Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Last time: Classes, Part 1
> BankAccount class
> Ball class
= Today: Classes, Part 2
> More practice making our own classes!
> This time we will implement one of our ADTs from earlier in the quarter!!
* Asimple Stack ADT with unlimited capacity
> In doing so, we need to learn about:
« C/C++ arrays

« Dynamic memory allocation (this is a huge topic in itself—much of CS107 is
about this)

Stanford University

Stack Implementation

BEHIND THE SCENES TOUR!

Stanford University

Implementing a classic ADT: Stack

Today let's learn how to write a Stack class
= We will implement a stack
» Not quite like the one in Stanford library—for simplicity this only stores int

» The stack will use an array to store its elements

= The capacity will grow as needed push pop, peek
Recall the basic stack operations: top| 3

»= push: Add an element to the top. 2

= pop: Remove the top element. bottom| 1

= peek: Examine the top element. stack

Stanford University

Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

» Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

» Qur stack will use the same array-based technique

// Diagram shows the internal state of the Stack class
// after 3 ints are pushed
Stack<int> s;

s.push(42); valve [42 | -5 | 17
s.push(-5); size. 3 capacity 10
s.push(17);

Stanford University

Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

» Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

= Qur stack will use the same array-based technique Quick check:

which end will we

consider the “top”
of the stack?

// Diagram shows the internal state of the Sta
// after 3 ints are pushed
Stack<int> s;

s.push(42); valve [42 | -5 | 17
s.push(-5); size. 3 capacity 10
s.push(17);

Stanford University

Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

» Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

» Qur stack will use the same array-based technique

Quick check:
which end will we

consider the “top”

// Diagram shows the internal state of the Sta of the stack?

// after 3 ints are pushed
Stack<int> s;

S pusE 243 ’ values | 42 | -5 | 17 Our class member
S.pus g size. 3 capacity 10 variables will include
s.push(17);

size and capacity.

And this storage area
thatis a C/C++ array.

Arrays in C++

BEHIND THE SCENES TOUR!

Stanford University

Basic Array in C/C++

type name[length];

> An array is has enough space for multiple values of a type
 If aregularvariableis a single-family home, arrays are an apartment
building
« Similar concept as a Vector, but much more basic
— Can’t ever be resized
- No methods
— Really just several adjacent spaces of the same type

Example:
int homeworkGrades[7];
homeworkGrades[@] = 90;

homeworkGrades[3] = 95; Stanford University

[Y 7
main() \

Arrays in a memory diagram

int myFunction() { myFunction() .
int x = 5; y:
int y = 3; stackArr:

int stackArr[3];

stackArr[@0] = x + 1;
stackArr[1l] =y + 1;
stackArr[2] = x + Vy;

olh|oo|w|wn
\

return y;

What happens when myFunction()
returns?

Stanford University

Arrays in a memory diagram

int myFunction() {
int x = 5;
int y = 3;
int stackArr[3];
stackArr[@0] = x + 1;
stackArr[1l] =y + 1;
stackArr[2] = x + Vy;

return y;

What happens when myFunction()
returns?

[Mooy 7\

myFunction’s stack
frame automatically
released

Stanford University

A second kind of array in C/C++

Basic array

type name[length];

we just saw

> Basic array (AKA statically allocated or stack allocated)
> Stored in the stack frame alongside other local variables

Example: int homeworkGrades[7];
New kind of

array!

type* name = new type[length];

> Dynamically allocated array (AKA heap allocated)
> The variable that refers to the array is called a pointer, and it is on the stack

> But the actual array is stored in the heap! W

Example: int* homeworkGrades = new int[7];

Literally the word “new”!

Arrays in a memory diagram

int myFunction() {

int x = 5;
int y = 3;

int* heapArr

heapArr[0]
heapArr[1]
heapArr[2]

return y,;

new int[3];
X + 1;
y +1;
X + VY;

What happens when myFunction()

returns?

Stack:

LY

main()

myFunction() &

y:

heapArr:

Stanford University

Arrays in a memory diagram

int myFunction() {

int x = 5;
int y = 3;
int* heapArr
heapArr[0] =
heapArr[1l] =
heapArr[2] =

return y,;

new int[3];

X + 1;
y +1;
X +Y;

What happens when myFunction()

returns?

[Mooy 7\

myFunction’s stack
frame automatically
released

Heap array NOT
automatically released!

Stanford University

[Mooy 7\

Arrays in a memory diagram

int myFunction() {

int x = 5; myFunction’s stack
frame automatically
released

int y = 3;
int* heapArr

new int[3];
heapArr[0] = x + 1;

heapArr[1l] =y + 1;
Heap array released with

heapArr[2] = X + y; delete

delete [] heapArr;
return y,;

What happens when myFunction()
returns?

Stanford University

Dynamic Memory
Allocation

Keywords new and delete

Stanford University

Memory leaks

The pointer variable that
points to heap allocated
memory is like the string
on a helium balloon.

If you let go of the string
(or lose that pointer
variable), the balloon still
exists out there
somewhere, but it's never
yours to play with ever
again. £
=
» Also it’s polluting the
environment.

% your program

Stanford University

Always a pair: new anddelete

= Think of new as making a hotel
room reservation.
> new int[5]
> “I’d like 5 connecting rooms,

each big enough for 1 int value,
please.”

= Think of delete as checking out of
the hotel room.

> delete [] arr

> “My trip is done. Stop charging
me for these rooms, and you can
give them to other guests.”

Stanford University

Always a pair: new anddelete

Many things can go wrong with dynamic
memory that are analogous to the hotel
situation:

= Leave town but forget to check out—
you’ll keep getting charged for the
room and it can’t go to another guest

> When you forget delete, you geta
memory leak

» Check out of the room but then try to
go back in—another guest might
already be using it and will be very

int* arr = new int[10];

delete [] arr;

angry' arr[@] = 5; // no!!

> Afteryou call delete, be sure not
to try to use that memory again!

Stanford University

[Mooy 7\

Always a pair: new anddelete

int myFunction() {

int x = 5; myFunction’s stack
int _ 3. frame automatically
t oy =3 released

int* heapArr

new int[3];
heapArr[0] = x + 1;

heapArr[1] =y + 1;
p [1] y ’ Heap array manually

heapArr[2] = x + y; released by delete []

delete [] heapArr; // fixed leak!
return y;

Stanford University

[Mooy 7\

Always a pair: new anddelete

int myFunction() {
int x = 5; myFunction’s stack
frame automatically

int y = 3; released

int* heapArr = new int[3];

heapArr[0] = x + 1;
heapArr[1l] =y + 1;

i EENVENEVAUERTELLY
heapArr[2] = x + y; released by delete []
delete [] heapArr; // fixed leak!

return y,;

}

Q: “Why would you want to do that?”

A: It’s true that there’s no point to using dynamic allocation if
we are just deleting at the end of the function. Choose a
static array instead to automatically release. Dynamic
allocation is for when you want the data to last so you can
keep using it.

Stanford University

Destructor (12.3)

// ClassName.h // ClassName.cpp
~ClassName(); ClassName: :~ClassName() { ...

Destructor: Called when the object is deleted by the program
» When the object goes out of {} scope; opposite of a constructor
» (orwhenyou expressly call “delete” on the object, if heap-allocated)

= Useful if your object needs to do anything important as it dies,
such as freeing any array memory used by its fields

Stanford University

#ifndef _arraystack_h
arrayStaCk°h #define _arraystack_h
class ArrayStack {
public:

ArrayStack();
~ArrayStack();

void push(int n);

int pop();

int peek() const;
bool isEmpty() const;

private:
int* _elements;
int _capacity;
int _size;

void checkResize();

}s

#tendif

Stanford University

arraYStaCk.Cpp #include "arraystack.h"
(part 1) ArrayStack: :ArrayStack() {

_elements = new int[10];
_capacity = 10;
_size = 0;

ArrayStack::~ArrayStack() {
delete[] _elements;

bool ArrayStack::isEmpty() const {
return _size == 0;

void ArrayStack::push(int n) {
_elements[_size] = n;
_Size++;

Stanford University

arraystack.cpp (part 2)

int ArrayStack::pop() {

if (isEmpty()) {
throw "Can't pop from an empty stack!";

}

int result = elements[_size - 1];
_elements[_size - 1] = 0;

size--;

return result;

}
int ArrayStack::peek() const {
if (isEmpty()) {
throw "Can't peek from an empty stack!";
}

return _elements[_size - 1];

Stanford University

Resize when out of space

// grows array to twice the capacity if needed
void ArrayStack::checkResize() {
if (_size == _capacity) {

// create bigger array and copy data over

int* bigger = new int[2 * _capacity]();

for (int 1 = 0; i < _capacity; i++) {

bigger[i] = _elements[i];

}

delete[] _elements;

_elements = bigger;

_capacity *= 2;

value | 3 |8 (9|7|5(12|4|8|1|6]| 75

size 11 capacity 20

Stanford University

Overflow (extra) slides

FOR THE ADVANCED AND/OR
CURIOUS STUDENT

Stanford University

Shallow copy bug (12.7)

If one stack is assigned to another, they will share one array.
= ArrayStack stackl;
= ArrayStack stack2 = stackl;

A change to one will affect the other. (That's bad!)

stackl

= stack2.pop(); _elementsy_

= stackl.push(88); |ctacka L |VOVe [42] > |88
clemernts size 3 capacity 10

When they fall out of scope, memory could get freed twice (error!)

Stanford University

Deep copy

To correct the shallow copy bug, we must define:

= acopy constructor (constructor that takes a list as a parameter)
ArrayStack(const ArrayStack& stack);

* anassignment operator (overloaded = op between two lists)
ArrayStack& operator =(const ArrayStack& stack);

> in both of these, we will make a deep copy of the array of elements.

Rule of Three: In C++, when you define one of these three items in your class, you
probably should define all three:

= 1) copyconstructor 2)assignmentoperator 3) destructor

Stanford University

Advanced: Forbid copying

One quick fix is to just forbid your objects from being copied.
= Declare a private copy constructor and = operator in the .h file.
= Don't give them any actual definition/body in the .cpp file.

// in arraystack.h

private:
ArrayStack(const ArrayStack& stack);
ArrayStack& operator =(const ArrayStack& stack);

= Now iftheclient tries stack2 = stackl; itwill not compile.
= Solves the shallow copy problem, but restrictive and less usable.

Stanford University

