
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 LinkedList: Further Applications, Algorithms, and Variants

› Using a linked list for a queue

› Tail pointers

› The undo-enqueue operation

› Doubly-linked lists

 Preview of our next topic: Binary Search Trees

› Starting with a dream: binary search in a linked list?

› How our dream provided the inspiration for the BST

2

Fun fact: linked list
algorithms are a classic
technical job interview

question category!

Queue implementation
with a linked list

R E A L - W O R L D A P P L I C A T I O N O F
L I N K E D L I S T S

linkedlist.h (for comparison—we will copy this design)

class LinkedList {
public:

LinkedList();
~LinkedList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value);
int size() const;

private:
ListNode* _front;
int _size;

};

_front:

_size:

LinkedList

0

struct LinkNode

data:

next:

0

queueLL.h [Version 1]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;

private:
ListNode* _front;
int _size;

};

_front:

_size:

QueueLL

0

Internal structure is
exactly the same as
LinkedList class.

Public-facing methods
are renamed and

curated to provide the
usual queue interface.

struct LinkNode

data:

next:

0

Queue implemented with a linked list

 Front of the list is the front of the queue

› Need to dequeue from here

› No problem! Unlike array O(N), removing from the front of a linked
list is just O(1)

 Back of the list is the back of the queue

› Need to enqueue to here

› Hmmm…not good. O(N) because we have to traverse in a loop to
the end of the list

Front of queue

data next

32

data next

5

data next

-17
_front:

_size: 3 Back of queue

Tail Pointers

B O N U S F E A T U R E T O I M P R O V E
L I N K E D L I S T P E R F O R M A N C E

F O R A P P L I C A T I O N S L I K E
Q U E U E

Queue implemented with a linked list with Tail Pointer

 We add a third private member variable to our LinkedList class

› _front enables dequeue in O(1)

› _tail enables enqueue in O(1)

› (_size stays the same)

› When _size = 0, _front and _tail will be both be nullptr

Front of queue

data next

32

data next

5

data next

-17
_front:

_tail:

_size: 3

Back of queue

Queue implemented with a linked list with Tail Pointer

 We add a third private member variable to our LinkedList class

› _front enables dequeue in O(1)

› _tail enables enqueue in O(1)

› (_size stays the same)

› When _size = 0, _front and _tail will be both be nullptr

Front of queue

data next

32

data next

5

data next

-17
_front:

_tail:

_size: 3

Back of queue
Your Turn: describe

what should the value
of _tail should be
when _size = 1.

queueLL.h [Version 2]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;

private:
ListNode* _front;
ListNode* _tail;
int _size;

};

QueueLL

New tail pointer
member variable.

_front:

_tail:

_size: 0

struct LinkNode

data:

next:

0

Implementing enqueue

// Appends the given value to the end of the list.
void QueueLL::enqueue(int value) {

...
}

 What pointer(s) must be changed to add a node to the end of a list?

 What different cases must we consider?

Front of queue

data next

32

data next

5

data next

-17
_front:

_tail:

_size: 3

Back of queue

Code for list add() compared to code for enqueue()

// (in queueLL.cpp)
void QueueLL::enqueue(int value)
{

if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);
_tail = _front;

} else {
// adding to the end of an existing list
_tail->next = new ListNode(value);
_tail = _tail->next;

}
_size++;

}

// (in linkedlist.cpp)
void LinkedList::add(int value)
{

if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode* current = _front;
while (current->next != nullptr) {

current = current->next;
}
current->next = new ListNode(value);

}
_size++;

}
Your Turn: What are the Big-O

costs of add() and enqeue(),
respectively?

Implementing an
undo-enqueue operation

F O R T H O S E “ N E V E R M I N D ,
T H I S R A M E N N A G I L I N E I S T O

L O N G , I ’ L L G O T O A
D I F F E R E N T R E S T A U R A N T ! ”

M O M E N T S

queueLL.h [Version 3]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;
void undoEnqueue();

private:
ListNode* _front;
ListNode* _tail;
int _size;

};

QueueLL

_front:

_tail:

_size: 0

struct LinkNode

data:

next:

0

This function would remove the
most-recently-enqeued element

(similar to pop in a stack).

data next

20

Implementing an undoEnqueue operation

void QueueLL::undoEnqueue() {
...

}

 Removes the most-recently-enqueued item.

Before:

data next

5

data next

-17_front:

_tail:

_size: 3

data next

20

Implementing an undoEnqueue operation

void QueueLL::undoEnqueue() {
...

}

 Removes the most-recently-enqueued item.

Before:

After:

data next

5

data next

-17

data next

5

data next

-17

_front:

_tail:

_size: 3

_front:

_tail:

_size: 2

Your Turn: What is the
best big-O cost we
could achieve for

undoEnqueue, with
our current class

design?

data next

20

Options for implementing an undoEnqueue operation

 The node whose next pointer needs to change is the one with -17, not 20.

› Our new _tail pointer doesn’t help us. 

 Still possible! But we have to loop from _front to reach the penultimate node.

› But this is O(N) 

Before:

After:

data next

5

data next

-17

data next

5

data next

-17

_front:

_tail:

_size: 3

_front:

_tail:

_size: 2

data next

20

More options for implementing an undoEnqueue operation?

 What if we add a penultimate-node pointer to our member variables?

› It will point to the second-to-last element in the list.

Before:

After: our _pen pointer helps

us get this far…

…but what about the

update to _pen?

data next

5

data next

-17_front:

_pen:

_tail:

_size: 3
data next

5

data next

-17_front:

_pen:

_tail:

_size: 2

??

The Doubly-Linked List
structure

A N O T H E R V E R Y C O M M O N
B O N U S F E A T U R E T O I M P R O V E

L I N K E D - L I S T P E R F O R M A N C E

queueLL.h [Version 3, again]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;
void undoEnqueue();

private:
ListNode* _front;
ListNode* _tail;
int _size;

};

class QueueLL

_front:

_tail:

_size: 0

This time, instead of changing our
list class, let’s reconsider the

node struct that we’ve been using
all this time.

struct LinkNode

data:

next:

0

queueLL.h [Version 4]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;
void undoEnqueue();

private:
DoubleLinkNode* _front;
DoubleLinkNode* _tail;
int _size;

};

class QueueLL

_front:

_tail:

_size: 0

struct DoubleLinkNode

data:

prev:

next:

0

Now each node will have two
pointers: a previous and a next.

Doubly-Linked List

 Benefits:

› Easy access to nodes before your node, when needed for edits

 Drawbacks:

› Linked list already roughly doubles amount of storage needed to hold our
data (compared to array), now doubly-linked list triples it

› More work in every add, remove, insert, etc operation to maintain correct
pointer placements

prev data next

5

_front:

_tail:

_size: 3

prev data next

-17

prev data next

20

Implementing an
undo-enqueue operation

(now lets do it)

F O R T H O S E “ N E V E R M I N D ,
T H I S R A M E N N A G I L I N E I S T O

L O N G , I ’ L L G O T O A
D I F F E R E N T R E S T A U R A N T ! ”

M O M E N T S

Implementing an undoEnqueue operation

void QueueLL::undoEnqueue() {
...

}

 What pointer(s) must be changed to remove the node at the the end of a list?

 What different cases must we consider?

prev data next

5

_front:

_tail:

_size: 3

prev data next

-17

prev data next

20

undoEnqueue()
Code

void QueueLL::undoEnqueue() {
if (_size() == 0) {

error("Cannot remove from empty queue!");
}

DoubleLinkNode* trash = _tail;
if (_size() == 1) {

_tail = _front = nullptr;
} else {

_tail->prev->next = nullptr;
_tail = _tail->prev;

}
delete trash;
_size--;

}

Tracing
undoEnqueue()
Code

void QueueLL::undoEnqueue() {
if (_size() == 0) {

error("Cannot remove from empty queue!");
}

DoubleLinkNode* trash = _tail;
if (_size() == 1) {

_tail = _front = nullptr;
} else {

_tail->prev->next = nullptr;
_tail = _tail->prev;

}
delete trash;
_size--;

}

prev data next

5

_front:

_tail:

_size: 3
prev data next

-17

prev data next

20

Tracing
undoEnqueue()
Code

void QueueLL::undoEnqueue() {
if (_size() == 0) {

error("Cannot remove from empty queue!");
}

DoubleLinkNode* trash = _tail;
if (size() == 1) {

_tail = _front = nullptr;
} else {

_tail->prev->next = nullptr;
_tail = _tail->prev;

}
delete trash;
_size--;

}

prev data next

5

_front:

_tail:

_size: 3
prev data next

-17

prev data next

20

trash:

Tracing
undoEnqueue()
Code

void QueueLL::undoEnqueue() {
if (_size() == 0) {

error("Cannot remove from empty queue!");
}

DoubleLinkNode* trash = _tail;
if (_size() == 1) {

_tail = _front = nullptr;
} else {

_tail->prev->next = nullptr;
_tail = _tail->prev;

}
delete trash;
_size--;

}

prev data next

5

_front:

_tail:

_size: 3
prev data next

-17

prev data next

20

trash:

SWITCHING GEARS!
Preview of our next topic: Binary Search Tree

Binary Search in a Linked
List?

E X P L O R I N G A G O O D I D E A ,
F I N D I N G W A Y T O M A K E I T

W O R K

Recall our beautiful algorithm: binary search!

 How long does it take us to find data in a sorted array?

› Use binary search!

› O(logn): awesome!!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Q. Can we do binary search on a linked list?

A. No.

 The nodes are spread all over memory, and we must follow “next”
pointers one at a time to navigate (the treasure hunt).

 Therefore cannot jump right to the middle.

 Therefore cannot do binary search.

 Find is O(N): not terrible, but pretty bad compared to O(logn) or O(1)

Let’s brainstorm a wild idea and then see if we can make it work

“What if…?”
The inspiration for Binary Search Trees

 What if…

 …instead of having a _front pointer in our linked list, we had a pointer to
the element we want to look at first in binary search: the exact
median/middle element?

 That would make the first step of our binary search really fast/easy!

 What about the next step? (and the front half of our list, lol)

data next

56

data next

24

data next

32

_median:

_size: 7

data next

40

data next

48

data next

8

data next

16

“What if…?”
The inspiration for Binary Search Trees

 What about the next step? (and the front half of our list, lol)

 Well, we could have the middle element point to the middle element of
both the left half and the right half, so the 2nd step of our binary search is
easy/fast too!

 Keep doing this until all elements have pointers to the middle of what
remains to their left/right sides…voila!

data next

56

data next

24 32

_median:

_size: 7

data next

40

data next

48

data next

8

data next

16

 Our class will have a pointer to the median element*, and each element has
pointers to the medians of everything to their left and right

› * actually it’s hard to guarantee it will be the exact middle element, more on
this, and lots more about Binary Search Trees, next time!

An Idealized Binary Search Tree

_root:

_size: 29

