Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= This time:

>

>

>

>

>

Starting with a dream: binary search in a linked list?
How our dream provided the inspiration for the BST
Map implemented as a Binary Search Tree (BST)
BST insert

Big-O analysis of BST

= Nexttime:

>

>

>

BST balance issues
Tree traversals

* Pre-order, In-order, Post-order, Breadth-first
Applications of tree traversals

Stanford University

From last time:
Binary Search in a Linked
List?

EXPLORING A GOOD IDEA,
FINDING WAY TO MAKE IT
WORK

Stanford University

Recall our beautiful algorithm: binary search!

0 11 |2 [3 |4 |5 |6 |7 |8 |9 [10_
2 7 8 13 25 29 33 90 95

51 89

= How long does it take us to find data in a sorted array?
> Use binary search!
> O(logn): awesome!!

= Big downside: O(N) insert, to keep the array sorted

Stanford University

Q. Can we do binary search on a linked list?

A. No.

The nodes are spread all over memory, and we must follow “next”
pointers one at a time to navigate (the treasure hunt).

Therefore cannot jump right to the middle.
Therefore cannot do binary search.
Find is O(N): not terrible, but pretty bad compared to O(logn) or O(1)

Let’s brainstorm a wild idea and then see if we can make it work

Stanford University

“What if...?”
The inspiration for Binary Search Trees

= Whatif...

= ...instead of having a _front pointer in our linked list, we had a pointer to
the element we want to look at first in binary search: the exact

median/middle element?
ata next data next data next data next data next data next data next

HE

_median:

_size: 7

= That would make the first step of our binary search really fast/easy!
= What about the next step? (and the front half of our list, lol)
Stanford University

“What if...?”
The inspiration for Binary Search Trees

= What about the next step? (and the front half of our list, lol)

= Well, we could have the middle element point to the middle element of
both the left half and the right half, so the 2"d step of our binary search is
easy/fast too!

data next data next data next data next data next data next

_median:

_size: 7

= Keep doing this until all elements have pointers to the middle of what
remains to their left/right sides...voila! Stanford University

An Idealized Binary Search Tree

= Qurclass will have a pointer to the median element®, and each element has
pointers to the medians of everything to their left and right

> *actually it’s hard to guarantee it will be the exact middle element, more on
this, and lots more about Binary Search Trees, next time!

29
root: /’//'\
(. 43

?/\34 40 S(,

A N
,2 79 1% ZL ﬁ /53 Q?\

44 \
]/ G (0 l§t¢i3ﬁ9/$\g°\ 7’%5’1 53 09 S

_size: | 29

Stanford University

Binary Search Trees

IMPLEMENTING THE MAP
INTERFACE WITH BINARY
SEARCH TREES

Stanford University

The centrality of search for Map interface

The Map implementation should be highly optimized for finding a
key amongst its collection of keys (to access the associated value)

> Hence looking at binary search a moment ago—very fast search!
= Onedifference: a map has keys and values
= Soremember our binary search array?
0 11 [2 (3 4 |5 [6 [7 8]9 10
2 7 8 13 25 29 33 51 89 90 95

= Now imagine each number stored in here is a key, and has a value
attached to it:

0 11 |2 [3 14 |5 |6 |7 |8 |9 |10
2 7 8 13 25 29 33 51 89 90 95

llAll ((B+ll IIA_II “BII ((C+l| IIA+II llA_ll IIAII “B_ll ||All IIAII Stanford University

The centrality of search for Map interface

= And each number stored in here is a key, and has a value attached to
it (not all pictured)

/ 3 QAH

_root: - /\
_size: | 29 I(p"B_I_u 4?"A_n
g Iduge 40 SL
4 12 g0 2% &‘1‘(/‘5? o
)/ \(.o fo/\lﬁrcfy\yagsg\% g) 53 2T 6S

Stanford University

Implementing Map interface with a Binary Search Tree (BST)

= Binary Search Tree is one option for implementing Map

> C++’s Standard Template Library (STL) uses a Red-Black tree (a type of
BST) for their map

> Stanford library also uses a BST

= Another Map implementationis a hash table
> We will talk about this later!
> This is what Stanford’s HashMap uses

Stanford University

TreeMap

THIS IS BASICALLY THE SAME
AS STANFORD MAP.
HERE IN CLASS WE’LL CALL IT

TREEMAP JUST TO BE EXPLICIT
ABOUT ITS IMPLEMENTATION.

Stanford University

tree-map.h

template <typename Key, typename Value>
class TreeMap {
public:

TreeMap();

~TreeMap();

bool isEmpty() const;

int size() const;

bool containsKey(const Key& key) const;

void put(const Key& key, const Value& value);

Value get(const Key& key) const;

Value& operator[](const Key& key);
//...(continued on next slide)

Stanford University

TreeMap

tree-map.h oot
_size: D node
// class TreeMap continued... key: [::]
private:
struct node { value: [::]
ey key; left:
Value value;
node* left; i
node* right;
}s
int _size; node node
node* _root; key: [::] key:
}. value: D value: D
5

| 1oft- |_| _ Stanfold Umversr_y—l

Pretty simple!

BST put()

_root:

_size:

3

If key > node’s key
> Goright!

If key < node’s key
> Go left!

If there is nothing currently in
the direction you are going,
that’s where you end up

Example: put(23, value)

|

¥ok I
G0 15190 529

39
PN

(. 49
A
/"/\Q‘* Y
\
2 g a7 S 576

/
I~ /\343%5/, \5‘5 54 6S

Stanford University

Question about our BST put () algorithm:

Pretty simple!

= |f key > node’s key
> Goright!

= |f key <node’s key
> Go left!

FAQ. What do we do if the key is equal to the node’s key?

Stanford Map example:

Map<int, string> mymap;

mymap.put(5, "five");

mymap.put(5, "cinco"); // what should happen?
cout << mymap.get(5) << endl; // what should print?

Stanford University

BST put() algorithm:

» |f key > node’s key

> Goright! (if doesn’t exist—place here)
» |f key <node’s key

> Go left! (if doesn’t exist—place here)
= |f keyis equal, update value here.

Stanford University

BST put()

Insert: 22,9, 34, 18, 3

If key > node’s key

Go right! (if doesn’t exist—place here)
If key < node’s key

Go left! (if doesn’t exist—place here)
If key is equal, update value here.

Your Turn: How many of these result in the same tree structure as above?

22,34,9,18, 3

22,18,9, 3, 34
22,9, 3,18, 34

A
B.
C
D

None of these
1 of these

2 of these

All of these

Stanford University

BST Big-O Performance

WHAT CAN WE EXPECT FROM A
BST-BASED MAP?

Stanford University

Your Turn: What is the worst case cost for doing containskey ()
ina BST?

moow>»
/-\/-O\/-\/-\
=

Stanford University

What is the worst case cost for doing containsKey()
in a BST if the BST is balanced?

O(logN)—awesome!

BSTs are great when balanced
BSTs are bad when unbalanced

= ...and Balance depends on order of insert of elements...
= ...but user controls this, not “us” (author of the Map class)...

= ...noway for “us” (author of Map class) to ensure our Map doesn’t
perform terribly ® ®

Stanford University

Your Turn: how many worst-case BSTs are there?

One way to create a bad BST is to insert the elements in decreasing order: 34, 22,9, 3
That’s not the only way...

How many distinctly structured BSTs are there that exhibit the worst case height (worst
case is where height equals number of nodes) for a tree with the 4 nodes listed above?

A. 1-3
B. 4-5
C. 6-7
D. 8-9
E. Morethan9

Bonus question: general formula for any BST of size n?

Extra bonus question (CS109): what is this as a fraction of all trees (i.e., probability of worst -
case tree).

Stanford University

BST and Heap quick
recap/cheat sheet

IT CAN BE EASY TO GET
CONFUSED BETWEEN BST AND
HEAP—-HERE’S A QUICK
GUIDE!

Stanford University

BST and Heap Facts (cheat sheet)

Heap (Priority Queue) BST (Map)
= Structure: must be “complete” = Structure: any valid binary tree
» Order: parent priority must be <= » Order: leftchild.key < self.key <
both children rightchild.key
> This is for min-heap, opposite is > No duplicate keys

true for max-heap

> No rule about whether left child
is > or <theright child

» Big-O: guaranteed log(n) enqueue

> Because it’s a Map, values go
along for the ride w/keys

= Big-O: log(n) if balanced, but might

and dequeue not be balanced, then O(n)

= Qperations: always add to end of = QOperations: recursively repeat: start
array and then “bubble up”; for at root and go left if key < root, go
dequeue do “trickle down” right if key > root

Stanford University

