Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Today’s topics:

= Recursion Week Fortnight continues!
= Today:
> More recursive backtracking code:
* Gift card spending optimization

Stanford University

Code Example #1

GIFT CARD SPENDING TARGET

Stanford University

Gift card spending optimization

= You’ve been given a gift card for your
birthday, yay!
= The store has arule that you must use itin

one trip, and any unused balanceis
forfeited

= You’'ll be given:

» int giftCardAmt: The amount of the gift
card

» Set<int> itemsForSale: A set of prices of
items for sale (assume only one of each
item is in stock)

= Task: Canyou find a collection of items to
buy that will sum to EXACTLY the amount on
the gift card??

= Return:

> bool: true if you can find such a collection,
otherwise false

Stanford University

Gift card spending optimization

= You’ve been given a gift card for your
birthday, yay!

= The store has arule that you must use itin
one trip, and any unused balanceis

forfeited
= You'll be given: Your Turn:
» int giftCardAmt: The amount of the gift Help me write some test cases
card for this function. Come up with
> Vector<Item> itemsForSale:A set of at least one basic correctness
items of for sale (each has name and price) test, and a couple tricky/edge
= Task: Canyou find a collection of items to cases. Submit yours at
buy that will sum to EXACTLY the amount on pollev.com/cs106b. One test
the gift card? e bmissi
per submission, you may
* Return: submit multiple times.
> bool: trueif you can find such a collection,
otherwise false Format example:

4, {1, 2, 5} = false

Backtracking template /

bool backtrackingRecursiveFunction(args) { <
> Base case test for success: return true e
> Base case test for failure: return false = / / \

> Loop over several options for “what to do next”:
1. Tentatively “choose” one option
2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

> None of the options we tried in the loop worked, so return false

Stanford University

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {
> Base case test for success: return true [ERNHEISEEIolol=I3 {o]@d g ol ge] o] (o4 Vs
> Base case test for failure: return false

> Loop over several options for “what to do next”:
1. Tentatively “choose” one option
2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

> None of the options we tried in the loop worked, so return false

Stanford University

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {
> Base case test for success: return true
> Base case test for failure: return false
> Loop over several options for “what to do next”:
1. Tentatively “choose” one option
2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

> None of the options we tried in the loop worked, so return false

Stanford University

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

» Base case test for success: return true Exactly SO left on card

> Base case test for failure: return false What is failure for this problem?
> Loop over several options for “what to do next”:

1. Tentatively “choose” one option
2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

> None of the options we tried in the loop worked, so return false

Stanford University

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

» Base case test for success: return true Exactly SO left on card

> Base case test for failure: return false EONVEEIIElaleHalEl-EINVRe]] Io= R eI g T0
items left to choose.

> Loop over several options for “what to &€
1. Tentatively “choose” one option
2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

> None of the options we tried in the loop worked, so return false

Stanford University

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

» Base case test for success: return true Exactly SO left on card

> Base case test for failure: return false EONVEEIIElaleHalEl-EINVRe]] Io= R eI g T0
items left to choose.

> Loop over several options for “what to

What is “one step” for this problem?

1. Tentatively “choose” one option
2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

> None of the options we tried in the loop worked, so return false

Stanford University

What is “one step” in the Gift Card problem?

= We canimagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

> Theyes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Stanford University

What is “one step” in the Gift Card problem?

= We canimagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

> Theyes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

One
step/decision

Delegate the rest to
recursion

What is “one step” in the Gift Card problem?

= We canimagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

> Theyes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

If recursion comes back with the answer that no
combination works for this set and the remaining
funds, reconsider our Y on the banana.

One
step/decision

What is “one step” in the Gift Card problem?

= We canimagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

> Theyes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Conclusion: one step/decision has two options to
“loop” over: Y and N (for one item).

One
step/decision

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

» Base case test for success: return true Exactly SO left on card

> Base case test for failure: return false ROV Ilefigle-LINVRoFl IR el q[e
> Loop over several options for “what to [, items left to choose.

1. Tentatively “choose” one option [IELULI:AJalNII<Tos Ml leloledaelV/I@ GETole BN
options for that item (we won’t

actually loop since Y and N are only

2. if (“explore” with recursive call re

3. else That tentative idea didn’t wo
but don’t return false yet!--let the loop

two options, a loop is excessive)

N~

None of the options we tried in the loop worked, so return false

} If both Y and N options for an item

fail, we’ve exhausted all possibilities,
so return false.

// base case success: card amount is spent down to 0 exactly

if (giftCardAmt ==) { Comparing our
return true; solution and the
// base case failure: we herj overspent, or we need to spend more deSIign etemplate

// no more ems for to consider, so we can't succeed
if (giftCardAmt < @ || index == it ForSale.size()) {
return false;

bool backtrackingRecursiveFunction(args) {

. . . » Base case test for success: return true
// recursive case: consider 1 next item (at ;
» Base case test for failure: return false

ITtem item = itemsForSale[index]; .
. .., TIr hY and N keepover ral options for “what to do next”:
// Our two choices are that we can e1thery§w$'¥a d over several options for “what fo do nex

L. . 1. Tentatively “choose” on tion
// other additional purchases with le 'e“alvey”) ¢ ?Oplo
jtemsToBuy.add (item); 2. if (“explore” with recursive call returns true) return true
° b

. . . ; . 3. else That tentative idea didn’t work, so “un-choose” that option,
if (Ca nUseFullGiftCard (g mt 1tem.pr but don’t return false yet!--let the loop explore the other options before giv
return true;

> None of the options we tried in the loop worked, so return false

+
// ...or NOT BUY THE ITEM and
// the same amount to

itemsToBuy.remove (it
if (canUseFullGiftlard(gif
return true;

rdAmt, itemsForSale, itemsToBuy, index + 1)) {

}

return false;

/ if neither of the two options can work, we have exhat

Code Example #2

GIFT CARD SPENDING
OPTIMIZATION

Stanford University

Gift card spending optimization

= You’ve been given a gift card for your
birthday, yay!

= The store has arule that you must use itin
one trip, and any unused balanceis
forfeited

= You’'ll be given:
» int giftCardAmt: The amount of the gift
card

» Set<int> itemsForSale: A set of prices of
items for sale (assume only one of each
item is in stock)

= Task: Of all the collections of items to buy,
what is one that will sum the closest to the
amount on the gift card?

> Thisis aslight loosening of the exact
match requirement of the original problem

Stanford University

// base case success: card amount is spent down to 0 exactly
if (giftCardAmt == 0) {
return true;
) ’ What do we need
// base case failure: we either overspent, or we need to spend more to Change?
// no more items for to consider, so we can't suc
if (giftCardAmt < @ || index == itemsForSale.size()) {
return false;

}

// recursive case: consider 1 next item (at “dindex’)

ITtem item = itemsForSale[index];

// Our two choices are that we can either BUY THE ITEM and go on to consider

// other additional purchases with less money to spend...

itemsToBuy.add(item);

if (canUseFullGiftCard(giftCardAmt - item.price, itemsForSale, 1itemsToBuy, index + 1))
return true;

+

// ...or NOT BUY THE ITEM and go on to conider other additional purchases with
// the same amount to spend.

itemsToBuy.remove(itemsToBuy.size() - 1);

if (canUseFullGiftCard(giftCardAmt, -itemsForSale, itemsToBuy, index + 1)) {
return true;

}

return false; // if neither of the two options can work, we have exhal

