
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B



Topics:

 Memory and Pointers

› Picking up where we left off with Friday’s lecture, implementing ArrayStack

• Arrays in C++

• new/delete dynamic memory allocation

• Uninitialized memory

› C/C++ struct feature

› What is a pointer?

2



Reminder where we left 
off last Friday

A r r a y s

D y n a m i c a l l y - a l l o c a t e d  
m e m o r y



A second kind of array in C/C++

type name[length];

› Basic array (AKA statically allocated or stack allocated)
› Stored in the stack frame alongside other local variables

Example:     int homeworkGrades[7];

type* name = new type[length];

› Dynamically allocated array (AKA heap allocated)
› The variable that refers to the array is called a pointer, and it is on the stack
› But the actual array is stored in the heap!

Example:     int* homeworkGrades = new int[7];



Basic Array memory diagram

int myFunction() {

int x = 5;

int y = 3;

int stackArr[3];

stackArr[0] = x + 1;

stackArr[1] = y + 1;

stackArr[2] = x + y;

return y; 

}

What happens when myFunction() 
returns?

Stack: main()

x:

y:

0

5

3

myFunction() 

stackArr:

Heap:

6

4

8



Basic Array memory diagram

int myFunction() {

int x = 5;

int y = 3;

int stackArr[3];

stackArr[0] = x + 1;

stackArr[1] = y + 1;

stackArr[2] = x + y;

return y; 

}

What happens when myFunction() 
returns?

Memory

main()

0

myFunction’s stack 
frame automatically 
released 

Stack:

Heap:



Dynamically-allocated array 
memory diagram

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y; 

}

What happens when myFunction() 
returns?

Stack: main()

x:

y:

0

myFunction() 

heapArr:

Heap:

5

3

0            1          2

6 4 8



int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

return y;

}

What happens when myFunction() 
returns?

Memory

main()

0

myFunction’s stack 
frame automatically 
released 

Heap array NOT 
automatically released! 

Stack:

Heap: 6 4 8
0            1          2

Dynamically-allocated array 
memory diagram



Memory leaks

 The pointer variable that 

points to heap allocated 

memory is like the string 

on a helium balloon.

 If you let go of the string 

(or lose that pointer 

variable), the balloon still 

exists out there 

somewhere, but it’s never 

yours to play with ever 

again.

› Also it’s polluting the 

environment.

Memory

main()

0

Stack:

Heap: 6 4 8
0            1          2



Dynamic Memory 
Allocation

K e y w o r d s  n e w a n d  d e l e t e



11

Always a pair: new and delete

 Think of new as making a hotel 
room reservation.

› new int[5] 

› “I’d like 5 connecting rooms, 
each big enough for 1 int value, 
please.”

 Think of delete as checking out of 
the hotel room.

› delete [] arr

› “My trip is done. Stop charging 
me for these rooms, and you can 
give them to other guests.”



12

Always a pair: new and delete

 Think of new as making a hotel 
room reservation.

› new int[5] 

› “I’d like 5 connecting rooms, 
each big enough for 1 int value, 
please.”

 Think of delete as checking out of 
the hotel room.

› delete [] arr

› “My trip is done. Stop charging 
me for these rooms, and you can 
give them to other guests.”

Your turn: in the hotel analogy, it 
would be bad to re-enter a hotel room 
you’ve officially checked out of. What 

might go wrong if you did? What would 
be the equivalent to that for memory? 



13

Always a pair: new and delete

Many things can go wrong with dynamic 
memory that are analogous to the hotel 
situation:

 Leave town but forget to check out—
you’ll keep getting charged for the 
room and it can’t go to another guest

› When you forget delete, you get a 
memory leak

 Check out of the room but then try to 
go back in—another guest might 
already be using it and will be very 
angry!

› After you call delete, be sure not 
to try to use that memory again!

int* arr = new int[10];
…
delete [] arr;
arr[0] = 5; // no!!



Always a pair: new and delete

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr; // fixed leak!

return y; 

}



Always a pair: new and delete

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr; // fixed leak!

return y; 

}

Memory

main()

0

myFunction’s stack 
frame automatically 
released 

Heap array manually 
released by delete []



Always a pair: new and delete

int myFunction() {

int x = 5;

int y = 3;

int* heapArr = new int[3];

heapArr[0] = x + 1;

heapArr[1] = y + 1;

heapArr[2] = x + y;

delete [] heapArr; // fixed leak!

return y; 

}
Q: “Why would you want to do that?” 

A: It’s true that there’s no point to using dynamic allocation if 
we are just deleting at the end of the function. Choose a    
static array instead to automatically release. Dynamic 
allocation is for when you want the data to last so you can 
keep using it.

Memory

main()

0

myFunction’s stack 
frame automatically 
released 

Heap array manually 
released by delete []



Uninitialized Memory

( C O D E  D E M O )



Danger in C/C++: uninitialized memory!

type* name = new type[length];    // uninitialized

type* name = new type[length]();  // initialized with zeroes

› If () are written after [], all elements are zeroed out  (slower but good if needed)

› If () are missing, the elements store uninitialized (“random”/garbage) values

int* a1 = new int[3];

cout << a1[0];              // 2395876

cout << a1[1];              // -197630894

int* a2 = new int[3]();

cout << a2[0];              // 0

cout << a2[1];              // 0



Pointers

T A K I N G  A  D E E P E R  L O O K  A T  
T H E  S Y N T A X  O F  T H A T  A R R A Y  

O N  T H E  H E A P



Memory addresses

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10

bool kitkat = true;
int candies = 10;

Whenever you declare a variable, you 
allocate a bucket (or more) of memory 
for the value of that variable

Each bucket of memory has a unique 
address



Memory addresses

cout << &candies << endl;   // 20
cout << &kitkat << endl;    // 4

bool kitkat = true;
int candies = 10;

Whenever you declare a variable, you 
allocate a bucket (or more) of memory 
for the value of that variable

Each bucket of memory has a unique 
address

You can ask for any variable's address 
using the & operator.

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10



Memory addresses

int* ptrC = &candies;    // 20
bool* ptrB = &kitkat;    // 4

bool kitkat = true;
int candies = 10;

You can store memory addresses in a 
special type of variable called a pointer.
 i.e. A pointer is a variable that holds a 

memory address.

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

20

4050123

true

10

This explains what happens when we use new! 
We get back the memory address of the place 
in the heap to use, so we store it in a pointer.

int* heapArr = new int[3];



Memory addresses

In our example here, the memory 
addresses of our local variables are very 
small numbers. 

Remember that in a real situation, the 
stack part of memory is waaaaaay up at 
the end of memory, so the addresses will 
be quite large!

We typically write them in hexadecimal 
(base 16) instead of deciaml (base 10).

Example:

0x7ffee40f1494

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10



Memory addresses

“Pointer” isn’t one type in C++ but many—
it depends on what it points to.

You can declare a pointer using * and the 
type pointed-to:
 int* p 
 bool*
 string*
 double*
 Queue<GridLocation>*
 int**

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10

 Yes this is possible (!!), 
you’ll see this in CS107.



Memory addresses

“Pointer” isn’t one type in C++ but many—
it depends on what it points to.

You can declare a pointer using * and the 
type pointed-to:
 int*
 bool*
 string*
 double*
 Queue<GridLocation>*
 int**

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10

 Yes this is possible (!!), 
you’ll see this in CS107.

Does this imply that we can use new
with class types like Queue, to put the 
entire Queue object in heap memory? 
Yep, we sure can!



More on Dynamically-
Allocated Memory

N E W  A N D  D E L E T E  F O R  T H I N G S  
O T H E R  T H A N  A R R A Y S



Dynamically-allocated object

// Array example

int* heapArr = new int[3];  // use [size] here

…

heapArr[0]

stackArr[0]

delete [] heapArr;          // use [] here

// Object example 

Queue<GridLocation>* path = new Queue<GridLocation>();

…(enqueue a few things)…

path->enqueue(loc);   //instead of path.enqueue()

delete path;          // don't use [] here

Stack: main()

0

myFunction() 

path:

Heap:
{0,0} {1,0}

_size: 3   _capacity: 4

{1,1}



Introducing the C/C++ 
struct

L I K E  A  L I G H T W E I G H T  C L A S S



Like a lightweight class: C/C++ struct

struct Album {
string title;
int year;

string artist_name;
int artist_age;
string artist_favorite_food;
int artist_height; // in cm

};

 Like a class, but simpler—just a collection of 
some variables together into a new type

› A holdover from C, before the idea of 
objects (that combine variables and 
methods together) existed

 You can declare a variable of this type in your 
code now, and use “.” to access fields:

Album lemonade;
lemonade.year = 2016; 
lemonade.title = "Lemonade";
cout << lemonade.year << endl;



Anything wrong with this struct design?

struct Album {
string title;
int year;

string artist_name;
int artist_age;
string artist_favorite_food;
int artist_height; // in cm

};

Style-wise seems awkward to have to have "artist_" prefix on fields

How many times do we set and store the artist info?



void foo() {
Album lemonade = {"Lemonade", 2016, "Beyonce", 38, "Red Lobster", 169};
Album bday     = {"B'Day",    2006, "Beyonce", 38, "Red Lobster", 169};

cout << lemonade.year << ", " << bday.year << endl; // 2016, 2006
}

 Notice the redudant code to declare and initialize these two album 
variables, lemonade and bday

Album struct’s design causes redundancy in code



It's redundantly stored, too

lemonade

"B'Day",
2006,
"Beyonce",
38,
"Red Lobster",
169

"Lemonade",
2016,
"Beyonce",
38,
"Red Lobster",
169

bday



How do we fix this?

struct Album {
string title;
int year;

string artist_name;
int artist_age;
string artist_favorite_food;
int artist_height; // in cm

};

Should probably be 
another struct?



Put a struct (Artist) in our struct (Album)

void foo() { //BEFORE
Album lemonade = {"Lemonade", 2016, "Beyonce", 38, "Red Lobster", 169};
Album bday     = {"B'Day",    2006, "Beyonce", 38, "Red Lobster", 169};

cout << lemonade.year << ", " << bday.year << endl; // 2016, 2006
}

void foo() { //AFTER
Artist beyonce = {"Beyonce", 38, "Red Lobster", 169};
Album lemonade = {"Lemonade", 2016, beyonce};
Album bday     = {"B'Day",    2006, beyonce};

cout << lemonade.year << ", " << bday.year << endl; // 2016, 2006
}

struct Artist {
string name;
int age;
string favorite_food;
int height; // in cm

};

struct Album {
string title;
int year;
Artist artist;

};



Still stored redundantly

beyonce

"Beyonce",
38,
"Red Lobster",
169

void foo() { //This "AFTER" code is cleaner, but computer memory now store 3 copies!
Artist beyonce = {"Beyonce", 38, "Red Lobster", 169};
Album lemonade = {"Lemonade", 2016, beyonce};
Album bday     = {"B'Day",    2006, beyonce};

cout << lemonade.year << ", " << bday.year << endl; // 2016, 2006
}

lemonade

"B'Day",
2006,

"Lemonade",
2016,

bday

"Beyonce",
38,
"Red Lobster",
169

"Beyonce",
38,
"Red Lobster",
169



QUIZ TIME: what happens when we change a value?

beyonce

"Beyonce",
38,
"Red Lobster",
169

void foo() {
Artist beyonce = {"Beyonce", 38, "Red Lobster", 169};
Album lemonade = {"Lemonade", 2016, beyonce};
Album bday     = {"B'Day",    2006, beyonce};
beyonce.favorite_food = "Twix"; // New line of code

}

Question: what happens to the data in memory?

lemonade bday

A. All 3 copies change to Twix    
B. Only beyonce‘s copy changes   
C. Only lemonade/bday‘s copeis change

"B'Day",
2006,

"Lemonade",
2016,

"Beyonce",
38,
"Red 

Lobster",
169

"Beyonce",
38,
"Red 

Lobster",
169



Conceptually, what would we really like to happen?

beyonce

"Beyonce",
38,
"Red Lobster",
169

The album's artist field should “point to” the beyonce data 
structure instead of storing a copy of it.

How do we do this in C++?

…pointers!

lemonade

"B'Day",
2006,

Please see the 
"beyonce" object

"Lemonade",
2016,

Please see the 
"beyonce" object

bday



Structs with pointers

struct Artist {
string name;
int age;
string favorite_food;
int height; // in cm

};

struct Album {
string title;
int year;
Artist artist;

};

struct Album {
string title;
int year;
Artist* artist;

};

Before pointers:

After pointers:



new and delete with structs

Example:
Artist* beyonce = new Artist;
beyonce->name = "Beyonce";
beyonce->age = 38;
beyonce->favorite_food = "Red Lobster";

beyonce->height = 169;

Album* lemonade = new Album;
album->title = "Lemonade";
album->year = 2016;

album->artist = beyonce;

beyonce->favorite_food = "Twix";
delete beyonce;
delete lemonade;

beyonce

stack

heap"Lemonade"

2016

lemonade

"Beyonce"

38

"Red Lobster"

169

"Twix"

name

age

favorite_food

height

title

year

artist


