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Topics:

= Last time: Classes, Part 1
> BankAccount class
> Ball class
= Today: Classes, Part 2
> More practice making our own classes!
> This time we will implement one of our ADTs from earlier in the quarter!!
* Asimple Stack ADT with unlimited capacity
> In doing so, we need to learn about:
« C/C++ arrays

« Dynamic memory allocation (this is a huge topic in itself—much of CS107 is
about this)
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Stack Implementation

BEHIND THE SCENES TOUR!
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Implementing a classic ADT: Stack

Today let's learn how to write a Stack class
= We will implement a stack
» Not quite like the one in Stanford library—for simplicity this only stores int

» The stack will use an array to store its elements

= The capacity will grow as needed push pop, peek
Recall the basic stack operations: top| 3

»= push: Add an element to the top. 2

= pop: Remove the top element. bottom| 1

= peek: Examine the top element. stack
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Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

» Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

» Qur stack will use the same array-based technique

// Diagram shows the internal state of the Stack class
// after 3 ints are pushed
Stack<int> s;

s.push(42); valve [ 42 | -5 | 17
s.push(-5); size. 3 capacity 10
s.push(17);
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Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

» Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

= Qur stack will use the same array-based technique Quick check:

which end will we

consider the “top”
of the stack?

// Diagram shows the internal state of the Sta
// after 3 ints are pushed
Stack<int> s;

s.push(42); valve [ 42 | -5 | 17
s.push(-5); size. 3 capacity 10
s.push(17);
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Inside our Stack

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

» Typically the array is larger than the data added so far, so that it has some
extra slots ready to go to put new elements later.

» Qur stack will use the same array-based technique

Quick check:
which end will we

consider the “top”

// Diagram shows the internal state of the Sta of the stack?

// after 3 ints are pushed
Stack<int> s;

S pusE 243 ’ values | 42 | -5 | 17 Our class member
S.pus g size. 3 capacity 10 variables will include
s.push(17);

size and capacity.

And this storage area
thatis a C/C++ array.




Arrays in C++

BEHIND THE SCENES TOUR!
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Basic Array in C/C++

type name[length];

> An array is has enough space for multiple values of a type
 If aregularvariableis a single-family home, arrays are an apartment
building
« Similar concept as a Vector, but much more basic
— Can’t ever be resized
- No methods
— Really just several adjacent spaces of the same type

Example:
int homeworkGrades[7];
homeworkGrades[@] = 90;

homeworkGrades[3] = 95; Stanford University
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Arrays in a memory diagram

int myFunction() { myFunction() .
int x = 5; y:
int y = 3; stackArr:

int stackArr[3];

stackArr[@0] = x + 1;
stackArr[1l] =y + 1;
stackArr[2] = x + Vy;

olh|oo|w|wn
\

return y;

What happens when myFunction()
returns?
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Arrays in a memory diagram

int myFunction() {
int x = 5;
int y = 3;
int stackArr[3];
stackArr[@0] = x + 1;
stackArr[1l] =y + 1;
stackArr[2] = x + Vy;

return y;

What happens when myFunction()
returns?

[ Mooy 7\

myFunction’s stack
frame automatically
released
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A second kind of array in C/C++

Basic array

type name[length];

we just saw

> Basic array (AKA statically allocated or stack allocated)
> Stored in the stack frame alongside other local variables

Example: int homeworkGrades[7];
New kind of

array!

type* name = new type[length];

> Dynamically allocated array (AKA heap allocated)
> The variable that refers to the array is called a pointer, and it is on the stack

> But the actual array is stored in the heap! W

Example: int* homeworkGrades = new int[7];

Literally the word “new”!



Arrays in a memory diagram

int myFunction() {

int x = 5;
int y = 3;

int* heapArr

heapArr[0]
heapArr[1]
heapArr[2]

return y,;

new int[3];
X + 1;
y +1;
X + VY;

What happens when myFunction()

returns?

Stack:

LY

main()

myFunction() &

y:

heapArr:
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Arrays in a memory diagram

int myFunction() {

int x = 5;
int y = 3;
int* heapArr
heapArr[0] =
heapArr[1l] =
heapArr[2] =

return y,;

new int[3];

X + 1;
y +1;
X +Y;

What happens when myFunction()

returns?

[ Mooy 7\

myFunction’s stack
frame automatically
released

Heap array NOT
automatically released!
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Arrays in a memory diagram

int myFunction() {

int x = 5; myFunction’s stack
frame automatically
released

int y = 3;
int* heapArr

new int[3];
heapArr[0] = x + 1;

heapArr[1l] =y + 1;
Heap array released with

heapArr[2] = X + y; delete

delete [] heapArr;
return y,;

What happens when myFunction()
returns?
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Dynamic Memory
Allocation

Keywords new and delete
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Memory leaks

The pointer variable that
points to heap allocated
memory is like the string
on a helium balloon.

If you let go of the string
(or lose that pointer
variable), the balloon still
exists out there
somewhere, but it's never
yours to play with ever
again. £
=
» Also it’s polluting the
environment.

% your program
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Always a pair: new anddelete

= Think of new as making a hotel
room reservation.
> new int[5]
> “I’d like 5 connecting rooms,

each big enough for 1 int value,
please.”

= Think of delete as checking out of
the hotel room.

> delete [] arr

> “My trip is done. Stop charging
me for these rooms, and you can
give them to other guests.”
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Always a pair: new anddelete

Many things can go wrong with dynamic
memory that are analogous to the hotel
situation:

= Leave town but forget to check out—
you’ll keep getting charged for the
room and it can’t go to another guest

> When you forget delete, you geta
memory leak

» Check out of the room but then try to
go back in—another guest might
already be using it and will be very

int* arr = new int[10];

delete [] arr;

angry' arr[@] = 5; // no!!

> Afteryou call delete, be sure not
to try to use that memory again!
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Always a pair: new anddelete

int myFunction() {

int x = 5; myFunction’s stack
int _ 3. frame automatically
t oy =3 released

int* heapArr

new int[3];
heapArr[0] = x + 1;

heapArr[1] =y + 1;
p [1] y ’ Heap array manually

heapArr[2] = x + y; released by delete []

delete [] heapArr; // fixed leak!
return y;

Stanford University



[ Mooy 7\

Always a pair: new anddelete

int myFunction() {
int x = 5; myFunction’s stack
frame automatically

int y = 3; released

int* heapArr = new int[3];

heapArr[0] = x + 1;
heapArr[1l] =y + 1;

i EENVENEVAUERTELLY
heapArr[2] = x + y; released by delete []
delete [] heapArr; // fixed leak!

return y,;

}

Q: “Why would you want to do that?”

A: It’s true that there’s no point to using dynamic allocation if
we are just deleting at the end of the function. Choose a
static array instead to automatically release. Dynamic
allocation is for when you want the data to last so you can
keep using it.
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Destructor (12.3)

// ClassName.h // ClassName.cpp
~ClassName(); ClassName: :~ClassName() { ...

Destructor: Called when the object is deleted by the program
» When the object goes out of {} scope; opposite of a constructor
» (orwhenyou expressly call “delete” on the object, if heap-allocated)

= Useful if your object needs to do anything important as it dies,
such as freeing any array memory used by its fields
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#ifndef _arraystack_h
arrayStaCk°h #define _arraystack_h
class ArrayStack {
public:

ArrayStack();
~ArrayStack();

void push(int n);

int pop();

int peek() const;
bool isEmpty() const;

private:
int* _elements;
int _capacity;
int _size;

void checkResize();

}s

#tendif
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arraYStaCk.Cpp #include "arraystack.h"
(part 1) ArrayStack: :ArrayStack() {

_elements = new int[10];
_capacity = 10;
_size = 0;

ArrayStack::~ArrayStack() {
delete[] _elements;

bool ArrayStack::isEmpty() const {
return _size == 0;

void ArrayStack::push(int n) {
_elements[_size] = n;
_Size++;
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arraystack.cpp (part 2)

int ArrayStack::pop() {

if (isEmpty()) {
throw "Can't pop from an empty stack!";

}

int result = elements[_size - 1];
_elements[ _size - 1] = 0;

size--;

return result;

}
int ArrayStack::peek() const {
if (isEmpty()) {
throw "Can't peek from an empty stack!";
}

return _elements[ _size - 1];
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Resize when out of space

// grows array to twice the capacity if needed
void ArrayStack::checkResize() {
if (_size == _capacity) {

// create bigger array and copy data over

int* bigger = new int[2 * _capacity]();

for (int 1 = 0; i < _capacity; i++) {

bigger[i] = _elements[i];

}

delete[] _elements;

_elements = bigger;

_capacity *= 2;

value | 3 |8 (9|7|5(12|4|8|1|6]| 75

size 11 capacity 20
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Overflow (extra) slides

FOR THE ADVANCED AND/OR
CURIOUS STUDENT
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Shallow copy bug (12.7)

If one stack is assigned to another, they will share one array.
= ArrayStack stackl;
= ArrayStack stack2 = stackl;

A change to one will affect the other. (That's bad!)

stackl

= stack2.pop(); _elementsy_

= stackl.push(88); |ctacka L |VOVe [42] > |88
clemernts size 3 capacity 10

When they fall out of scope, memory could get freed twice (error!)
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Deep copy

To correct the shallow copy bug, we must define:

= acopy constructor (constructor that takes a list as a parameter)
ArrayStack(const ArrayStack& stack);

* anassignment operator (overloaded = op between two lists)
ArrayStack& operator =(const ArrayStack& stack);

> in both of these, we will make a deep copy of the array of elements.

Rule of Three: In C++, when you define one of these three items in your class, you
probably should define all three:

= 1) copyconstructor 2)assignmentoperator 3) destructor
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Advanced: Forbid copying

One quick fix is to just forbid your objects from being copied.
= Declare a private copy constructor and = operator in the .h file.
= Don't give them any actual definition/body in the .cpp file.

// in arraystack.h

private:
ArrayStack(const ArrayStack& stack);
ArrayStack& operator =(const ArrayStack& stack);

= Now iftheclient tries stack2 = stackl; itwill not compile.
= Solves the shallow copy problem, but restrictive and less usable.
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