence:

se: this sequence is full-1JEW-Xele]aa =N or:1e/&x0)

if (sequence.size() == length) { this next line that
allSequences.add(sequence);
return; says to erase the H

} we added before

// recursive cases: add H or T and co the function call

sequence: | "HHH"

sequence: | "HHHH"

sequence += "H";
generateAllSequences(length, allSequepg

¥, sequence);

sequence.erase(sequence.size() - 1)%
sequence += "T";
generateAllSequences(length, allSequences, sequence);

Text, Heap

Stanford University

Call stack for our Heads/Tails code

g Recursive code
sequence: H

gcenerateAllSequences(int length, Vector<string>&
, string sequence)

sequence: | "HH"
E Erased the 4th H

case: this sequence is full-1ERVVNele]1al=Re}: (o Q10

if (sequence.size() == length) { this next line that

allSequences.add(sequence);
return; says to erase the H

} we added before
// recursive cases: add H or T and co the function call.

sequence: | "HHH"

sequence:

sequence += "H";
generateAllSequences(length, allSequepg
sequence.erase(sequence.size() - 1)%

¥, sequence);

sequence += "T";
generateAllSequences(length, allSequences, sequence);

Text, Heap

Stanford University

Call stack for our Heads/Tails code

g Recursive code
sequence: H

generateAllSequences(int length, Vector<string>&
juences, string sequence)

sequence: | "HH"

base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

sequence: | "HHH"

sequence: | "HHHT" allSequences.add(sequence);
return;
}
// recursive cases: add H.o and contin

Now a second
generateAllSequences(len recursive call with uence);

sequence.erase(sequencg

sequence += "H";

this new sequence.

sequence += "T";

Text, Heap ‘ generateAllSequences(length, allSequences, sequence);
}

Stanford University

Call stack for our Heads/Tails code

sequence: | "H"

sequence: | "HH"
sequence: | "HHH"
sequence:

sequence:

"HHHT"
—|
"HHHT" }

Text, Heap

At the base case
again, we add HHHT
to our collection as

Recursive code

, , the second
void generateAllSequences(int length, l d
allSequences, string sequence) completed sequence,

{ and return.
// base case: this sequence is full _ _
- if (sequence.size() == length) {
allSequences.add(sequence);
return;

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

Stanford University

Call stack for our Heads/Tails code

Recursive code
sequence: | "H"
void generateAllSequences(int length, Vector<string>&
sequence: | "HH" allSequences, string sequence)
{
sequence: | "HHH" // base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
sequence: | "HHHT" allSequences.add(sequence);
return;
}

// recursive cases: add H or This function call has
sequence += "H"; reached the end (did
generateAllSequences(length, eledaNg={elllsy\/=Rer-|{E Mo

sequence.erase(sequence.size(T ETNe o1 1=N-1ale RiM = e 0laalH
sequence += "T";

Text, Heap

generateAllSequences(length, #Juences, sequence);

Stanford University

Call stack for our Heads/Tails code

— Recursive code
sequence: H)) .
void generateAllSequences(int length, Vector<string>&
sequence: | "HH" allSequences, string sequence)
{
sequence: | "HHH" // base case: this sequence is full-length and ready to add

if (sequence.size() == length) {
allSequences.add(sequence);
return;

} needs to erase its H and

// recursive cases: add H or T andEvcr i aETeYs| try again.

sequence += "H";

generateAllSequences(length, allSequeg

This function call now

> sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";
generateAllSequences(length, allSequences, sequence);

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

sequence: | "H") .)
void generateAllSequences(int length, Vector<string>&

N R cs, string sequence)

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

sequence: | "HH"

sequence: | "HHT"

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

Text, Heap ‘ generateAllSequences(length, allSequences, sequence);
}

Stanford University

Call stack for our Heads/Tails code

sequence:

Text, Heap

sequence: | "H"
sequence: | "HH"
sequence: | "HHT"

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)

{

el

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

Stanford University

Call stack for our Heads/Tails code

Recursive code

sequence: | "H"

void generateAllSequences(int length, Vector<string>&
sequence: | "HH" allSequences, string sequence)

{
sequence: | "HHT" // base case: this sequence is full-length and ready to add

e —— if (sequence.size() == length) {
sequence: | "HHTH" allSequences.add(sequence);
return;
}

// recursive cases: add H or T and continue

‘ sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

Text, Heap

generateAllSequences(length, allSequences, sequence);

Stanford University

Call stack for our Heads/Tails code

At the base case
again, we add HHTH

g Recursive code to our collection as
sequence: H .
void generateAllSequences(int length, the third completed
sequence: | "HH" ?llSequences, string sequence) sequence,arujreturn.
sequence: | "HHT" // base case: this sequence is full
‘if (sequence.size() == length) {
sequence: | "HHTH" : allSequences.add(sequence);
return;
sequence: | "HHTH" }
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
'Text,rieap) generateAllSequences(length, allSequences, sequence);
}

Stanford University

Call stack for our Heads/Tails code

g Recursive code
sequence: H

generateAllSequences(int length, Vector<string>&
juences, string sequence)

sequence: | "HH"

base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

sequence: | "HHH"

sequence: | "HHTT" allSequences.add(sequence);
return;
¥
// recursive cases: add EENeEININIEId SII(WIEN T
sequence += THY; the ending H, added a T,

enerateAllSequences(len
8 q (and ready to do second
sequence.erase(sequen

recursive call.

sequence += "T";

Text, Heap ‘ generateAllSequences(length, allSequences, sequence);
}

Stanford University

Call stack for our Heads/Tails code

At the base case
again, we add HHTT

g Recursive code to our collection as
sequence: H
void generateAllSequences(int length, \ER{sl-R{eli[gdsNele]aqgle]l=Iecle
sequence: | "HH" ?llSequences, string sequence) sequence,arujreturn.
sequence: | "HHT" // base case: this sequence is full
‘if (sequence.size() == length) {
sequence: | "HHTT" : allSequences.add(sequence);
return;
sequence: | "HHTT" }
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
'Text,rieap) generateAllSequences(length, allSequences, sequence);
}

Stanford University

Call stack for our Heads/Tails code

Recursive code
sequence: | "H") .)
void generateAllSequences(int length, Vector<string>&
sequence: | "HH" allSequences, string sequence)
{
sequence: | "HHT" // base case: this sequence is full-length and ready to add
e —— if (sequence.size() == length) {
sequence: | "HHTT" allSequences.add(s .
return; We did both.H
} and T recursive
// recur51veHCfses: ad caHs,sc>this
sequence += "HY; function is done

generateAllSequences(1 sequence);

and also returns.

sequence.erase(sequenc

sequence += "T";
generateAllSequences(length, allSequences, sequence);
-}

Text, Heap

Stanford University

Call stack for our Heads/Tails code

sequence:

IIHII

sequence:

n HH n

sequence:

Text, Heap

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(s We did both H

return; .
} and T recursive
// recursive cases: ad calls, so this
sequence += "H"; function is done

generateAllSequences(1 sequence);

and also returns.

sequence.erase(sequenc

sequence += "T";
generateAllSequences(length, allSequences, sequence);

Stanford University

Call stack for our Heads/Tails code

sequence: | "H"

sequence: | "HH"

Text, Heap

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)

{

// base case: this sequence is full-]lqums e —

if (sequence.size() == length) { This function still
allSequences.add(sequence);

needs to erase its

return;
} H,and try T, but
// recursive cases: add H or T and co we’ll end our
sequence += "H"; animation here. ©

generateAllSequences(length, allSeque

sequence.erase(sequence.size() - 1);
sequence += "T";
generateAllSequences(length, allSequences, sequence);

Stanford University

Call tree for Heads/Tails code

Labels are based on the value of the sequence parameter at the time of the
function call (without add/erase/add edits we make inside the function).

IIHHHII

n HHT n

"HHHH"

"HHHT"

"HHTH"

Stanford University

Your Turn: coin flip sequences

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;

}

// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);

= Q:What would happen if we didn’t do the erase (highlighted above)? Which of the
following sequences would we NOT generate? Which additional sequences would we

generate (that we shouldn’t)?
> TTTTT, HHHHH, THTHT, HHHHT Stanford University

Roll the Dice!

GENERATING MORE
SEQUENCES

Stanford University

Roll the Dice!

= Yourollasingle die 5 times o \7)]

= What are all the possible 1/2/3/4/5/6
sequences you could observe? J ¢

» 11111 0
> 66666 §

» 12345 \ \ 20
> 21655 A \

> etc... \ ' 4

= We want to write a program to fill a Vector
with strings representing each of the
possible sequences.

Stanford University

[] [[[o 0
Generating all possible eeinflip die roll sequences < ,
- 9 ®
void generateAllSequences(int length, Vector<string>& allSequences) % c:’:
{ AV
string sequence; ‘ :
generateAllSequences(length, allSequences, sequence); |
}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{
// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);

return; To adapt for dierolls,
3/ . i H o T and contd we need to change this
recursive cases: a or T and continue :
sequence += "H"; from Zoptlons (H/T) to
generateAllSequences(length, allSequences, sequence); 6 options (1-6).

sequence.erase(sequence.size() - 1);
sequence += "T";

AllS 1 th, allsS , 5 . .
} generate equences(leng allSequences, sequence) Stanford University

. o
Generating all possible eeinflip die roll sequences ~ ,

w L)

// recursive cases: add 1 or 2 or 3 or 4 or 5 or 6 and continue i c;’:
sequence += "1"; \,

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "2";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "3"; .
generateAllSequences(length, allSequences, sequence); Tfnsvvorks,bLanH(ESH
sequence.erase(sequence.size() - 1); So much copy-paste!!
sequence += "4";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "5";

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "6";

generateAllSequences(length, allSequences, sequence);

t Stanford University

Generating all possible eeinflip die roll sequences <

// recursive cases:
sequence += "1";
generateAllSequences(length, allSequences,
sequence.erase(sequence.size() - 1);
sequence += "2";
generateAllSequences(length, allSequences,
sequence.erase(sequence.size() - 1);
sequence += "3";
generateAllSequences(length, allSequences,
sequence.erase(sequence.size() - 1);

add 1 or 2 or 3 or 4 or 5 or 6 and continue

00
(]
\\0 o
\e.!
w§lll
AW 4

sequence);

sequence);

Let’s take the repeated

SR[UIICDB actions and put them in

sequence += "4";
generateAllSequences(length, allSequences,
sequence.erase(sequence.size() - 1);

a for-loop from 1 to 6.

sequence);

sequence += "5";
generateAllSequences(length, allSequences,
sequence.erase(sequence.size() - 1);
sequence += "6";
generateAllSequences(length, allSequences,

sequence);

sequence);

Stanford University

Generating all possible eoinflip die roll sequences ",

()

- \0 ®

void generateAllSequences(int length, Vector<string>& allSequences) \ c;’:
{ AV

string sequence;

generateAllSequences(length, allSequences, sequence); ﬁ

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{
// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;
}
// recursive cases: add 1-6 and continue
for (int i =1; i <= 6; i++) {
sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

} Stanford University

Generating all possible eoinflip die roll sequences ",

()

~ \0 ®

void generateAllSequences(int length, Vector<string>& allSequences) \ c;’:
{ Ny

string sequence;

generateAllSequences(length, allSequences, sequence); m

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

{

// base case: this sequence is full-length and ready to add

if (sequence.size() == length) { Notice that this loop
allSequences.add(sequence); h
return; does not replace the

} recursion. It just controls

// recursive cases: add 1-6 and continue how many times the

for (int i = 1; i <= 6; i++) {
sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

recursion launches.

} Stanford University

Your Turn: die roll sequences = 4 .

void generateAllSequences(int length, Vector<string>& allSequences, string se\ ‘;,:)
{ ’
// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;
}
// recursive cases: add 1-6 and continue
for (int i = 1; 1 <= 6; i++) {
sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

= Q: Of these sequences (all of which should be included in allSequences), which
sequence appears firstin allSequences? Last?

> 11111, 66666, 12345, 21655

Stanford University

