
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s topics:

 Recursion Week Fortnight continues!

 Today:

› Loops + recursion for generating sequences and combinations

 Upcoming:

› Loops + recursion for recursive backtracking

2

Heads or Tails?

G E N E R A T I N G S E Q U E N C E S

Heads or Tails?

 You flip a coin 5 times

 What are all the possible heads/tails
sequences you could observe?

› TTTTT

› HHHHH

› THTHT

› HHHHT

› etc…

 We want to write a program to fill a Vector
with strings representing each of the
possible sequences.

void generateAllSequences(int length, Vector<string>& allSequences)
{

string sequence;
generateAllSequences(length, allSequences, sequence);

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
generateAllSequences(length, allSequences, sequence);

}

Generating all possible coin flip sequences

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
generateAllSequences(length, allSequences, sequence);

}

Your Turn: coin flip sequences

 Q: Of these sequences (all of which should be included in allSequences), which
sequence appears first in allSequences? Last?

› TTTTT, HHHHH, THTHT, HHHHT

Helpful mental models for recursion: the call stack, and the call tree

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

Remember we used this to help us
understand Factorial recursion:

Remember we used this to help us
understand Fibonacci recursion:

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

""

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "H"

Remember how pass-by-value
works is that the function being
called gets its own copy of the

data, so we start with both
functions having the same string.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HH"

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

sequence: "HHH"

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

sequence: "HHHH"

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

sequence: "HHHH"

sequence: "HHHH"

Finally hit base case!
Add this sequence
HHHH to our list of
possible coin toss

sequences of length
4, and return.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

sequence: "HHHH"

Most recent stack
frame “popped” off
the stack when we

returned.
We come back to
this next line that

says to erase the H
we added before
the function call.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

sequence: "HHH"

Erased the 4th H
We come back to
this next line that

says to erase the H
we added before
the function call.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

sequence: "HHHT"

Added a T

Now a second
recursive call with

this new sequence.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

sequence: "HHHT"

sequence: "HHHT"

At the base case
again, we add HHHT
to our collection as

the second
completed sequence,

and return.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

sequence: "HHHT"

This function call has
reached the end (did

both recursive calls), so
it is done and it returns.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

This function call now
needs to erase its H and

add a T and try again.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHT"

Now ends in T.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHT"

sequence: "HHT"

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHT"

sequence: "HHTH"

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHT"

sequence: "HHTH"

sequence: "HHTH"

At the base case
again, we add HHTH
to our collection as
the third completed

sequence, and return.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHH"

sequence: "HHTT"

Added a T

Came back here, erased
the ending H, added a T,
and ready to do second

recursive call.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHT"

sequence: "HHTT"

sequence: "HHTT"

At the base case
again, we add HHTT
to our collection as

the fourth completed
sequence, and return.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHT"

sequence: "HHTT"
We did both H

and T recursive
calls, so this

function is done
and also returns.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

sequence: "HHT"

We did both H
and T recursive

calls, so this
function is done
and also returns.

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, Vector<string>&
allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue

sequence += "H";

generateAllSequences(length, allSequences, sequence);

sequence.erase(sequence.size() - 1);

sequence += "T";

generateAllSequences(length, allSequences, sequence);
}

sequence:

Text, Heap

"H"

sequence: "HH"

This function still
needs to erase its
H, and try T, but

we’ll end our
animation here. 

Call tree for Heads/Tails code

Labels are based on the value of the sequence parameter at the time of the
function call (without add/erase/add edits we make inside the function).

32

""

"H" "T"

"HH"

"HHH"

"HHHH"

"HHT"

"HT"

"HTH" "HTT"

"HHHT"

"HHTH" "HHTT"

… …

… …

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
generateAllSequences(length, allSequences, sequence);

}

Your Turn: coin flip sequences

 Q: What would happen if we didn’t do the erase (highlighted above)? Which of the
following sequences would we NOT generate? Which additional sequences would we
generate (that we shouldn’t)?

› TTTTT, HHHHH, THTHT, HHHHT

Roll the Dice!

G E N E R A T I N G M O R E
S E Q U E N C E S

Roll the Dice!

 You roll a single die 5 times

 What are all the possible 1/2/3/4/5/6
sequences you could observe?

› 11111

› 66666

› 12345

› 21655

› etc…

 We want to write a program to fill a Vector
with strings representing each of the
possible sequences.

void generateAllSequences(int length, Vector<string>& allSequences)
{

string sequence;
generateAllSequences(length, allSequences, sequence);

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
generateAllSequences(length, allSequences, sequence);

}

Generating all possible coin flip die roll sequences

To adapt for die rolls,
we need to change this
from 2 options (H/T) to

6 options (1-6).

// recursive cases: add 1 or 2 or 3 or 4 or 5 or 6 and continue
sequence += "1";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "2";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "3";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "4";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "5";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "6";
generateAllSequences(length, allSequences, sequence);

}

Generating all possible coin flip die roll sequences

This works, but YIKES!!
So much copy-paste!!

// recursive cases: add 1 or 2 or 3 or 4 or 5 or 6 and continue
sequence += "1";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "2";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "3";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "4";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "5";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "6";
generateAllSequences(length, allSequences, sequence);

}

Generating all possible coin flip die roll sequences

Let’s take the repeated
actions and put them in

a for-loop from 1 to 6.

void generateAllSequences(int length, Vector<string>& allSequences)
{

string sequence;
generateAllSequences(length, allSequences, sequence);

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) {

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

Generating all possible coin flip die roll sequences

Much nicer!!

void generateAllSequences(int length, Vector<string>& allSequences)
{

string sequence;
generateAllSequences(length, allSequences, sequence);

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) {

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

Generating all possible coin flip die roll sequences

Notice that this loop
does not replace the

recursion. It just controls
how many times the
recursion launches.

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) {

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

Your Turn: die roll sequences

 Q: Of these sequences (all of which should be included in allSequences), which
sequence appears first in allSequences? Last?

› 11111, 66666, 12345, 21655

