
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 Priority Queue ADT

› Heap data structure implementation

• What are binary trees?

• What are heaps?

• How do we do enqueue/dequeue operations on heaps?

2

Priority Queue
Emergency Department waiting room operates as a priority queue: patients are
sorted according to priority (urgency), not “first come, first serve” (in computer
science, “first in, first out” or FIFO).

Contents of one element of a Priority Queue

 Individual elements of our priority queue will have two pieces to them:

› An integer indicating the priority of this element

• We will use smaller number means higher priority, but could be done
either way

› A “payload” of whatever the actual element data is

• Examples:

– a class MedicalRecord that has many fields and is the patient’s
entire medical history

– a string that is the name of a student waiting in the Lair queue (in a
world where Lair is based on urgency of request, rather than FIFO)

– etc.

4

0

6 "SooMin"

0

13 "Diego"

0

22 "Sasha"

0

15 "Muhammad"

Two priority queue implementation options

Unsorted array

 Always enqueue new element at the end of the array

 Dequeue by searching entire array for highest-priority item, then removing
it, and (if needed) scooting elements over to fill in the gap

Sorted array

 Always enqueue new elements where they go in priority-sorted order, with
the highest-priority item at the end of the array

 Dequeue by taking the last element of the array

0 1 2 3 4

22 "Sasha" 6 "SooMin" 15 "Muhammad" 13 "Diego"

0 1 2 3 4

22 "Sasha" 15 "Muhammad" 13 "Diego" 6 "SooMin"

Unsorted array

Enqueue is FAST

 Just throw it in the array at the back

 O(1)

Dequeue/peek is SLOW

 Hard to find item the highest priority item—
could be anywhere

 Might need to scoot over elements to fill gap

 O(N)

Priority queue implementations

T
h

is
 f
il
e

 i
s
 l
ic

e
n

s
e

d
 u

n
d

e
r

th
e

C
re

a
ti
v
e

 C
o
m

m
o

n
s

A
tt

ri
b

u
ti
o

n
-S

h
a

re
 A

li
k
e

 3
.0

 U
n
p

o
rt

e
d

li
c
e

n
s
e

.
K

ey
ah

C
h

ea
tu

m
h

tt
p

:/
/c

o
m

m
o

n
s.

w
ik

im
ed

ia
.o

rg
/w

ik
i/

Fi
le

:M
es

sy
_R

o
o

m
.J

P
G

0 1 2 3 4

22 "Sasha" 6 "SooMin" 15 "Muhammad" 13 "Diego"

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:K_cheat&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Messy_Room.JPG

Sorted array

Enqueue is SLOW

 Need to step through the array to find where item
goes in priority-sorted order

 If proper place is in the front/middle, need to scoot
over other elements to make room

 O(N)

Dequeue/peek is FAST

 Easy to find item you are looking for (last in array)

 No need to scoot over elements when removing last

 O(1)

Priority queue implementations

Im
ag

e
is

 in
 t

h
e

p
u

b
lic

 d
o

m
ai

n
.

h
tt

p
:/

/c
o

m
m

o
n

s.
w

ik
im

ed
ia

.o
rg

/w
ik

i/
Fi

le
:W

al
l_

C
lo

se
t.

jp
g

0 1 2 3 4

22 "Sasha" 15 "Muhammad" 13 "Diego" 6 "SooMin"

Would be great if we could get the best of both…

Fast enqueue and fast dequeue/peek

+ =

Fast enqueue Fast dequeue/peek

Binary heap for our priority queue

 Instead of storing our priority queue nodes entirely sorted or entirely
unsorted, we will store them partially-sorted.

 The partial sorting will still be stored in an array, but it’s best to imagine it
as what we call a “tree” in computer science (computer science trees are
upside-down for some reason ¯_(ツ)_/¯)

 Here’s what it might look like:

9

6 "SooMin"

13 "Diego"

15 "Muhammad"

22 "Sasha"

Binary trees
Before we delve into how to construct a binary heap, let’s take a step back and
introduce computer science binary trees generally

A binary tree

“In computer science, a binary tree is a
tree data structure in which each node has
at most two child nodes, usually
distinguished as "left" and "right."”

(Thanks, Wikipedia!)

How many of these are valid binary
trees?

“In computer science, a
binary tree is a tree data
structure in which each node
has at most two child nodes,
usually distinguished as "left"
and "right."”

(Thanks, Wikipedia!)

Heaps!

Binary Heaps*

Binary heaps are one kind of binary tree

They have a few special restrictions, in addition to the usual binary tree:

 Must be complete

› No “gaps”—nodes are filled in left-to-right on each level (row) of the tree

 Ordering of data must obey heap property

› Min-heap version: a parent’s priority is always ≤ both its children’s priority

› Max-heap version: a parent’s priority is always ≥ both its children’s priority

* There are other kinds of heaps as well. For
example, binomial heap is an extra-fun one!

How many of these could be valid binary heaps?

A. 0-1
B. 2
C. 3

D. 4
E. 5-8

 Must be a valid binary tree

 Must be complete

 Ordering of data must obey
heap property

How many of these are valid min-binary-heaps?

 Must be a valid binary tree

 Must be complete

 Ordering of data must obey
heap property

Binary heap in an array

Binary heap in an array

 Because of the special constraint that they must be complete, binary
heaps fit nicely into an array

› As we’ll see in later lectures, this is not true of some other kinds of tree
data structures, and we’ll use a different approach for those

Heap in an array

 Q: The parent of the node found in array index i is found where?

A. In array index i – 2

B. In array index i / 2

C. In array index (i – 1)/2

D. In array index 2i

E. Somewhere else

› For now, assume that the node in array index i has a parent.

› In your code, of course you’ll want to be careful not to go up past the
top of the tree.

Heap in an array

 Q: Write an expression for the array index where we find the right
child of the node in array index i.

› For now, assume that the node in array index i has a right child.

› In your code, of course you’ll want to be careful not to go past
the ends of the tree.

Fact summary: Binary heap in an array

 For tree of height h, array length is 2^h-1

 For a node in array index i:

› Parent is at array index: (i – 1)/2

› Left child is at array index: 2i + 1

› Right child is at array index: 2i + 2

Bookmark
this slide!

Binary heap enqueue and dequeue

Binary heap enqueue example (insert 6 + “bubble up”)
Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 7 10 18 14 11 21 27 ? ? … ?6
6

We can tell by looking at this
tree visualization that the 6

doesn’t go here—but
remember in the code all you
have is the array. How do we

tell there?

Parent of index
8 is (8-1)/2 = 3.

Size=9, Capacity=15

Binary heap enqueue example (insert 6 + “bubble up”)
Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 7 10 18 14 11 21 27 ? ? … ?

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?

6

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 7 10 6 14 11 21 27 18 ? … ?

6

Binary heap dequeue (delete min)

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 … … …

?
618

18

Dequeue and “trickle-down” algorithm summary

1. Remove the min element (the one in the root node—index 0) and that’s the
value you’re going to return

 There’s now a “gap”—so the heap no longer follows the structural requirement
that it be “complete”

2. Promote the last element into the root node (index 0) position

 We have now immediately restored the “complete” property, but…

 …we have likely broken the “heap ordering” property!

3. “Trickle down” the new root element until the heap ordering property is
restored

 Pick the smaller value of the left and right children of this element, and swap
downward with that smaller one (i.e., you might trickle-down left, and you
might trickle-down right, depending on which is smaller!)

 Repeat step 3 as needed (until it is smaller than both left and right children)

Binary heap dequeue (delete min + “trickle down”)
Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

18 6 10 7 14 11 21 27 18 ? … ?

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

6 18 10 7 14 11 21 27 18 ? … ?

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

6 7 10 18 14 11 21 27 18 ? … ?

Summary analysis
Comparing our priority queue options

Would be great if we could get the best of both…

Fast enqueue and fast dequeue/peek

+ =

Fast enqueue Fast dequeue/peek

Review: priority queue implementation options performance

Unsorted array

 Enqueue new element in back: O(1)

 Dequeue by searching list and scooting over: O(N)

Sorted array

 Always enqueue in sorted order: O(N)

 Dequeue from back: O(1)

Binary heap

 Enqueue + “bubble up”: O(logN)

 Dequeue + “trickle down”: O(logN)

Final aside on terminology

 The Stack section of memory is a Stack like the ADT

 The Heap section of memory has nothing to do with the Heap structure.

 Probably just happened to reuse the same word 

Aside: Binary Heap, not to be confused with Heap memory!

Heap

Stack

0x0

S
o

u
rc

e
:
h

tt
p

:/
/w

w
w

.f
li
c
k
r.

c
o

m
/p

h
o

to
s
/3

5
2

3
7

0
9

3
3

3
4

@
N

0
1

/4
0

9
4

6
5

5
7

8
/

A
u

th
o

r:
 h

tt
p

:/
/w

w
w

.f
li
c
k
r.

c
o

m
/p

e
o

p
le

/3
5

2
3

7
0

9
3

3
3

4
@

N
0
1

 P
e

te
r

K
a

z
a

n
jy

]

=

≠

Stack ADT

Heap data structure

