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Topics:

= This time:

>

>

>

>

>

Starting with a dream: binary search in a linked list?
How our dream provided the inspiration for the BST
Map implemented as a Binary Search Tree (BST)
BST insert

Big-O analysis of BST

= Nexttime:

>

>

>

BST balance issues
Tree traversals

* Pre-order, In-order, Post-order, Breadth-first
Applications of tree traversals

Stanford University



From last time:
Binary Search in a Linked
List?

EXPLORING A GOOD IDEA,
FINDING WAY TO MAKE IT
WORK
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Recall our beautiful algorithm: binary search!

0 11 |2 [3 |4 |5 |6 |7 |8 |9 [10_
2 7 8 13 25 29 33 90 95

51 89

= How long does it take us to find data in a sorted array?
> Use binary search!
> O(logn): awesome!!

= Big downside: O(N) insert, to keep the array sorted
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Q. Can we do binary search on a linked list?

A. No.

The nodes are spread all over memory, and we must follow “next”
pointers one at a time to navigate (the treasure hunt).

Therefore cannot jump right to the middle.
Therefore cannot do binary search.
Find is O(N): not terrible, but pretty bad compared to O(logn) or O(1)

Let’s brainstorm a wild idea and then see if we can make it work
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“What if...?”
The inspiration for Binary Search Trees

=  Whatif...

= ...instead of having a _front pointer in our linked list, we had a pointer to
the element we want to look at first in binary search: the exact

median/middle element?
ata next data next data next data next data next data next data next

HE

_median:

_size: 7

= That would make the first step of our binary search really fast/easy!
= What about the next step? (and the front half of our list, lol)
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“What if...?”
The inspiration for Binary Search Trees

= What about the next step? (and the front half of our list, lol)

=  Well, we could have the middle element point to the middle element of
both the left half and the right half, so the 2"d step of our binary search is
easy/fast too!

data next data next data next data next data next data next

_median:

_size: 7

= Keep doing this until all elements have pointers to the middle of what
remains to their left/right sides...voila! Stanford University




An Idealized Binary Search Tree

= Qurclass will have a pointer to the median element®, and each element has
pointers to the medians of everything to their left and right

> *actually it’s hard to guarantee it will be the exact middle element, more on
this, and lots more about Binary Search Trees, next time!
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Binary Search Trees

IMPLEMENTING THE MAP
INTERFACE WITH BINARY
SEARCH TREES
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The centrality of search for Map interface

The Map implementation should be highly optimized for finding a
key amongst its collection of keys (to access the associated value)

> Hence looking at binary search a moment ago—very fast search!
= Onedifference: a map has keys and values
= Soremember our binary search array?
0 11 [2 (3 4 |5 [6 [7 8 ]9 10
2 7 8 13 25 29 33 51 89 90 95

= Now imagine each number stored in here is a key, and has a value
attached to it:

0 11 |2 [3 14 |5 |6 |7 |8 |9 |10
2 7 8 13 25 29 33 51 89 90 95
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The centrality of search for Map interface

= And each number stored in here is a key, and has a value attached to
it (not all pictured)
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Implementing Map interface with a Binary Search Tree (BST)

= Binary Search Tree is one option for implementing Map

> C++’s Standard Template Library (STL) uses a Red-Black tree (a type of
BST) for their map

> Stanford library also uses a BST

= Another Map implementationis a hash table
> We will talk about this later!
> This is what Stanford’s HashMap uses
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TreeMap

THIS IS BASICALLY THE SAME
AS STANFORD MAP.
HERE IN CLASS WE’LL CALL IT

TREEMAP JUST TO BE EXPLICIT
ABOUT ITS IMPLEMENTATION.
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tree-map.h

template <typename Key, typename Value>
class TreeMap {
public:

TreeMap();

~TreeMap();

bool isEmpty() const;

int size() const;

bool containsKey(const Key& key) const;

void put(const Key& key, const Value& value);

Value get(const Key& key) const;

Value& operator[](const Key& key);
//...(continued on next slide)
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TreeMap

tree-map.h oot
_size: D node
// class TreeMap continued... key: [::]
private:
struct node { value: [::]
ey key; left:
Value value;
node* left; i
node* right;
}s
int _size; node node
node* _root; key: [::] key:
}. value: D value: D
5

| 1oft- |_| _ Stanfold Umversr_y—l




Pretty simple!

BST put()

_root:

_size:

3

If key > node’s key
> Goright!

If key < node’s key
> Go left!

If there is nothing currently in
the direction you are going,
that’s where you end up

Example: put(23, value)
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Question about our BST put () algorithm:

Pretty simple!

= |f key > node’s key
> Goright!

= |f key <node’s key
> Go left!

FAQ. What do we do if the key is equal to the node’s key?

Stanford Map example:

Map<int, string> mymap;

mymap.put(5, "five");

mymap.put(5, "cinco"); // what should happen?
cout << mymap.get(5) << endl; // what should print?
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BST put() algorithm:

» |f key > node’s key

> Goright! (if doesn’t exist—place here)
» |f key <node’s key

> Go left! (if doesn’t exist—place here)
= |f keyis equal, update value here.
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BST put()

Insert: 22,9, 34, 18, 3

If key > node’s key

Go right! (if doesn’t exist—place here)
If key < node’s key

Go left! (if doesn’t exist—place here)
If key is equal, update value here.

Your Turn: How many of these result in the same tree structure as above?

22,34,9,18, 3

22,18,9, 3, 34
22,9, 3,18, 34

A
B.
C
D

None of these
1 of these

2 of these

All of these
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BST Big-O Performance

WHAT CAN WE EXPECT FROM A
BST-BASED MAP?
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Your Turn: What is the worst case cost for doing containskey ()
ina BST?
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What is the worst case cost for doing containsKey()
in a BST if the BST is balanced?

O(logN)—awesome!

BSTs are great when balanced
BSTs are bad when unbalanced

= ...and Balance depends on order of insert of elements...
= ...but user controls this, not “us” (author of the Map class)...

= ...noway for “us” (author of Map class) to ensure our Map doesn’t
perform terribly ® ®
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Your Turn: how many worst-case BSTs are there?

One way to create a bad BST is to insert the elements in decreasing order: 34, 22,9, 3
That’s not the only way...

How many distinctly structured BSTs are there that exhibit the worst case height (worst
case is where height equals number of nodes) for a tree with the 4 nodes listed above?

A. 1-3
B. 4-5
C. 6-7
D. 8-9
E. Morethan9

Bonus question: general formula for any BST of size n?

Extra bonus question (CS109): what is this as a fraction of all trees (i.e., probability of worst -
case tree).
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BST and Heap quick
recap/cheat sheet

IT CAN BE EASY TO GET
CONFUSED BETWEEN BST AND
HEAP—-HERE’S A QUICK
GUIDE!
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BST and Heap Facts (cheat sheet)

Heap (Priority Queue) BST (Map)
= Structure: must be “complete” = Structure: any valid binary tree
» Order: parent priority must be <= » Order: leftchild.key < self.key <
both children rightchild.key
> This is for min-heap, opposite is > No duplicate keys

true for max-heap

> No rule about whether left child
is > or <theright child

» Big-O: guaranteed log(n) enqueue

> Because it’s a Map, values go
along for the ride w/keys

= Big-O: log(n) if balanced, but might

and dequeue not be balanced, then O(n)

= Qperations: always add to end of = QOperations: recursively repeat: start
array and then “bubble up”; for at root and go left if key < root, go
dequeue do “trickle down” right if key > root
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