
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s topics:

 Recursion Week Fortnight continues!

 Today:

› More recursive backtracking code:

• Gift card spending optimization

2

Code Example #1

G I F T C A R D S P E N D I N G T A R G E T

Gift card spending optimization

 You’ve been given a gift card for your
birthday, yay!

 The store has a rule that you must use it in
one trip, and any unused balance is
forfeited

 You’ll be given:
› int giftCardAmt: The amount of the gift

card
› Set<int> itemsForSale: A set of prices of

items for sale (assume only one of each
item is in stock)

 Task: Can you find a collection of items to
buy that will sum to EXACTLY the amount on
the gift card??

 Return:
› bool: true if you can find such a collection,

otherwise false

Gift card spending optimization

 You’ve been given a gift card for your
birthday, yay!

 The store has a rule that you must use it in
one trip, and any unused balance is
forfeited

 You’ll be given:
› int giftCardAmt: The amount of the gift

card
› Vector<Item> itemsForSale: A set of

items of for sale (each has name and price)
 Task: Can you find a collection of items to

buy that will sum to EXACTLY the amount on
the gift card?

 Return:
› bool: true if you can find such a collection,

otherwise false

Your Turn:
Help me write some test cases
for this function. Come up with
at least one basic correctness
test, and a couple tricky/edge

cases. Submit yours at
pollev.com/cs106b. One test
case per submission, you may

submit multiple times.

Format example:

4, {1, 2, 5} = false

Backtracking template

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Bookmark
this slide!

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

What is success for this problem?

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

What is failure for this problem?

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

Overspend/negative balance, or no
items left to choose.

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

Overspend/negative balance, or no
items left to choose.

What is “one step” for this problem?

What is “one step” in the Gift Card problem?

 We can imagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

› The yes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Items:

$1 $5 $3 $2 $10

Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___

What is “one step” in the Gift Card problem?

 We can imagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

› The yes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Items:

$1 $5 $3 $2 $10

Y/N: Y Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___

One
step/decision

Delegate the rest to
recursion

What is “one step” in the Gift Card problem?

 We can imagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

› The yes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Items:

$1 $5 $3 $2 $10

Y/N: Y Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___

One
step/decision

If recursion comes back with the answer that no
combination works for this set and the remaining

funds, reconsider our Y on the banana.

What is “one step” in the Gift Card problem?

 We can imagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

› The yes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Items:

$1 $5 $3 $2 $10

Y/N: Y Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___

One
step/decision

Conclusion: one step/decision has two options to
“loop” over: Y and N (for one item).

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

Overspend/negative balance, or no
items left to choose.

Taking one item, “loop” over Y and N
options for that item (we won’t

actually loop since Y and N are only
two options, a loop is excessive)

If both Y and N options for an item
fail, we’ve exhausted all possibilities,

so return false.

Comparing our
solution and the
design template

Try both Y and N

Code Example #2

G I F T C A R D S P E N D I N G
O P T I M I Z A T I O N

Gift card spending optimization

 You’ve been given a gift card for your
birthday, yay!

 The store has a rule that you must use it in
one trip, and any unused balance is
forfeited

 You’ll be given:
› int giftCardAmt: The amount of the gift

card
› Set<int> itemsForSale: A set of prices of

items for sale (assume only one of each
item is in stock)

 Task: Of all the collections of items to buy,
what is one that will sum the closest to the
amount on the gift card?
› This is a slight loosening of the exact

match requirement of the original problem

What do we need
to change?

