Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Wednesday: Link Nodes
> The LinkNode struct
> Chains of link nodes
> LinkNode operations
= Today: Link Lists
> Providing a cohesive interface to chains of link nodes with a LinkedList class
> LinkedList class implementation
> LinkedList methods

Stanford University

Linked Nodes

A GREAT WAY TO EXERCISE
YOUR POINTER
UNDERSTANDING

Stanford University

FIRST RULE OF LINKED NODE/LISTS CLUB:

DRAW A PICTURE OF LINKED
LISTS

Do no attempt to code linked nodes/lists without
pictures!

Stanford University

LinkNode Summary!

struct LinkNode {
int data;
LinkNode* next;

}s

LinkNode* heapNode = new LinkNode;
heapNode->data = 6;
heapNode->next = nullptr;

Stack Heap

data next

heapNod
" 1 -

Stanford University

Linked List Data Structure

PUTTING THE LISTNODE TO
USE

Stanford University

A LinkedList class

Let's write a collection class named LinkedList.
» Hasthe same public members as vector

> add, clear, get, insert, isEmpty, remove, size, toString

» Thelistisinternally implemented as a chain of linked nodes
> The LinkedList keeps a pointer to its _front node as a field
> nullptristhe end of the list; a nullptr in _front signifies an empty list

class LinkedList

_size:|3

ListNode ListNode ListNode
_front \\ data next data next data next

insert(index, value)
remove (index)
size()

toString()

Stanford University

LinkedList.h

class LinkedList {

public:
LinkedList(); . .
~LinkedList(); LinkedList
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value); .
bool isEmpty() const; _Slze. 0
void remove(int index);
void set(int index, int value);
int size() const;
string toString() const;

_front:

private:
ListNode* front;
int _size;
}s

Stanford University

Our first LinkedList Class
Method

TOSTRING()

Stanford University

Traversing the list for tostring() // BUG VERSION

// goal: construct string like {5, -17, 32} for list
string LinkedList::toString() const {
string contents = "{";
while (_front != nullptr) {

contents += (integerToString(_front->data); // add data

if (_front->next != nullptr) contents += ", "; // comma unless at end
_front = _front->next; // move to next node

}

return contents + "}";

}

= What's right and what’s wrong with this approach to traverse the list?
= Does correctly generate the string.

ata

_front

= Butit permanently loses the linked list as it is traversing it!

Stanford University

Traversing a list (12.2) (bug fixed version)

= The correct way to traverse the list:

// goal: construct string like {5, -17, 32} for list
string LinkedList::toString() const {

string contents = "{";
ListNode* current = _front;
while (current != nullptr) {
contents += (integerToString(current->data);
if (current->next != nullptr) contents += ", ";
current = current->next;

}

return contents +

nyn,
J

data next data next data next

» Changingthe temp current does not damage the list.

current

-

_front

Stanford University

LinkedList Class add()
Method

METHOD NUMBER TWO

Stanford University

Implementing add

// Appends the given value to the end of the list.
void LinkedList::add(int value) {

}

» What pointer(s) must be changed to add a node to the end of a list?
» What different cases must we consider?

data next data next data next
_front: |

_size: 3

Stanford University

Case 1: Add to empty list

Before adding 20: After:
data next
_front: _front: By 20 L/l
_size: 0 _size: 1

» We must create a new node and attach it to the list.
* Foran empty list to become non-empty, we must change _front.

Stanford University

Case 2: Non-empty list

Before adding value 20 to end of list:

Before: data next data next
[m{
_front:
_size: 2
After: data next data next data next
B =E 20
_front:
_size: 3
|

7
current -

Remember to use a temporary pointer for traversal to end

Stanford University

Managing our temporary pointer, current

Must modify the next pointer of the last node.

data next data next
- m—{v
_front:

_Size: 2

» Think about where current should be pointing, to add 20 at the end

Q: Which loop test will stop us at this place in the list?
A. while (current != nullptr) { ...
B. while (_front != nullptr) { ...
C. while (current->next != nullptr) { ...
D. while (_front->next != nullptr) { ...

Stanford University

Code for add

// (in linkedlist.cpp)
// Adds the given value to the end of the list.
void LinkedList::add(int value)

{
if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);
} else {
// adding to the end of an existing list
ListNode* current = _front;
while (current->next != nullptr) {
current = current->next;
}
current->next = new ListNode(value);
} .
_Size++;
}

Stanford University

More LinkedList Class
Methods!

GET(), INSERT(), REMOVE()

Stanford University

Implementing get

// Returns value in list at given index.
int LinkedList::get(int index) {

}
data next data next data next
_front:
i 3 element O element 1 element 2
_Size:

Fun tip: we’ve been using a while loop to traverse our linked list (to go to the

end for add). But for insert at a specified index, a for loop is handy to get us
there in a defined number of steps

Stanford University

Code for get

// Returns value in list at given index.
int LinkedList::get(int index)
{
if (index >= size()) {
error("Index out of bounds!");
}
ListNode* current = _front;
for (int i = 0; i < index; i++) {
current = current->next;

}

return current->data;

Stanford University

Implementing insert

// Inserts the given value at the given index.
void LinkedList::insert(int index, int value) {

}

Before insert() whereindex = 2,value = 20 :

front: ~| data next data next data next
_size: 3

element0 element1l element 2

After:
g data next data next data next data next

front: T~
: 3 SEd SrIE=RE
_size: 4

element0 elementl element2 element3

Stanford University

Inserting into a list

Before insert() whereindex = 2,value = 20 :
data next data next data next
_front: \~\ > - -
_Size: 3
element0 element1l element 2
After:
data next data next data next data next
front: \‘\
- 3 SEY SPIE=NEN
_Size: 4
element0 element1l element2 element3

= Your Turn: If current starts out equal to _front, how many times do
we advance current (in the for loop) to prepare for insert?

A. index - 1times

B. index times C.index + 1 times

D. Other

Stanford University

Implementing remove

// Removes value at given index from list.
void LinkedList::remove(int index) {

}

» What pointer(s) must be changed to remove a node from a list?
» What different cases must we consider?

Before remove with index = 2

data next data next data next data next
SEl =E2 SEIE=TER
_front: |
.| a element O element 1 element 2 element 3
_size:

Stanford University

Case 1: Removing from front (index 0)

Before removing element at index 0:

data next data next data next
_front: LT[5 —t+—| -17 E-
9 . 3
S element 0 element 1 element 2
After:
data next data next
e
g . 2
l1ze. 3
—size element 0 element 1 Be sure to delete this!
data next

5

To remove the first node, we must change _front.

Stanford University

Code for remove

// Removes value at given index from list.
void LinkedList::remove(int index) {
if (index >= size()) {
error("Index out of bounds!");
}
ListNode* trash = nullptr;
// removing first element
if (index == 0) {
trash = _front;
_front = _front->next;
// removing elsewhere in the list
} else {
// left for the reader ©

}
delete trash;

size--;

Stanford University

Case 2: Removing from “middle” of list (ex: index 2)

Before removing element at index = 2:

data next data next data next data next
front: —H] ‘
fronts =T [e [[[B
size: | 4 |
- element0 element1l element 2 element 3
After:
data next data next data next
front: N
-front: LS - I
_size: | 3 I t0 el t1 el t?2
elemen elemen elemen Be sure to delete this!
= Where should current be pointing? data next
= How many times should it advance from _front? -17

Stanford University

Case 3 (?): Removing the only element

Before: After:
data next
_front: —1 -17 _front: z
_size: | 1 element 0 _size:

= We must change the _front field to store nullptr
instead of pointing to a node.

= Do we really need a special case to handle this? Be sure to delete this!
data next

-17

Stanford University

Other list features

A nice LinkedList class will also want to have the following public
member functions:

= size()

= isEmpty()

= set(index, value)
= clear()

= toString()

Stanford University

