
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s topics:

 Recursion Week Fortnight continues!

 Today:

› Review Die Roll sequence generating code from last time

• An example of loops + recursion for generating sequences and combinations

› Combination lock code

• An example of loops + recursion for recursive backtracking

2

void generateAllSequences(int length, Vector<string>& allSequences)
{

string sequence;
generateAllSequences(length, allSequences, sequence);

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) { // style tip: should make this a const int

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

Generating all possible coin flip die roll sequences

Much nicer!!

void generateAllSequences(int length, Vector<string>& allSequences)
{

string sequence;
generateAllSequences(length, allSequences, sequence);

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) { // style tip: should make this a const int

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

Generating all possible coin flip die roll sequences

Notice that this loop
does not replace the

recursion. It just controls
how many times the
recursion launches.

Crack the combo lock!

T R Y I N G T O F I N D T H E O N E
S E Q U E N C E T H A T W O R K S

Crack the combo lock!

 You forgot the combo to your locker 

 It consists of 4 numbers, in the range 0-9

› 0,0,0

› 9,9,9

› 2,3,4

› 2,7,5

› etc…

 We have no choice but to try all possible combos
until we find one that unlocks the lock!

 When we find the successful combo, we save the
combo in a Vector<int> of size 3, and return
true. (If we try all and it none works, the lock
must be broken, return false.)

Trying all 1-39 combos sounds very similar to
generating all 1-6 die roll sequences!

 We’ll use the die-roll code as a starting point

 Which parts will we save, and which parts need a rewrite?

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) {

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

Rewrite Step 1: rewriting the function signature

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) {

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

Don’t need this
parameter, our combo

length is always 4.

Don’t need this
collection parameter,

we are only looking for
one working combo.

Return true/false,
so make this bool.

Make this a pass-by-
reference Vector<int>,

so the caller gets the
working combo.

Rewrite Step 2: rewriting the base case

bool findCombo(Vector<int>& combo)
{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {

allSequences.add(sequence);
return;

}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) {

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

We still want to detect when our
combo is full-length (4), but it may
not be the right full-length combo,

so we need to check it.

Rewrite Step 2: rewriting the base case

bool findCombo(Vector<int>& combo)
{

// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 4) {

return tryCombo(combo);
}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) {

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

We still want to detect when our
combo is full-length (4), but it may
not be the right full-length combo,

so we need to check it.

Rewrite Step 3: rewriting the recursive case

bool findCombo(Vector<int>& combo)
{

// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 4) {

return tryCombo(combo);
}
// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) {

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}
}

We still want to loop over
numbers (now 0-9).

We still want to choose a
number, recursively continue

generating the combo, and
then “un-choose” that number

before moving on to choose
other numbers.

But we need to rewrite this for-
loop body to take into account
that a combo we try might or

might not work, and if we find a
working one, we want to exit

the search early.

…or somewhere else, like here or here? (vote)

Do we want to return false here? (vote A)

bool findCombo(Vector<int>& combo)
{

// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 4) { // style tip: should make this a const int

return tryCombo(combo);
}

// recursive cases: add 0-9 and continue
for (int i = 0; i <= 9; i++) {// style tip: should make this a const int

combo += i;
if (findCombo(combo)) {

return true;
} else {

return false;
}
combo.remove(combo.size() - 1);
return false;

}
return false;

}

Rewrite Step 3: rewriting the recursive caseBut we need to rewrite this for-
loop body to take into account
that a combo we try might or

might not work, and if we find a
working one, we want to exit

the search early.

B

C

Clearly if we find a working
combo, we should return true.

bool findCombo(Vector<int>& combo)
{

// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 4) { // style tip: should make this a const int

return tryCombo(combo);
}

// recursive cases: add 0-9 and continue
for (int i = 0; i <= 9; i++) {// style tip: should make this a const int

combo += i;
if (findCombo(combo)) {

return true;
}
combo.remove(combo.size() - 1);

}
return false;

}

Completed rewrite

bool findCombo(Vector<int>& combo)
{

// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 3) {

return tryCombo(combo);
}

// recursive cases: add 0-9 and continue
for (int i = 0; i <= 9; i++) {

combo += i;
if (findCombo(combo)) {

return true;
}
combo.remove(combo.size() - 1);

}
return false;

}

Recursive intuition

This is where we will eventually
report back the final combo

solution; but in the mean time, it
represents a tentative
guess of combo so far.

If this function is called with the
argument combo = {1, 9}, it is
in effect saying, “Please explore
all the combinations that start

with 1, 9, and tell me if there is a
working combo with that

beginning.”

1 9 ? ?

bool findCombo(Vector<int>& combo)
{

// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 3) {

return tryCombo(combo);
}

// recursive cases: add 0-9 and continue
for (int i = 0; i <= 9; i++) {

combo += i;
if (findCombo(combo)) {

return true;
}
combo.remove(combo.size() - 1);

}
return false;

}

Recursive intuition

This is where we will eventually
report back the final combo

solution; but in the mean time, it
represents a tentative
guess of combo so far.

If this function is called with the
argument combo = {1, 9}, it is
in effect saying, “Please explore
all the combinations that start

with 1, 9, and tell me if there is a
working combo with that

beginning.”

1 9 ? ?

It does that exploration by saying “hm idk if there is a working
combo that starts with 1, 9? Let me delegate the task of finding if
there’s one that starts with 1, 9, 1. And if not, I’ll delegate the task

for checking 1, 9, 2; then 1, 9, 3, etc.

123

Choose + Explore + Un-Choose

A C O M M O N R E C U R S I V E D E S I G N
P A T T E R N

// Coin Flip

// recursive cases: add H or T and continue
sequence += "H";
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);
sequence += "T";
generateAllSequences(length, allSequences, sequence);

}

Generating all possible coin flip sequences

1. Choose an option for the
next step ("H")

3. Un-choose that option so we can try the
other option ("T") for this current step

2. Recursion to explore more steps
of the sequence

// Die Roll

// recursive cases: add 1-6 and continue
for (int i = 1; i <= 6; i++) {

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

}

A common design pattern in our solution:
choose/unchoose

Choose

3. Un-choose

2. Explore

// Combo Lock

// recursive cases: add 0-9 and continue
for (int i = 0; i <= 9; i++) {

combo += i;
if (findCombo(combo)) {

return true;
}
sequence.remove(sequence.size() - 1);

}

A common design pattern in our solution:
choose/unchoose

1. Choose

3. Un-choose

2. Explore

“Backtracking” and
Choose + Explore + Un-Choose

A S P E C I A L F L A V O R O F T H E
C O M M O N R E C U R S I V E D E S I G N

P A T T E R N

Backtracking template

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Bookmark
this slide!

bool findCombo(Vector<int>& combo)
{

// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 4) {

return tryCombo(combo);
}

// recursive cases: add 0-9 and continue
for (int i = 0; i <= 9; i++) {

combo += i;
if (findCombo(combo)) {

return true;
}
combo.remove(combo.size() - 1);

}
return false;

}

A common design pattern in our solution:
Backtracking version of choose/unchoose

Revisiting Big-O

S O M E P R A C T I C A L T I P S

Big-O Quick Tips

 To examine program runtime, assume:

› Single statement = 1

› Function call = (sum of statements in function)

› A loop of N iterations = (N * (body's runtime))

Your Turn: What is the Big-O runtime cost for this function?

void myFunction(int N) {
statement1; // runtime = 1

for (int i = 1; i <= N; i++) { // runtime = 2N^2
for (int j = 1; j <= N; j++) { // runtime = 2N

statement2; // runtime = 1
statement3; // runtime = 1

}
}

for (int i = 1; i <= N; i++) { // runtime = 3N
statement4; // runtime = 1
statement5; // runtime = 1
statement6; // runtime = 1

}
}

Your Turn: What is the Big-O runtime cost for this function?

void myFunction(int N) {
statement1; // runtime = 1

for (int i = 1; i <= N; i++) { // runtime = 2N^2
for (int j = 1; j <= N; j++) { // runtime = 2N

statement2; // runtime = 1
statement3; // runtime = 1

}
}

for (int i = 1; i <= N; i++) { // runtime = 3N
statement4; // runtime = 1
statement5; // runtime = 1
statement6; // runtime = 1

} // total = 2N^2 + 3N + 1
} // total = O(N^2)

