
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 Review: Pointers

› Including two quick new ideas:

• dereference

• null pointer

 Main topic of today: Link Nodes

› What is a struct?

› LinkNode struct

› Chains of link nodes

› LinkNode operations

2

REVIEW: Pointers

M E M O R Y A D D R E S S E S A N D
P O I N T E R S

Address-of operator &

int candies = 10;
bool kitkat = true;
cout << &candies << endl; // 20
cout << &kitkat << endl; // 4

Whenever you declare a variable, you allocate a
bucket (or more) of memory for the value of
that variable

Each bucket of memory has a unique address
You can get the value of a variable's address

using the & operator.

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

10

true

int candies = 10;
bool kitkat = true;
cout << &candies << endl; // 20
cout << &kitkat << endl; // 4
int* ptrC = &candies;
bool* ptrB = &kitkat;

You can store memory addresses in a special type
of variable called a pointer.
 i.e. A pointer is a variable that holds a memory address.

You can declare a pointer by writing
(The type of data it points at)*
 e.g. int*, string*

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10

20

4ptrB:

ptrC:

candies:

kitkat:

Pointer type

Dereference and Null
Pointer

T W O Q U I C K N E W I D E A S
R E L A T E D T O M E M O R Y

A D D R E S S E S A N D P O I N T E R S

The dereference operator *

int candies = 10;
bool kitkat = true;
cout << &candies << endl; // 20
cout << &kitkat << endl; // 4
int* ptrC = &candies;
bool* ptrB = &kitkat;

cout<< ptrC << endl; // 20
cout<< *ptrC << endl; // 10

You can follow ("dereference") a pointer by
writing
*variable_name

This is sort of the “inverse” of the & operator. The &
goes from value to address, and the * goes from
address to value.

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

10

20

4ptrB:

ptrC:

candies:

kitkat: true

Null Pointer

 When we want a variable with a pointer type to be
“blank,” we set it to be a “null pointer”
› A special C++ built-in value that means it doesn’t

point to any valid memory address
› Useful for initialization or sentinel value

 Example:
int foo = 37;
int* ptrF = &foo;
int* myptr = nullptr;
…
if (myptr == nullptr) {

cout << "haven't assigned an actual
value to myptr yet!" << endl;

} 0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

ptrF:

myptr:

37foo:

Null pointer is
usually drawn in a
diagram as a slash

through the box for
the variable.

Actually the number
8 in here, but we

usually draw it as an
arrow to that place

Array Performance

L I M I T A T I O N S O F T H E A R R A Y ,
A N D A M O R E F L E X I B L E

A L T E R N A T I V E

Arrays

3

What are arrays good at? What are arrays bad at?

10 7 8
132
121

124
112

834
252

926
073

234
132

645
453

0 1 2 3 4 5 76 8 9

arr:

Array Performance

3 10 7 8

0 1 2 3 4 5 76 8 9

list

What are the most annoying operations on a tightly packed row of
theater seats, or a tightly packed book shelf, etc?

Insertion - O(n)
Deletion - O(n)
Lookup (given index/memory address) - O(1)

Let's brainstorm ways to improve insertion and deletion....

0 0 0 0 0 0

Add to front

3 10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9

Before:

What if we were trying to add an element "20" at index 0?

3 10 7 8

0 1 2 3 4 5 76 8 9

After: 720 8 0 0 0 0 0 03 10 7 8

Add to front

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9

Wouldn't it be nice if we could just do something like:

1. "Start here instead!"

20

3

2. "Then the next elements are here!"

More operations

Now we add 15 as a new 3rd element, and remove the 7:
Arrows everywhere! (but no scooting over in those array buckets/seats, at least…)

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9

20

3

15

More operations

Now we add 15 as a new 3rd element, and remove the 7:
Arrows everywhere! (but no scooting over in those array buckets/seats, at least…)

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9

20

3

15

This is a list of linked nodes!

10 820 3 15

 A list of linked nodes (or a linked list) is composed of interchangeable nodes

 Each element is stored separately from the others (vs contiguously in arrays)

 Elements are chained together to form a one-way sequence using pointers

 Edits are easier than an array in that no “scooting over” is needed!

Linked Nodes

A G R E A T W A Y T O E X E R C I S E
Y O U R P O I N T E R

U N D E R S T A N D I N G

The LinkNode Struct

 To enable each bucket of the more flexible array alternative to both hold a value
and tell you where to look for the next value, we need a struct with two fields:

struct LinkNode {
int data;
LinkNode* next;

};

› data: the data being stored (what would be in the array)

› next: a pointer to the next node struct in the sequence (or nullptr if this is the
end of the sequence)

 The result is a chain that looks like this:
data next

10

data next

75

Wait, hold on, what’s a
struct??

C / C + + S T R U C T T Y P E S

C/C++ struct: Like a lightweight class
struct LinkNode {

int data;
LinkNode* next;

};

 Like a class, but simpler—just a collection of some variables together into a new type

› A holdover from C, before the idea of objects (that combine variables and methods together)

 Example: You can declare a variable of this type in your code, and use “.” to access fields:

LinkNode node;
node.data = 20;
node.next = nullptr;
cout << "The data in the LinkNode is: " << node.data << endl;

C/C++ struct and pointers
struct LinkNode {

int data;
LinkNode* next;

};

 Just like arrays or really any type of variable, you can put structs on the heap by calling “new”

 Example:
LinkNode node; // This LinkNode (both fields) is on the STACK

node.data = 20;
node.next = nullptr;
cout << "The data in the LinkNode is: " << node.data << endl;

LinkNode* heapNode = new LinkNode; // Both fields of this one are on the HEAP
// Now we want to set the data field to 6 and next field to nullptr how do we do that?

HeapStack

heapNode

data next

20

data next
node

The -> dereference operator
struct LinkNode {

int data;
LinkNode* next;

};

 Just like arrays or really any type of variable, you can put structs on the heap by calling “new”

 Example:
LinkNode node; // This LinkNode (both fields) is on the STACK

node.data = 20;
node.next = nullptr;
cout << "The data in the LinkNode is: " << node.data << endl;

LinkNode* heapNode = new LinkNode; // Both fields of this one are on the HEAP
// Now we want to set the data field to 6 and next field to nullptr how do we do that?

(*heapNode).data = 6; // Dereference to follow pointer to struct, then access field
heapNode->data = 6; // Since above syntax is clunky, we use this -> instead!
heapNode->next = nullptr;
cout << "The data in the LinkNode is: " << heapNode->data << endl;

You should basically forget you ever saw (*heapNode).data! 
Remember heapNode->data, we will use it all the time!

LinkNode node; // This LinkNode (both fields) is on the STACK

node.data = 20;
node.next = nullptr;

LinkNode* heapNode = new LinkNode; // Both fields of this one are on the HEAP
heapNode->data = 6;
heapNode->next = nullptr;
cout << "The data in the LinkNode is: " << heapNode->data << endl;

HeapStack

heapNode

data next

20

data next

6
node

Memory diagram: struct and pointers
struct LinkNode {

int data;
LinkNode* next;

};

Ok, now back to
Linked Nodes

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75; // YOUR TURN: complete the code to make picture

node2

data next

10

data next

75node1

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75; // YOUR TURN: complete the code to make picture

node1->next = node2; // needed to connect node1 and node2
node2->next = nullptr; // needed to indicate no more nodes after this

node2

data next

10

data next

75node1

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75; // YOUR TURN: complete the code to make picture

node1->next = node2; // needed to connect node1 and node2
node2->next = nullptr; // needed to indicate no more nodes after this

node2

data next

10

data next

75node1

IMPORTANT: ASSIGNMENT OPERATOR WITH POINTERS
When assigning one pointer to another, we are making
the two pointers point to the same destination. We are
not making the one on the right point to the one on the
left as its destination.

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75; // YOUR TURN: complete the code to make picture

node1->next = node2; // needed to connect node1 and node2
node1->next->next = nullptr; // alternate way edit node2!

node2

data next

10

data next

75node1

Alternate solution! After node1 and node2
are joined, we don't really need the pointer
variable named node2 anymore. We can
modify node2’s next field through node1!

HeapStack

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75;

node1->next = node2;
node1->next->next = nullptr;
node2 = nullptr;

node2

data next

10

data next

75node1

Review/Reminder: the variables
node1 and node2 are local
variables, so they’ll be stored in
the stack part of memory. The
nodes themselves will be stored
in the heap part of memory,
since we got them from new.

FIRST RULE OF LINKED NODE/LISTS CLUB:

DRAW A PICTURE OF LINKED LISTS

Do no attempt to code linked nodes/lists without pictures!

List code example: Draw a picture!

Before:

front->next->next = new LinkNode;

front->next->next->data = 40;

A. After:

B. After:

C. Using next that is nullptr gives an error

D. Other/none/more than one

front

struct LinkNode {
int data;
LinkNode* next;

};

data next

10

data next

20

front

front

data next

10

data next

40

data next

20

data next

10

data next

20

data next

40

