Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Midterm Review
> Overview of what to expect
> Going over solutions to the practice exam
> Q&A

= Additional resources:

> For more of a general topics review (as opposed to practice exam solutions review),
see the SL-led review session from Sunday night! Video and slides available, see
pinned Ed post.

Stanford University

Midterm Exam

What to expect

Stanford University

The Midterm Exam

= Time: 2 Hours
> Very first thing you should do: write your SUID on every page.

* Forgetting this would be the saddest reason to lose points! And you will
NOT be given extra time after time is called to do this. No writing at all
after timeis called.

> I’d plan 20 minutes per problem, which leaves you 20 minutes at the end
to re-check your work etc.

» Like the practice exam, there are 5 questions, so 120/5 = 24 min/q.

Stanford University

The Midterm Exam

= Format: Handwritten on paper

> | would be sure to solve some practice problems with pen & paper so this
doesn’t feel completely new and strange!

> In grading, we try to ignore minor “typos” in handwritten code that likely would
have been prevented or caught by an IDE

« Just make sureintentis clear—i.e. we are happy to ignore that you wrote
“stepcount” instead of “stepCount,” but not if you have variables with both
names in your code and we actually do need to know which oneitison a
given line. ©

> You won’t be able to actually compile, run, and test your paper-written code,
but you’ll very much want to be thinking in terms of what you would putin
“STUDENT_TEST”s for the code you’re writing.

* Tosimulate a test: pick a concrete example, then try to set your intent aside
and painstakingly trace through the example input line by line to check.
Repeat for 1-2 more concrete examples.

* (Note: actually having you write test cases in our STUDENT_TEST format is
also fair game for the exam.)

Stanford University

The Midterm Exam

Problem Topics:

> (Same general categories as the practice exam)

ok Wb

C++ Fundamentals
ADTs

Big-O

Recursion

Recursive backtracking

y
J

Often includes ADTs (use reference
sheet to know what methods “cost”)

Often includes ADTs, but be careful! If
you are given instructions like, “do not

use auxiliary data structures” or “do
not store the results, only count
them,” then you should not add ADTs
such as Vector in your recursive helper
function design.

Stanford University

The Midterm Exam

= Rules: Closed book, no devices
> Thisis actually to make the exam easier, | promise! ©
> Reference Sheet (included in exam)
* It’s on the course website, so study it ahead of time!
* Whatis/isn’t on there, how it’s organized
* Make sure you know how to read it, what it means

* Don’t waste real estate on your cheat sheet with anything that’s on the
reference sheet

> Cheat Sheet (your own to bring with you)
* Onesheet of paper (8.5x11), both sides, could be printed or handwritten

» Studies show students who make a high-quality note sheet not only
score better on that one test, but have deeper learning and long-term
retention! The process of reviewing all the course material and
thoughtfully prioritizing/sifting key points is GREAT for learning!

» Keep it organized! Pay attention to layout. You might even do things like
highlighting in different colors, etc.

Stanford University

Practice Exam Problem 1:
C++ Fundamentals

What to expect, solution

Stanford University

What to expect

= Strings

* Loops, nested loops

= Multi-part conditionals inside a loop
» Thinking carefully about edge cases

Stanford University

Practice Exam Q1

" DURII " DURII IIDURII IIDURH IISSKII |ISSKII

nn " SSKII nn nn " LBAII n SSK n

" SSK " " SSK" nn nn nn nn

A free block 1s a sequence of adjacent empty seats within a row. In the diagram above:

e row (0 has no free block

e row 1 has two free blocks, a block of size 1 starting at location {1, 0} and a block of size 2
starting at location {1, 2}

e row 2 has a free block of size 4 starting at location {2, 2}

-[Write the function findFreeBlock that searches seatGrid for a free block of at least size k.

Stanford University

Practice Exam Q1: Strategy

= We need to loop over the Grid
> Should we use for (string entry : grid) styleloop?

* Notin this case, because we need to be aware of our current row
(blocks can’t cross from one row to another)

* Useint row/col nested loops
= Within a row, we need to count free seats
> Start count at 0 again each row
> Iterate over cols, incrementing if empty
 If not empty, reset countto 0
> If we find something that works, immediately store location and return

Stanford University

Practice Exam Q1: Solution

bool findFreeBlock(Grid<string>& seatGrid, int k, GridLocation& loc) {
for (int r = 0; r < seatGrid.numRows(); r++) {
int count = @; // count of num consecutive empty seats in current row
for (int ¢ = 0; c < seatGrid.numCols(); c++) {
if (seatGrid[r]1[c].empty()) {
count++; Could also do: seatGrid[r][c] == ""
if (count == k) {
loc={r, c-k+173;

return true;

}
} else {
count = 0;

¥

return false;

Stanford University

Your Turn

Q: What’s something you should be sure to include on your cheat sheet to
help with a C++ fundamentals question?

Give one idea per pollev response
Feel free to give multiple responses

Stanford University

Practice Exam Problem 2:
ADTs

What to expect, solution

Stanford University

What to expect

» Onekind of ADT inside another kind of ADT
= Uses of the ADTs that really “fit” the situation

> Either by our design, or we ask you to choose the best design
= Code thatis much simpler (!!) if you use elegant ADT features

> Range-based for loop: for (string s : themap)

> Push/pop on a Stack vs manual equivalent on a Vector

> Set operations vs manual equivalent
= Theme: really let the ADTs “shine”

Stanford University

int reseatGroup(Grid<string>& seatGrid, Map<string, Set<GridLocation>>& reservationl
// Start by "unlocking" the seat assignments from existing reservation

Practice Exam on Set<GridLocation> oldSeats = reservationDB[groupCode];
[]

int k = oldSeats.size();

SOlUtlon for (GridLocation seat : oldSeats) {

seatGrid[seat] = "";

GridLocation loc;

if (findFreeBlock(seatGrid, k, loc)) {
// Update reservationDB with new block of seats
reservationDB[groupCode] = getSeatsForBlock(loc, k);

// mark seat assignments (will restore old or set new)
for (GridLocation seat : reservationDB[groupCode]) {

seatGrid[seat] = groupCode;

Note cool use of Set operation

// Take a set difference between seatsNow and oldSeats.
// Elements that are in both will be removed.
Set<GridLocation> changedSeats = oldSeats.difference(reservationDB[groupCode]);

return changedSeats.size();

Your Turn

Q: What’s something you should be sure to include on your cheat sheet to
help with a ADTs question?

Give one idea per pollev response
Feel free to give multiple responses

Stanford University

Practice Exam Problem 3:
Big O

What to expect, solution

Stanford University

What to expect

= ADT operations with known costs, inside loops and other structures

Strategy

= Your job is mainly to analyze the loop/structure, then you can just plugin
what you see for that ADT operation, using the Reference Sheet

Stanford University

Practice Exam Q3: Part 1 Solution

= We have 3 loop over a void expungeVector(Vector<int>& vec) {
if (lvec.isEmpty()) {

vector: N steps int first = vec[0];
) for (int 1 = 0; i < vec.size(); i++) { // changed line 13
> Inside the loop, we int cur = vec[il;
have a fetch of vec[i] if (cur == first) vec.remove(i);
}
(0(1)) }

. }
> Inside the loop, we

have a remove (O(N))
= N*N=0(NA2)

Stanford University

Practice Exam Problem 4
and 5: Recursion

What to expect, solution

Stanford University

What to expect

= Similar to homework and lecture examples

> But be careful—the same scenario may have very different code based on

the question being asked (e.g., do you need to gather all the vote tallies, or
just count them)

* You’ll need to use the function we provide as a wrapper, and make your own
recursive helper

> Always fine to do this, but pay attention to rules like “no auxiliary storage”
etc.

» For backtracking, use the template from lecture!!

Stanford University

Backtracking template /

bool backtrackingRecursiveFunction(args) { <
> Base case test for success: return true —
> Base case test for failure: return false = / / \

> Loop over several options for “what to do next”:
1. Tentatively “choose” one option
2. if (“explore” with recursive call returns true) return true

at tentative idea didn’t work, so “un-choose” that option,
't return false yet!--let the loop explore the other options before giving up!

> None @ pptions we tried in the loop worked, so return false

} Remember this “if” structure—

don’t return false here!

Stanford University

Your Turn

Q: What’s something you should be sure to include on your cheat sheet to
help with a Recursion or Backtracking question?

Give one idea per pollev response
Feel free to give multiple responses

Stanford University

