
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 Wednesday: Link Nodes

› The LinkNode struct

› Chains of link nodes

› LinkNode operations

 Today: Link Lists

› Providing a cohesive interface to chains of link nodes with a LinkedList class

› LinkedList class implementation

› LinkedList methods

2

Linked Nodes

A G R E A T W A Y T O E X E R C I S E
Y O U R P O I N T E R

U N D E R S T A N D I N G

FIRST RULE OF LINKED NODE/LISTS CLUB:

DRAW A PICTURE OF LINKED
LISTS

Do no attempt to code linked nodes/lists without
pictures!

LinkNode* heapNode = new LinkNode;
heapNode->data = 6;
heapNode->next = nullptr;

HeapStack

heapNode

data next

6

LinkNode Summary!

struct LinkNode {
int data;
LinkNode* next;

};

Linked List Data Structure

P U T T I N G T H E L I S T N O D E T O
U S E

data next

32

A LinkedList class

Let's write a collection class named LinkedList.

 Has the same public members as Vector
› add, clear, get, insert, isEmpty, remove, size, toString

 The list is internally implemented as a chain of linked nodes

› The LinkedList keeps a pointer to its _front node as a field

› nullptr is the end of the list; a nullptr in _front signifies an empty list

_size:

_front:

add(value)
insert(index, value)
remove(index)
size()
toString()
...

class LinkedList

ListNode ListNode ListNode3

data next

5

data next

-17

LinkedList.h

class LinkedList {
public:

LinkedList();
~LinkedList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value);
int size() const;
string toString() const;

private:
ListNode* _front;
int _size;

};

_front:

_size:

LinkedList

0

Our first LinkedList Class
Method

T O S T R I N G ()

Traversing the list for toString() // BUG VERSION

// goal: construct string like {5, -17, 32} for list
string LinkedList::toString() const {

string contents = "{";
while (_front != nullptr) {

contents += (integerToString(_front->data); // add data
if (_front->next != nullptr) contents += ", "; // comma unless at end
_front = _front->next; // move to next node

}
return contents + "}";

}

 What's right and what’s wrong with this approach to traverse the list?

 Does correctly generate the string.

 But it permanently loses the linked list as it is traversing it!

_front

data next

32

data next

5

data next

-17

Traversing a list (12.2) (bug fixed version)

 The correct way to traverse the list:
// goal: construct string like {5, -17, 32} for list
string LinkedList::toString() const {

string contents = "{";
ListNode* current = _front;
while (current != nullptr) {

contents += (integerToString(current->data);
if (current->next != nullptr) contents += ", ";
current = current->next;

}
return contents + "}";

}

 Changing the temp current does not damage the list.

current

_front

data next

32

data next

5

data next

-17

LinkedList Class add()
Method

M E T H O D N U M B E R T W O

Implementing add

// Appends the given value to the end of the list.
void LinkedList::add(int value) {

...
}

 What pointer(s) must be changed to add a node to the end of a list?

 What different cases must we consider?

_front:

_size: 3

data next

32

data next

5

data next

-17

Before adding 20: After:

 We must create a new node and attach it to the list.

 For an empty list to become non-empty, we must change _front.

Case 1: Add to empty list

data next

20_front:

_size: 0

_front:

_size: 1

Case 2: Non-empty list

Before adding value 20 to end of list:

Before:

After:

current

Remember to use a temporary pointer for traversal to end

data next

20

data next

5

data next

-17

data next

5

data next

-17

_front:

_size: 2

_front:

_size: 3

Managing our temporary pointer, current

Must modify the next pointer of the last node.

 Think about where current should be pointing, to add 20 at the end

Q: Which loop test will stop us at this place in the list?

A. while (current != nullptr) { ...

B. while (_front != nullptr) { ...

C. while (current->next != nullptr) { ...

D. while (_front->next != nullptr) { ...

data next

5

data next

-17
_front:

_size: 2

Code for add
// (in linkedlist.cpp)
// Adds the given value to the end of the list.
void LinkedList::add(int value)
{

if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode* current = _front;
while (current->next != nullptr) {

current = current->next;
}
current->next = new ListNode(value);

}
_size++;

}

More LinkedList Class
Methods!

G E T () , I N S E R T () , R E M O V E ()

Implementing get

// Returns value in list at given index.
int LinkedList::get(int index) {

...
}

 Fun tip: we’ve been using a while loop to traverse our linked list (to go to the
end for add). But for insert at a specified index, a for loop is handy to get us
there in a defined number of steps

element 0 element 1 element 2

data next

32

data next

5

data next

-17
_front:

_size: 3

Code for get

// Returns value in list at given index.
int LinkedList::get(int index)
{

if (index >= size()) {
error("Index out of bounds!");

}
ListNode* current = _front;
for (int i = 0; i < index; i++) {

current = current->next;
}
return current->data;

}

Implementing insert

// Inserts the given value at the given index.
void LinkedList::insert(int index, int value) {

...
}

Before insert() where index = 2, value = 20 :

After:
element 0 element 1 element 2

element 0 element 1 element 2 element 3

data next

32

data next

5

data next

-17

data next

32

data next

5

data next

-17

data next

20

_front:

_size: 3

_front:

_size: 4

Inserting into a list

Before insert() where index = 2, value = 20 :

After:

 Your Turn: If current starts out equal to _front, how many times do
we advance current (in the for loop) to prepare for insert?

A. index – 1 times B. index times C. index + 1 times D. Other

element 0 element 1 element 2

element 0 element 1 element 2 element 3

data next

32

data next

5

data next

-17

data next

32

data next

5

data next

-17

data next

20

_front:

_size: 3

_front:

_size: 4

Implementing remove

// Removes value at given index from list.
void LinkedList::remove(int index) {

...
}

 What pointer(s) must be changed to remove a node from a list?

 What different cases must we consider?

Before remove with index = 2

element 0 element 1 element 2 element 3

data next

32

data next

5

data next

-17

data next

20
_front:

_size: 4

Case 1: Removing from front (index 0)

Before removing element at index 0:

After:

To remove the first node, we must change _front.

element 0 element 1 element 2

element 0 element 1 Be sure to delete this!

data next

32

data next

-17

data next

32

data next

-17

_front:

_size: 3

_front:

_size: 2

data next

5

data next

5

Code for remove

// Removes value at given index from list.
void LinkedList::remove(int index) {

if (index >= size()) {
error("Index out of bounds!");

}

ListNode* trash = nullptr;
// removing first element
if (index == 0) {

trash = _front;
_front = _front->next;

// removing elsewhere in the list
} else {

// left for the reader 

}
delete trash;
size--;

}

Case 2: Removing from “middle” of list (ex: index 2)

Before removing element at index = 2:

After:

 Where should current be pointing?

 How many times should it advance from _front?

element 0 element 1 element 2

Be sure to delete this!

element 3

element 0 element 1 element 2

data next

32

data next

5

data next

-17

data next

32

data next

5

data next

-17

_front:

_size: 4

_front:

_size: 3

data next

-17

data next

-17

Case 3 (?): Removing the only element

Before: After:

 We must change the _front field to store nullptr
instead of pointing to a node.

 Do we really need a special case to handle this?

element 0

Be sure to delete this!

_front:

_size: 1

_front:

_size: 0

data next

-17

data next

-17

Other list features

A nice LinkedList class will also want to have the following public
member functions:

 size()

 isEmpty()

 set(index, value)

 clear()

 toString()

