Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Review: Pointers

> Including two quick new ideas:

» dereference
* null pointer
= Main topic of today: Link Nodes
> Whatis a struct?
LinkNode struct

v

Chains of link nodes

v

v

LinkNode operations

Stanford University

REVIEW: Pointers

MEMORY ADDRESSES AND
POINTERS

Stanford University

Address-of operator &

Whenever you declare a variable, you allocate a
bucket (or more) of memory for the value of
that variable

Each bucket of memory has a unique address

You can get the value of a variable's address
using the & operator.

int candies = 10;

bool kitkat = true;

cout << &candies << endl;
cout << &kitkat << endl;

ord University

Pointer type

You can store memory addresses in a special type

of variable called a pointer.
* j.e.Apointerisavariable that holds a memory address.

You can declare a pointer by writing
(The type of data it points at)*
" eg.int* string*

int candies = 10;

bool kitkat = true;
cout << &candies << endl; // 20
cout << &kitkat << endl; // 4
int* ptrC = &candies;
bool* ptrB = &kitkat;

ord University

Dereference and Null
Pointer

TWO QUICK NEW IDEAS
RELATED TO MEMORY
ADDRESSES AND POINTERS

Stanford University

The dereference operator *

You can follow ("dereference") a pointer by
writing
*variable_name

This is sort of the “inverse” of the & operator. The &
goes from value to address, and the * goes from
address to value.

int candies = 10;
bool kitkat = true;
cout << &candies << endl; // 20
cout << &kitkat << endl; // 4
int* ptrC = &candies;

bool* ptrB = &kitkat;

cout<< ptrC << endl; // 20
cout<< *ptrC << endl; // 10

ord University

Actually the number

. 8 in here, but we
NU”. Pointer usually draw it as an 40
. . . arrow to that place
= When we want a variable with a pointer type Y k
“blank,” we set it to be a “null pointer”) 36
> Aspecial C++ built-in value that means it doesn’t trF:] |32
point to any valid memory address 7)8
> Useful for initialization or sentinel value
24
= Example: Null pointeris
Xampie. . usually drawnin a myptrf: ; 20
}nt* foo = 37; . diagram as a slash
int* ptrF = &foo; through the box for 16
int* myptr = nullptr; the variable. 12
if (myptr == nullptr) { 37 8
cout << "haven't assigned an actual
value to myptr yet!" << endl;
} 0 |
\

Stanford Isity

Array Performance

LIMITATIONS OF THE ARRAY,
AND A MORE FLEXIBLE
ALTERNATIVE

Stanford University

Arrays

What are arrays good at? What are arrays bad at?

arr: | 3 10| 7 | 8

Stanford University

Array Performance

list | 3 [10| 7 | 8

e 1 2 3 4 5 6 7 8 9

What are the most annoying operations on a tightly packed row of
theater seats, or a tightly packed book shelf, etc?

Insertion - O(n)
Deletion - O(n)
Lookup (given index/memory address) - O(1)

Let's brainstorm ways to improve insertion and deletion....

Stanford University

Add to front

What if we were trying to add an element "20" at index 07

Before: 3 110 7 | 8

A-Fter\ : 20 3 10 7 8

Stanford University

Add to front

Wouldn't it be nice if we could just do something like:

3 110] 7 8

> 1 2 3 4 5 6 7 8 9

2. "Then the next elements are here!"

20

1. "Start here instead!"

Stanford University

More operations

Now we add 15 as a new 3" element, and remove the 7:
Arrows everywhere! (but no scooting over in those array buckets/seats, at least...)

B

<
(B
N
L

»
Ul
(0))
N
00]
\o)

20

Stanford University

More operations

Now we add 15 as a new 3" element, and remove the 7:
Arrows everywhere! (but no scooting over in those array buckets/seats, at least...)

B

<
(B
N
L

»
Ul
(0))
N
00]
\o)

20

Stanford University

This is a list of linked nodes!

20 3 15 10 8

A list of linked nodes (or a linked list) is composed of interchangeable nodes
Each element is stored separately from the others (vs contiguously in arrays)
Elements are chained together to form a one-way sequence using pointers
Edits are easier than an array in that no “scooting over” is needed!

Stanford University

Linked Nodes

A GREAT WAY TO EXERCISE
YOUR POINTER
UNDERSTANDING

Stanford University

The LinkNode Struct

To enable each bucket of the more flexible array alternative to both hold a value
and tell you where to look for the next value, we need a struct with two fields:

struct LinkNode {

}.

int data;
LinkNode* next;

J

> data: the data being stored (what would be in the array)

> next: a pointer to the next node struct in the sequence (or nullptr if this is the

end of the sequence)

The result is a chain that looks like this:

data next

m e

data next

>

Stanford University

Wait, hold on, what’s a
struct??

C/C++ STRUCT TYPES

Stanford University

C/C++ struct: Like a lightweight class

struct LinkNode {
int data;
LinkNode* next;

s

= Like a class, but simpler—just a collection of some variables together into a new type
> A holdover from C, before the idea of objects (that combine variables and methods together)
= Example: You can declare a variable of this type in your code, and use “.” to access fields:

LinkNode node;

node.data = 20;

node.next = nullptr;

cout << "The data in the LinkNode is: " << node.data << endl;

Stanford University

. struct LinkNode {
C/C++ struct and pointers int data;

LinkNode* next;
}s

= Just like arrays or really any type of variable, you can put structs on the heap by calling “new”

= Example:
LinkNode node; // This LinkNode (both fields) is on the STACK
node.data = 20;
node.next = nullptr;
cout << "The data in the LinkNode is: " << node.data << endl;

LinkNode* heapNode = new LinkNode; // Both fields of this one are on the HEAP
// Now we want to set the data field to 6 and next field to nullptr how do we do that?

Stack Heap

data next data next

~CE | {

/

heapNode | —

Stanford University

struct LinkNode {
The -> dereference operator int data;

LinkNode* next;
}s

= Just like arrays or really any type of variable, you can put structs on the heap by calling “new”

= Example:
LinkNode node; // This LinkNode (both fields) is on the STACK
node.data = 20;
node.next = nullptr;
cout << "The data in the LinkNode is: " << node.data << endl;

LinkNode* heapNode = new LinkNode; // Both fields of this one are on the HEAP

// Now we want to set the data field to 6 and next field to nullptr how do we do that?
(*heapNode).data = 6; // Dereference to follow pointer to struct, then access field
heapNode->data = 6; // Since above syntax is clunky, we use this -> instead!
heapNode->next = nullptr;

cout << "The data in the LinkNode is: " << heapNode->data << endl;

You should basically forget you ever saw (*heapNode) .data! ©
Remember heapNode->data, we will use it all the time!

Stanford University

. . struct LinkNode {
Memory diagram: struct and pointers int data;

LinkNode* next;
¥

LinkNode node; // This LinkNode (both fields) is on the STACK

node.data = 20;
node.next = nullptr;

LinkNode* heapNode = new LinkNode; // Both fields of this one are on the HEAP
heapNode->data = 6;

heapNode->next = nullptr;

cout << "The data in the LinkNode is: " << heapNode->data << endl;

Stack Heap

data next data next

/

heapNode | —

Stanford University

Ok, now back to
Linked Nodes

Stanford University

Your Turn: finish the code to match the picture

data next data next

node2 ,/'

LinkNode* nodel = new LinkNode;

nodel->data = 10;

LinkNode* node2 = new LinkNode;

node2->data = 75; // YOUR TURN: complete the code to make picture

Stanford University

Your Turn: finish the code to match the picture

data next data next

node2 ,/'

LinkNode* nodel = new LinkNode;

nodel->data = 10;

LinkNode* node2 = new LinkNode;

node2->data 75; // YOUR TURN: complete the code to make picture

node2; // needed to connect nodel and node2
nullptr; // needed to indicate no more nodes after this

nodel->next
node2->next

Stanford University

Your Turn: finish the code to match the picture

data next data next

LinkNode* nodel = new LinkNode;

nodel->data = 10;

LinkNode* node2 = new LinkNode;

node2->data = 75; // YOUR TURN: complete the code to make picture

node2 —

1
S
o
Q
M
N

-

nodel->next

// needed to connect nodel and node2
node2->next indi

after this

IMPORTANT: ASSIGNMENT OPERATOR WITH POINTERS
When assigning one pointer to another, we are making
the two pointers point to the same destination. We are

not making the one on the right point to the one on the
left as its destination.

Stanford University

Your Turn: finish the code to match the picture

data next data next

LinkNode* nodel = new LinkNode;

nodel->data = 10;

LinkNode* node2 = new LinkNode;

node2->data = 75; // YOUR TURN: complete the code to make picture

node2 —

nodel->next = node2; // needed to connect nodel and node2
nodel->next->next = nullptr; // alternate way edit node2!

Alternate solution! After nodel and node2
are joined, we don't really need the pointer

variable named node2 anymore. We can
modify node2’s next field through nodel!

Stanford University

Your Turn: finish the code to match the picture
Stack Heap

data next data next

node2 | ——T |

LinkNode* nodel = new LinkNode; Review/Reminder: the variables

nodel->data = 10; nodel and node2 are local

LinkNode* node2 = new LinkNode; variables, so they’ll be stored in

node2->data = 75; the stack part of memory. The
nodes themselves will be stored

nodel->next = node2; in the heap part of memory,

nodel->next->next = nullptr; since we got them from new.

node2 = nullptr;

Stanford University

FIRST RULE OF LINKED NODE/LISTS CLUB:

DRAW A PICTURE OF LINKED LISTS

Do no attempt to code linked nodes/lists without pictures!

Stanford University

List code example: Draw

data next

Before: front /"140-—>

a picture!

data next

= I

front->next->next = new LinkNode;
front->next->next->data = 40;

A. After: data next data

next data next

B. After: data next data

next data next

rort (S (oo T I

C. Usingnext thatis nullptr gives an error

D. Other/none/more than one

struct LinkNode {

}s

int data;
LinkNode* next;

Stanford University

