Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Today’s topics:

= Recursion Week Fortnight continues!
= Today:
> Review Die Roll sequence generating code from last time
* An example of loops + recursion for generating sequences and combinations
> Combination lock code
* Anexample of loops + recursion for recursive backtracking

Stanford University

Generating all possible esinflip die roll sequences &°,

()

- \0 ®

void generateAllSequences(int length, Vector<string>& allSequences) \ c;’:
{ AV

string sequence;

generateAllSequences(length, allSequences, sequence); ﬁ

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)
{
// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);
return;
}
// recursive cases: add 1-6 and continue
for (int i =1; i <= 6; i++) { // style tip: should ma
sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

1S a const int

} Stanford University

Generating all possible esinflip die roll sequences &°,

()

~ \0 ®

void generateAllSequences(int length, Vector<string>& allSequences) \ c;’:
{ Ny

string sequence;

generateAllSequences(length, allSequences, sequence); m

}

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

{

// base case: this sequence is full-length and ready to add

if (sequence.size() == length) { Notice that this loop
allSequences.add(sequence); h
return; does not replace the

} recursion. It just controls

// recursive cases: add 1-6 and continue how many times the

for (int i = 1; i <= 6; i++) { // style tip:
sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

recursion launches.

} Stanford University

Crack the combo lock!

TRYING TO FIND THE ONE
SEQUENCE THAT WORKS

Stanford University

Crack the combo lock!

You forgot the combo to your locker ®
It consists of 4 numbers, in the range 0-9
> 0,0,0

> 9,9,9

> 2,3,4

> 2,7,5

> etc...

We have no choice but to try all possible combos
until we find one that unlocks the lock!

When we find the successful combo, we save the
combo in a Vector<int> of size 3, and return
true. (If we try all and it none works, the lock
must be broken, return false.)

Stanford University

Trying all 1-39 combos sounds very similar to
generating all 1-6 die roll sequences!

= We’ll use the die-roll code as a starting point
= Which parts will we save, and which parts need a rewrite?

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);

o
. o9
return

J « I ®
) : : N® e
// recursive cases: add 1-6 and continue i ® 7
. e A s o s "\\Pov

for (int 1 = 1; 1 <= 6; i++) { \,

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

} Stanford University

Make this a pass-by-
Don’t need this reference Vector<int>,
parameter, our combo so the caller gets the
length is always 4. working combo.

Return true/false,

so make this bool.

void generateAllSequences(int length, Vector<string>& allSequences, string sequence)

// base case: this sequence is full-lengt Don’t need this

if (sequence.size() == length) { collection parameter,
allSequences.add(sequence); we are only looking for o ©
. ’ o
return; one working combo. ~ ¥
} e ",
// recursive cases: add 1-6 and continue % ® 7
for (int 1 = 1; 1 <= 6; i++) { \s:,,

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

} Stanford University

Rewrite Step 2: rewriting the base case

We still want to detect when our
combo is full-length (4), but it may
not be the right full-length combo,

so we need to check it.

bool findCombo(Vector<int>& combo)

{

// base case: this sequence is full-length and ready to add
if (sequence.size() == length) {
allSequences.add(sequence);

o
. o9
return

) b / e
) : : w)\® e
// recursive cases: add 1-6 and continue % ® 7
. e A s s "\ \Pss

for (int 1 = 1; 1 <= 6; i++) { \,

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

} Stanford University

Rewrite Step 2: rewriting the base case

We still want to detect when our
combo is full-length (4), but it may
not be the right full-length combo,

so we need to check it.

bool findCombo(Vector<int>& combo)

{

// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 4) {

return tryCombo(combo); 09 ?®
b b /e
// recursive cases: add 1-6 and continue ~ {’ c;
for (int i = 1; 1 <= 6; i++) { \ {5,,
AW 4

sequence += integerToString(i);
generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

} Stanford University

Rewrite Step 3: rewriting the recursive case

We still want to loop over

bool findCombo(Vector<int>& combo numbers (now 0-9). We still want to choose a

{)) number, recursively continue
{/ base casc?: this sequence is ngth and ready generating the combo, and
if (combo.size() == 4) { then “un-choose” that number
y return tryCombo(combo); before moving on to choose
// recursive cases: add 6 and continue othernumbele
for (int i = 1; i <= 65 i++) { . _

sequence += integerToString(i); But we need to revyrlte this for-

generateAllSequences(length, allSequences, sequiiudae O ACREL GG
sequence.erase(sequence.size() - 1); thata combo we try might or

} might not work, and if we find a

} working one, we want to exit

the search early.

bool findCombo(Vector<int>& combo)

{

But we need to rewrite this for-
loop body to take into account
that a combo we try might or
might not work, and if we find a
working one, we want to exit
the search early.

Rewrite Step 3: rewriting the recursive cas

// base case: this sequence is full-length and ready td
if (combo.size() == 4) { // style tip: should make this
return tryCombo(combo);

}

// recursive cases: add 0-9 and continue

for (int i = 0; i <= 9; i++) {// ot
combo += 1; Clearly if we find a working
if (findCombo(combo)) combo, we should return true.

his a const int

return true;
} else {
return false; Do we want to return false here? (vote A)
}
combo.remove(combo.size() - 1);
return false; B
} ...or somewhere else, like here or here? (vote)
return false; C

Stanford University

bool findCombo(Vector<int>& combo)

{

Completed rewrite

// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 4) { // style tip: should make this a const int
return tryCombo(combo);

}

// recursive cases: add 0-9 and continue
for (int i = 0; i <= 9; i++) {// style tip: should make this a const int
combo += 1i;
if (findCombo(combo)) {
return true;

}

combo.remove(combo.size() - 1);

}

return false;

Stanford University

bool findCombo(Vector<int>& combo)

{

This is where we will eventually
. . .. report back the final combo
Recursive intuition solution; but in the mean time, it
represents a tentative
guess of combo so far.

If this function is called with the
argument combo = {1, 9},itis
in effect saying, “Please explore
all the combinations that start
with 1,9, and tell me if thereis a
working combo with that
beginning.”

// base case:
if (combo.siz
return tr

}

// recursive

for (int i =

combo += 1i;

if (findCombo(combo)) {
return true;

}

combo.remove(combo.size() - 1);

}

return false;

This is where we will eventually
. . o report back the final combo _
Recursive intuition solution; butin the mean time, it S
represents a tentative
guess of combo so far.

bool findCombo(Vector<int>& combo)

{

If this function is called with the
argument combo = {1, 9},itis
in effect saying, “Please explore
all the combinations that start
with 1,9, and tell me if thereis a
working combo with that
beginning.”

// base case:
if (combo.siz
return tr

}

// recursive
for (int i =
combo += 1i;
if (findCombo(combo)) {
return true;

}

ombo.remove(combo.size - :

It does that exploration by saying “hm idk if there is a working
combo that starts with 1, 9? Let me delegate the task of finding if
there’s one that starts with 1,9, 1. And if not, I'll delegate the task

for checking 1,9, 2; then 1,9, 3, etc.

Choose + Explore + Un-Choose

A COMMON RECURSIVE DESIGN
PATTERN

Stanford University

Generating all possible coin flip sequences

1. Choose an option for the
// Coin Fli next step ("H")

// recursivg®
sequence += "H"; of the sequence

generateAllSequences(length, allSequences, sequence);
sequence.erase(sequence.size() - 1);

sequence += "T'
generateAllSequence

acth, allSequences, sequence);

3. Un-choose that option so we can try the

other option ("T") for this current step

A common design pattern in our solution: e°®

/e

choose/unchoose e .
§$‘Ill

' 4

// Die Roll

// recursive case 1-6 and continue
for (int 1 = 1;

; W<= 6; i++) {
sequence +="integerToString(i);
generateAllSequences(length, Sequences, sequence);

sequence.erase(sequence.size() - 1);

Stanford University

A common design pattern in our solution:
choose/unchoose

// Combo Lock

// recursive : add ©0-9 and continue

for (int 1 =

combo += 1i;
if (findCombo(combo))m

return true;

sequence.remove(sequence.size() - 1);

Stanford University

“Backtracking” and
Choose + Explore + Un-Choose

A SPECIAL FLAVOR OF THE
COMMON RECURSIVE DESIGN
PATTERN

Stanford University

Backtracking template /

bool backtrackingRecursiveFunction(args) { <
> Base case test for success: return true e
> Base case test for failure: return false = / / \

> Loop over several options for “what to do next”:
1. Tentatively “choose” one option
2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

> None of the options we tried in the loop worked, so return false

Stanford University

N
A common design pattern in our solution: (o
Backtracking version of choose/unchoose

bool findCombo(Vector<int>& combo) 28 il
// base case: this sequence is full-length and ready to try on the lock!
if (combo.size() == 4) {

return tryCombo(combo);

bool backtrackingRecursiveFunction(args) {
> Base case test for success: return true
} > Base case test for failure: return false
> Loop over several options for “what to do next”:
for (int 1 = 0©;

1. Tentatively “choose” one option
combo += 1; /

if (.Findcombo (combo)) { > None of the options we tried in the loop worked, so return false
return true;

// recursive

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giv

}

combo.remove(combo.size() - 1);

}

return false;

Stanford University

Revisiting Big-O

SOME PRACTICAL TIPS

Stanford University

Big-O Quick Tips

= To examine program runtime, assume:
> Single statement =1
> Function call = (sum of statements in function)
> Aloop of N iterations = (N * (body's runtime))

Stanford University

Your Turn: What is the Big-O runtime cost for this function?

void myFunction(int N) {

statementl; // runtime = 1
for (int i = 1; i <= N; i++) { // runtime = 2N~2
for (int j = 1; j <= N; j++) { // runtime = 2N
statement2; // runtime = 1
statement3; // runtime = 1
}
}
for (int i = 1; i <= N; i++) { // runtime = 3N
statement4; // runtime = 1
statement5; // runtime = 1
statementé6; // runtime = 1
}

Stanford University

Your Turn: What is the Big-O runtime cost for this function?

void myFunction(int N) {

statementl; // runtime = 1
for (int i = 1; i <= N; i++) { // runtime = 2N~2
for (int j = 1; j <= N; j++) { // runtime = 2N
statement2; // runtime = 1
statement3; // runtime = 1
}
}
for (int i = 1; i <= N; i++) { // runtime = 3N
statement4; // runtime = 1
statement5; // runtime = 1
statementé6; // runtime = 1
} // total = 2N*2 + 3N + 1
} // total = O(N"2)

Stanford University

