

Programming Abstractions

CS106B

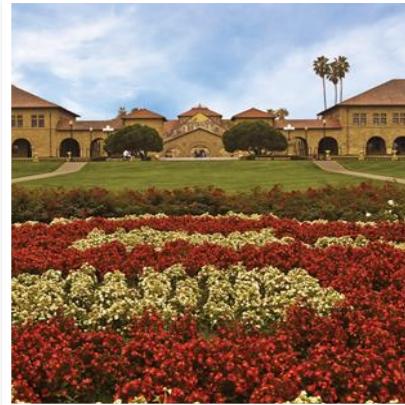
Cynthia Bailey Lee
Julie Zelenski

Topics:

- This time:
 - › Starting with a dream: binary search in a linked list?
 - › How our dream provided the inspiration for the BST
 - › **Map** implemented as a Binary Search Tree (BST)
 - › BST insert
 - › Big-O analysis of BST
- *Next time:*
 - › BST balance issues
 - › Tree traversals
 - Pre-order, In-order, Post-order, Breadth-first
 - › Applications of tree traversals

From last time:
**Binary Search in a Linked
List?**

EXPLORING A GOOD IDEA,
FINDING WAY TO MAKE IT
WORK



Recall our beautiful algorithm: binary search!

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

- How long does it take us to find data in a sorted array?
 - › Use binary search!
 - › **O(log n)**: awesome!!
- Big downside: $O(N)$ insert, to keep the array sorted

Q. Can we do binary search on a linked list?

A. No.

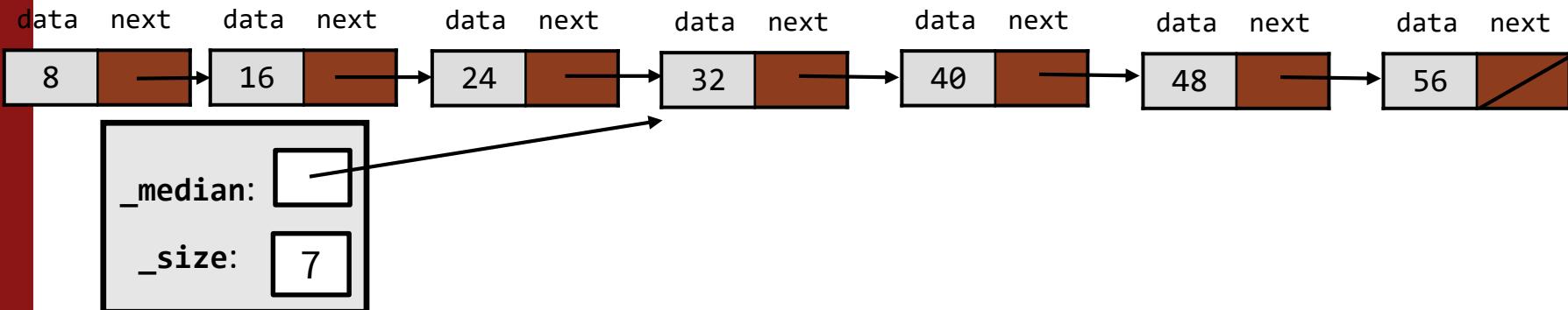
- The nodes are spread all over memory, and we must follow “next” pointers one at a time to navigate (the treasure hunt).
- **Therefore cannot jump right to the middle.**
- **Therefore cannot do binary search.**
- **Find is $O(N)$:** not terrible, but pretty bad compared to $O(\log n)$ or $O(1)$

Let's brainstorm a wild idea and then see if we can make it work

“What if...?”

The inspiration for Binary Search Trees

- What if...
- ...instead of having a `_front` pointer in our linked list, we had a pointer to the element we want to look at first in binary search: the exact median/middle element?

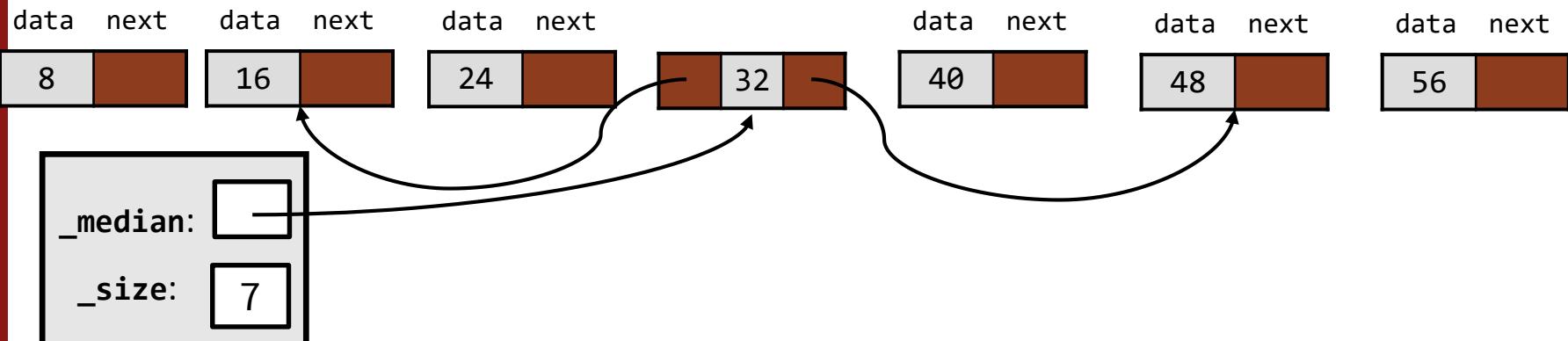


- That would make the first step of our binary search **really** fast/easy!
- What about the next step? (and the front half of our list, lol)

“What if...?”

The inspiration for Binary Search Trees

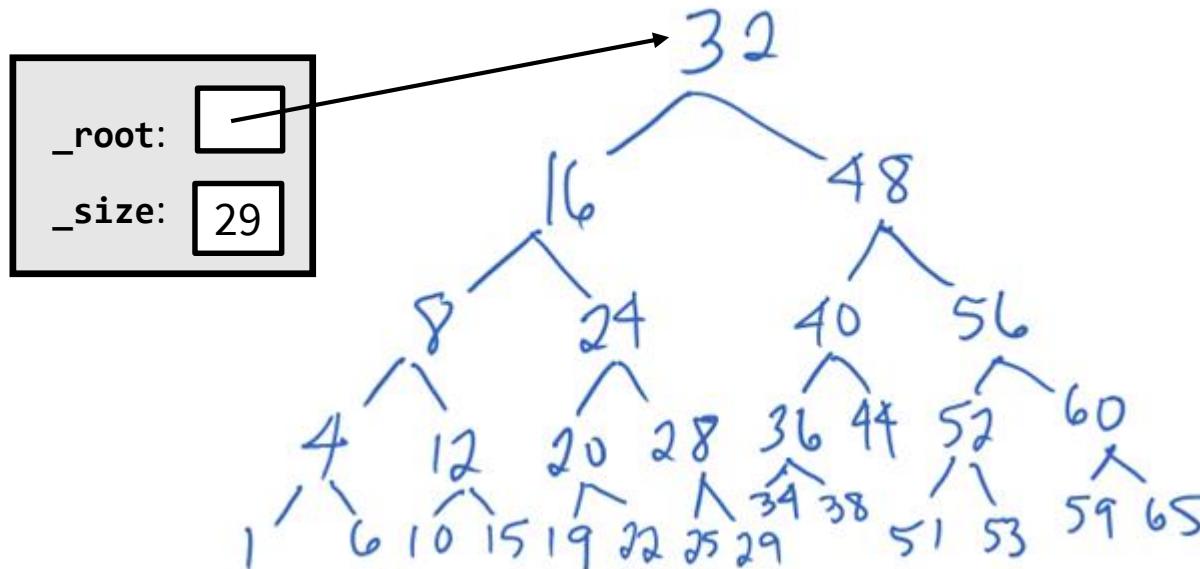
- What about the next step? (and the front half of our list, lol)
- Well, we could have the middle element point to the middle element of both the left half and the right half, so the 2nd step of our binary search is easy/fast too!



- Keep doing this until all elements have pointers to the middle of what remains to their left/right sides...voila!

An Idealized Binary Search Tree

- Our class will have a pointer to the median element*, and each element has pointers to the medians of everything to their left and right
 - * actually it's hard to guarantee it will be the exact middle element, more on this, and lots more about Binary Search Trees, next time!



Binary Search Trees

IMPLEMENTING THE **MAP**
INTERFACE WITH BINARY
SEARCH TREES

The centrality of search for Map interface

- The Map implementation should be **highly optimized** for finding a key amongst its collection of keys (to access the associated value)
 - › Hence looking at binary search a moment ago—very fast search!
- One difference: a map has **keys** and **values**
- So remember our binary search array?

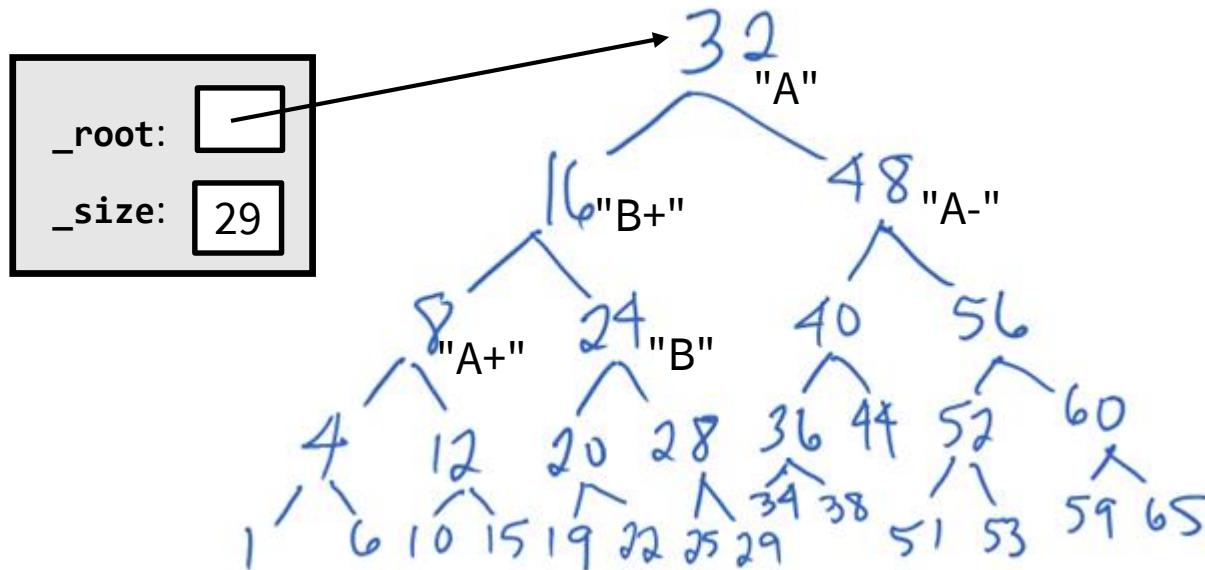
0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

- Now imagine each number stored in here is a key, and has a value attached to it:

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95
"A"	"B+"	"A-"	"B"	"C+"	"A+"	"A-"	"A"	"B-"	"A"	"A"

The centrality of search for Map interface

- And each number stored in here is a key, and has a value attached to it (not all pictured)



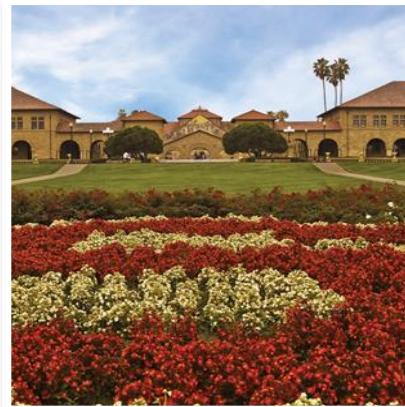
Implementing Map interface with a Binary Search Tree (BST)

- Binary Search Tree is one option for implementing Map
 - › C++'s Standard Template Library (STL) uses a Red-Black tree (a type of BST) for their map
 - › Stanford library also uses a BST
- Another Map implementation is a hash table
 - › We will talk about this later!
 - › This is what Stanford's HashMap uses

TreeMap

THIS IS BASICALLY THE SAME
AS STANFORD MAP.

HERE IN CLASS WE'LL CALL IT
TREEMAP JUST TO BE EXPLICIT
ABOUT ITS IMPLEMENTATION.



tree-map.h

```
template <typename Key, typename Value>
class TreeMap {
public:
    TreeMap();
    ~TreeMap();

    bool isEmpty() const;
    int size() const;
    bool containsKey(const Key& key) const;
    void put(const Key& key, const Value& value);
    Value get(const Key& key) const;
    Value& operator[](const Key& key);
//...(continued on next slide)
```

TreeMap

tree-map.h

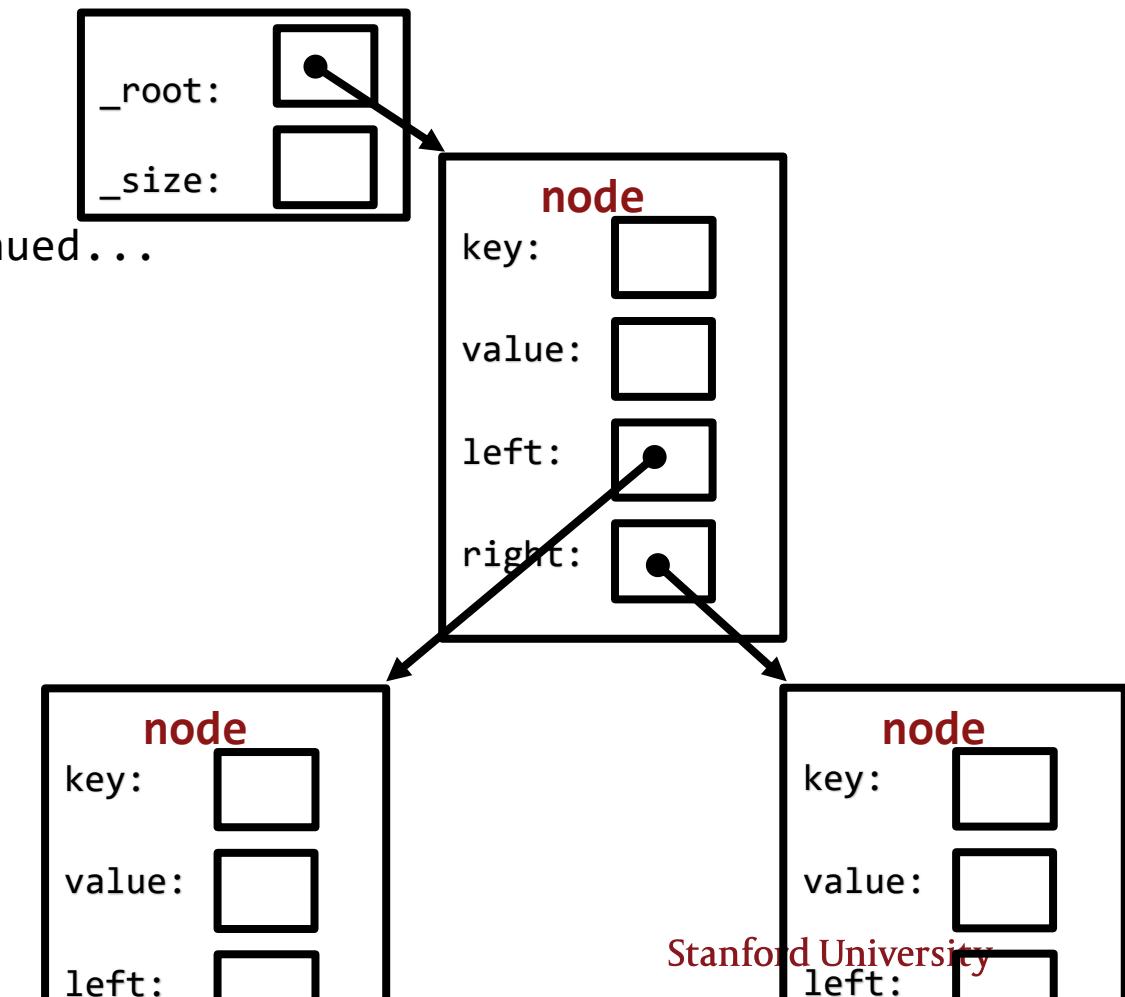
```
// class TreeMap continued...
```

```
private:
```

```
    struct node {  
        Key    key;  
        Value  value;  
        node* left;  
        node* right;  
    };
```

```
    int    _size;  
    node* _root;
```

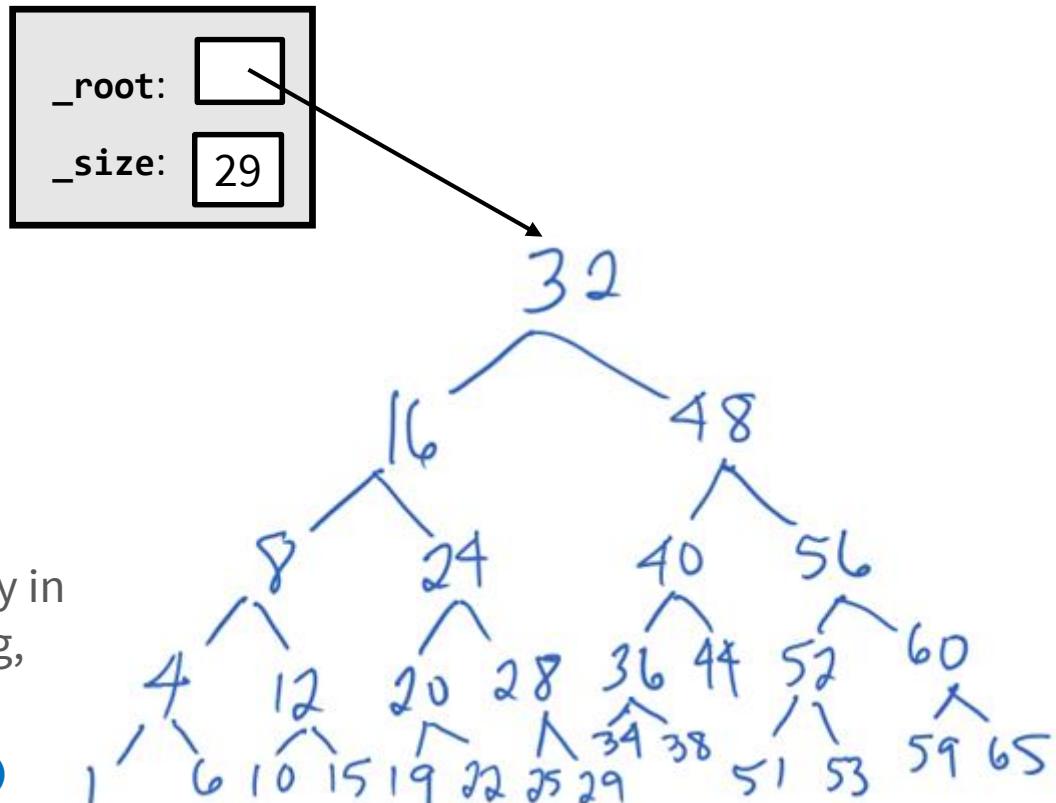
```
};
```



BST put()

Pretty simple!

- If key > node's key
 - Go right!
- If key < node's key
 - Go left!
- If there is nothing currently in the direction you are going, that's where you end up
- **Example: put(23, value)**



Question about our BST put() algorithm:

Pretty simple!

- If key > node's key
 - › Go right!
- If key < node's key
 - › Go left!

FAQ. What do we do if the key is equal to the node's key?

Stanford Map example:

```
Map<int, string> mymap;  
mymap.put(5, "five");  
mymap.put(5, "cinco");      // what should happen?  
cout << mymap.get(5) << endl; // what should print?
```

BST put() algorithm:

- If key > node's key
 - › Go right! (if doesn't exist—place here)
- If key < node's key
 - › Go left! (if doesn't exist—place here)
- If key is equal, update value here.

BST put()

```
If key > node's key  
  Go right! (if doesn't exist—place here)  
If key < node's key  
  Go left! (if doesn't exist—place here)  
If key is equal, update value here.
```

Insert: 22, 9, 34, 18, 3

Your Turn: How many of these result in the same tree structure as above?

22, 34, 9, 18, 3

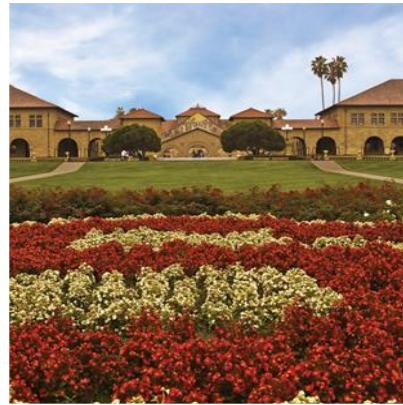
22, 18, 9, 3, 34

22, 9, 3, 18, 34

- A. None of these
- B. 1 of these
- C. 2 of these
- D. All of these

BST Big-O Performance

WHAT CAN WE EXPECT FROM A
BST-BASED MAP?



Your Turn: What is the worst case cost for doing `containsKey()` in a BST?

- A. $O(1)$
- B. $O(\log n)$
- C. $O(n)$
- D. $O(n \log n)$
- E. $O(n^2)$

What is the worst case cost for doing `containsKey()` in a BST *if the BST is balanced?*

$O(\log N)$ —awesome!

BSTs are **great** when balanced

BSTs are **bad** when unbalanced

- ...and Balance depends on order of insert of elements...
- ...but user controls this, not “us” (author of the Map class)...
- ...no way for “us” (author of Map class) to ensure our Map doesn’t perform terribly ☹ ☹

Your Turn: how many worst-case BSTs are there?

One way to create a bad BST is to insert the elements in *decreasing* order: 34, 22, 9, 3
That's not the only way...

How many **distinctly structured** BSTs are there that exhibit the worst case height (worst case is where height equals number of nodes) for a tree with the 4 nodes listed above?

- A. 1-3
- B. 4-5
- C. 6-7
- D. 8-9
- E. More than 9

Bonus question: general formula for any BST of size n ?

Extra bonus question (CS109): what is this as a fraction of all trees (i.e., probability of worst-case tree).

BST and Heap quick recap/cheat sheet

IT CAN BE EASY TO GET
CONFUSED BETWEEN BST AND
HEAP—HERE'S A QUICK
GUIDE!

BST and Heap Facts (cheat sheet)

Heap (Priority Queue)

- **Structure:** must be “complete”
- **Order:** parent priority must be \leq both children
 - › This is for min-heap, opposite is true for max-heap
 - › No rule about whether left child is $>$ or $<$ the right child
- **Big-O:** guaranteed $\log(n)$ enqueue and dequeue
- **Operations:** always add to end of array and then “bubble up”; for dequeue do “trickle down”

BST (Map)

- **Structure:** any valid binary tree
- **Order:** $\text{leftchild.key} < \text{self.key} < \text{rightchild.key}$
 - › No duplicate keys
 - › Because it’s a Map, values go along for the ride w/keys
- **Big-O:** $\log(n)$ if balanced, but might not be balanced, then $O(n)$
- **Operations:** recursively repeat: start at root and go left if $\text{key} < \text{root}$, go right if $\text{key} > \text{root}$