Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Memory and Pointers
> Picking up where we left off with Friday’s lecture, implementing ArrayStack
* Arraysin C++
* new/delete dynamic memory allocation
* Uninitialized memory
> C/C++ struct feature
> Whatis a pointer?

Stanford University

Reminder where we left
off last Friday

Arrays

Dynamically-allocated
memory

Stanford University

A second kind of array in C/C++
type name[length];

> Basic array (AKA statically allocated or stack allocated)
> Stored in the stack frame alongside other local variables

Example: int homeworkGrades[7];

type* name = new type[length];

> Dynamically allocated array (AKA heap allocated)
> The variable that refers to the array is called a pointer, and it is on the stack
> But the actual array is stored in the heap!

Example: int* homeworkGrades = new int[7];

Stanford University

[Y 7
main() \

Basic Array memory diagram

int myFunction() { myFunction() .
int x = 5; y:
int y = 3; stackArr:

int stackArr[3];

stackArr[@0] = x + 1;
stackArr[1l] =y + 1;
stackArr[2] = x + Vy;

olh|oo|w|wn
\

return y;

What happens when myFunction()
returns?

Stanford University

[Mooy 7\

Basic Array memory diagram

int myFunction() {

int x = 5; myFunction’s stack
frame automatically
released

int y = 3;

int stackArr[3];
stackArr[@0] = x + 1;
stackArr[1l] =y + 1;
stackArr[2] = x + Vy;

return y;

What happens when myFunction()
returns?

Stanford University

Dvnamically-allocated array

memory diagram
int myFunction() {

int x = 5;
int y = 3;
int* heapArr
heapArr[0] =
heapArr[1l] =
heapArr[2] =

return y,;

new int[3];
X + 1;
y +1;
X + VY;

What happens when myFunction()

returns?

Stack:

LY

main()

myFunction() .

y:

heapArr:

Stanford University

[Mooy 7\

Dvnamically-allocated array

memory diagram
int myFunction() {

int x = 5; myFunction’s stack
int _ 3. frame automatically
mnty =25 released
int* heapArr = new int[3];
heapArr[0] = x + 1;
heapArr[1l] =y + 1;
h A 21 = . Heap array NOT
eapArr[2] X+ Y5 automatically released!
return y,;

What happens when myFunction()
returns?

Stanford University

Memory leaks

The pointer variable that
points to heap allocated
memory is like the string
on a helium balloon.

If you let go of the string
(or lose that pointer
variable), the balloon still
exists out there
somewhere, but it's never
yours to play with ever
again. £
=
» Also it’s polluting the
environment.

% your program

Stanford University

Dynamic Memory
Allocation

Keywords new and delete

Stanford University

Always a pair: new anddelete

= Think of new as making a hotel
room reservation.

> new int[5]
> “I’d like 5 connecting rooms,

each big enough for 1 int value,
please.”

= Think of delete as checking out of
the hotel room.

> delete [] arr

> “My trip is done. Stop charging
me for these rooms, and you can
give them to other guests.”

Stanford University

Always a pair: new anddelete

Think of new as making a hotel

room reservation.

> new int[5]

> “I’d like 5 connecting rooms,
each big enough for 1 int value,
please.”

Think of delete as checking out of
the hotel room.

> delete [] arr

> “My trip is done. Stop charging
me for these rooms, and you can
give them to other guests.”

Your turn: in the hotel analogy, it
would be bad to re-enter a hotel room
you’ve officially checked out of. What
might go wrong if you did? What would
be the equivalent to that for memory?

Stanford University

Always a pair: new anddelete

Many things can go wrong with dynamic
memory that are analogous to the hotel
situation:

= Leave town but forget to check out—
you’ll keep getting charged for the
room and it can’t go to another guest

> When you forget delete, you geta
memory leak

» Check out of the room but then try to
go back in—another guest might
already be using it and will be very

int* arr = new int[10];

delete [] arr;

angry' arr[@] = 5; // no!!

> Afteryou call delete, be sure not
to try to use that memory again!

Stanford University

Always a pair: new and delete

int myFunction() {
int x = 5;
int y = 3;
int* heapArr

new int[3];
heapArr[0] = x + 1;

heapArr[1l] =y + 1;

heapArr[2] = x + y;

delete [] heapArr; // fixed leak!
return y;

Stanford University

[Mooy 7\

Always a pair: new anddelete

int myFunction() {

int x = 5; myFunction’s stack
int _ 3. frame automatically
t oy =3 released

int* heapArr

new int[3];
heapArr[0] = x + 1;

heapArr[1] =y + 1;
p [1] y ’ Heap array manually

heapArr[2] = x + y; released by delete []

delete [] heapArr; // fixed leak!
return y;

Stanford University

[Mooy 7\

Always a pair: new anddelete

int myFunction() {
int x = 5; myFunction’s stack
frame automatically

int y = 3; released

int* heapArr = new int[3];

heapArr[0] = x + 1;
heapArr[1l] =y + 1;

i EENVENEVAUERTELLY
heapArr[2] = x + y; released by delete []
delete [] heapArr; // fixed leak!

return y,;

}

Q: “Why would you want to do that?”

A: It’s true that there’s no point to using dynamic allocation if
we are just deleting at the end of the function. Choose a
static array instead to automatically release. Dynamic
allocation is for when you want the data to last so you can
keep using it.

Stanford University

Uninitialized Memory

(CODE DEMO)

Stanford University

Danger in C/C++: uninitialized memory!

type* name = new type[length]; // uninitialized
type* name = new type[length](); // initialized with zeroes

> If () are written after [], all elements are zeroed out (slower but good if needed)
> If () are missing, the elements store uninitialized (“random”/garbage) values

int*
cout
cout

int*
cout
cout

al
<<
<<

a2
<<
<<

= new int[3];
al[o];
al[1];

= new int[3]();
a2[o];
a2[1];

// 2395876
// -197630894

// 0
// @

Stanford University

Pointers

TAKING A DEEPER LOOK AT
THE SYNTAX OF THAT ARRAY
ON THE HEAP

Stanford University

Memory addresses

bool kitkat
int candies

true;
10;

Whenever you declare a variable, you
allocate a bucket (or more) of memory
for the value of that variable

Each bucket of memory has a unique
address

ord University

Memory addresses

bool kitkat
int candies

true;
10;

Whenever you declare a variable, you
allocate a bucket (or more) of memory
for the value of that variable

Each bucket of memory has a unique
address

You can ask for any variable's address
using the & operator.

cout << &candies << endl; // 20
cout << &kitkat << endl; // 4

ord University

Memory addresses This explains what happens when we use new!
We get back the memory address of the place

bool kitkat in the heap to use, so we store it in a pointer.

int candies

true;
10;

int* heapArr = new int[3];

You can store memory addresses in a

special type of variable called a pointer.
* j.e.Apointerisavariable that holds a
memory address.

int* ptrC = &candies; // 20
bool* ptrB = &kitkat; // 4

ord University

Memory addresses

In our example here, the memory

addresses of our local variables are very

small numbers.

Remember that in a real situation, the
stack part of memory is waaaaaay up at
the end of memory, so the addresses will

be quite large!

We typically write them in hexadecimal
(base 16) instead of deciaml (base 10).

/:\
p— >

Example:

Ox7ffeed40£1494

ord University

Memory addresses

“Pointer” isn’t one type in C++ but many—
it depends on what it points to.
You can declare a pointer using * and the
type pointed-to:
= int* p
= bool*
" string*
= double*
»" Queue<GridLocation>*
= int** & Yes thisis possible (!!),
you’ll see thisin CS107.

ord University

Memory addresses

“Pointer” isn’t one type in C++ but many—
it depends on what it points to.

You can declare a pointer using * and the
type pointed-to:

= int* Y

= bool* Does this imply that we can use new

s string* with class types like Queue, to put the
» double* entire Queue object in heap memory?

Yep, we sure can!

Queue<GridLocation>*
int** & Yes thisis possible (!!

you’ll see thisin CS107.

ord University

More on Dynamically-
Allocated Memory

NEW AND DELETE FOR THINGS
OTHER THAN ARRAYS

Stanford University

[Y 7
main() I\\\

myFunction()
path:

Stack:

Dynamically-allocated object

// Array example

int* heapArr = new int[3]; // use [size] here

heapArr[0]
stackArr[0]
delete [] heapArr; // use [] here

// Object example
Queue<GridLocation>* path = new Queue<GridLocation();

..(enqueue a few things)..
path->enqueue(loc); //instead of path.enqueue
delete path; // don't use [] he

{0,0}

_size: 3

{1,0t | {1,1}
_capacity: 4

Stanford University

Introducing the C/C++
struct

LIKE A LIGHTWEIGHT CLASS

Stanford University

Like a lightweight class: C/C++ struct

struct Album {

}s

string title;
int year;

string artist _name;

int artist_age;

string artist favorite food;
int artist height; // in cm

Like a class, but simpler—just a collection of
some variables togetherinto a new type

> A holdover from C, before the idea of
objects (that combine variables and
methods together) existed

You can declare a variable of this type in your
code now, and use “.” to access fields:

Album lemonade;

lemonade.year = 2016;
lemonade.title = "Lemonade";
cout << lemonade.year << endl;

Stanford University

Anything wrong with this struct design?

struct Album {
string title;
int year;

string artist_name;

int artist_age;

string artist_favorite food;
int artist_height; // in cm

}s

Style-wise seems awkward to have to have "artist_" prefix on fields

How many times do we set and store the artist info?

Stanford University

Album struct’s design causes redundancy in code

void foo() {
Album lemonade
Album bday

{"Lemonade", 2016, "Beyonce", 38, "Red Lobster", 169};
{"B'Day", 2006, "Beyonce", 38, "Red Lobster", 169};

cout << lemonade.year << ", " << bday.year << endl; // 2016, 2006

= Notice the redudant code to declare and initialize these two album
variables, 1emonade and bday

Stanford University

It's redundantly stored, too

"Lemonade", "B'Day",
2016, 2006,

"Beyonce", "Beyonce",

38, 38,

"Red Lobster", "Red Lobster",
169 169

lemonade bday

—

Stanford University

How do we fix this?

struct Album {

}s

string title;
int year;

string artist_name;

int artist_age;

string artist_favorite_food;
int artist_height; // in cm

Should probably be

another struct?

Stanford University

Put a struct (Artist) in our struct (Album)

struct Artist {

string name; struct Album {

int age; string title;

string favorite_food; int year;

int height; // in cm Artist artist;
¥ }s

void foo() { //BEFORE
Album lemonade = {"Lemonade", 2016, "Beyonce", 38, "Red Lobster", 169};
Album bday = {"B'Day", 2006, "Beyonce", 38, "Red Lobster", 169};

cout << lemonade.year << ", " << bday.year << endl; // 2016, 2006
}

void foo() { //AFTER
Artist beyonce
Album lemonade
Album bday

{"Beyonce", 38, "Red Lobster", 169};
{"Lemonade", 2016, beyonce};
{"B'Day", 2006, beyonce};

cout << lemonade.year << ", " << bday.year << endl; // 2016, 2006
} Stanford University

Still stored redundantly

- v N

"Beyonce", "Lemonade", "B'Day",
38, 2016, 2006,
"Red Lobster",
169 "Beyonce", "Beyonce",
38, 38,
beyonce "Red Lobster", "Red Lobster",

169

bday <\/> <:>g.

169

void foo() { //This "AFTER" code is cleaner, but computer memory now store 3 copies!
Artist beyonce = {"Beyonce", 38, "Red Lobster", 169};
Album lemonade = {"Lemonade", 2016, beyonce};
Album bday {"B'Day", 2006, beyonce};

cout << lemonade.year << ", " << bday.year << endl; // 2016, 2006

Stanford University

QUIZ TIME: what happens when we change a value?

____ il G

"Beyonce", "Lemonade", "B'Day",
38, 2016, 2006,
1zgd Lobster", "Beyonce" "Beyonce",
38, 38,
beyonce “Red redl
Lobster", Lobster",
169 169
bday

void foo() {
Artist beyonce

{"Beyonce", 38, "Red Lobster", 169};
Album lemonade = {"Lemonade", 2016, beyonce};

Album bday {"B'Day", 2006, beyonce};
beyonce.favorite food = "Twix"; // New line of code

} A. All 3 copies change to Twix

B. Only beyonce‘s copy changes

Question: what happens to the data in memory? -
C. Only lemonade/bday‘s copeis change

Conceptually, what would we really like to happen?

"Beyonce",
38,

"Red Lobster", "Lemonade", "B'Day",
169 2016, 2006,
Please see the Please see the

beyonce

"beyonce" object "beyonce" object

LA

lemonade— —— bday

W o)

The album's artist field should “point to” the beyonce data
structure instead of storing a copy of it.

How do we do this in C++?

...pointers!

Stanford University

Structs with pointers

struct Album {

Before pointers: string title;

int year;
struct Artist { Artist artist;
string name; };
int age;
string favorite food;
int height; // in cm
}s
After pointers: struct Album {
string title;
int year;
Artist* artist;
}s

Stanford University

new and delete with structs

Example:
Artist* beyonce = new Artist;
beyonce->name = "Beyonce";
beyonce->age = 38; stack
beyonce->favorite food = "Red Lobster"; [7 " ® % " " " " " " % f\® == 8888
beyonce->height = 169; tiftle | "Lemonade" P

year | 2016
Album* lemonade = new Album; N L0308 “Beyonce”
’ artist — age

album->title = "Lemonade";
album->year = 2016;
album->artist = beyonce;

38
favorite food| "Twix"

height 169

beyonce->favorite_food = "Twix";
delete beyonce;
delete lemonade;

