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Topics:

 This time:

› Starting with a dream: binary search in a linked list?

› How our dream provided the inspiration for the BST

› Map implemented as a Binary Search Tree (BST)

› BST insert

› Big-O analysis of BST

 Next time:

› BST balance issues

› Tree traversals

• Pre-order, In-order, Post-order, Breadth-first

› Applications of tree traversals
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From last time:
Binary Search in a Linked 

List?

E X P L O R I N G  A  G O O D  I D E A ,  
F I N D I N G  W A Y  T O  M A K E  I T  

W O R K



Recall our beautiful algorithm: binary search!

 How long does it take us to find data in a sorted array? 

› Use binary search!

› O(logn): awesome!!

 Big downside: O(N) insert, to keep the array sorted

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95



Q. Can we do binary search on a linked list?

A. No.

 The nodes are spread all over memory, and we must follow “next” 
pointers one at a time to navigate (the treasure hunt). 

 Therefore cannot jump right to the middle.

 Therefore cannot do binary search.

 Find is O(N): not terrible, but pretty bad compared to O(logn) or O(1)

Let’s brainstorm a wild idea and then see if we can make it work



“What if…?” 
The inspiration for Binary Search Trees

 What if…

 …instead of having a _front pointer in our linked list, we had a pointer to 
the element we want to look at first in binary search: the exact 
median/middle element?

 That would make the first step of our binary search really fast/easy!

 What about the next step? (and the front half of our list, lol)

data next

56

data next

24

data next

32

_median:

_size: 7

data next

40

data next

48

data next

8

data next

16



“What if…?” 
The inspiration for Binary Search Trees

 What about the next step? (and the front half of our list, lol)

 Well, we could have the middle element point to the middle element of 
both the left half and the right half, so the 2nd step of our binary search is 
easy/fast too!

 Keep doing this until all elements have pointers to the middle of what 
remains to their left/right sides…voila!

data next

56

data next

24 32

_median:

_size: 7

data next

40

data next

48

data next

8

data next
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 Our class will have a pointer to the median element*, and each element has 
pointers to the medians of everything to their left and right

› * actually it’s hard to guarantee it will be the exact middle element, more on 
this, and lots more about Binary Search Trees, next time!

An Idealized Binary Search Tree

_root:

_size: 29



Binary Search Trees

I M P L E M E N T I N G  T H E  M A P  
I N T E R F A C E  W I T H  B I N A R Y  

S E A R C H  T R E E S



The centrality of search for Map interface

 The Map implementation should be highly optimized for finding a 
key amongst its collection of keys (to access the associated value)

› Hence looking at binary search a moment ago—very fast search!

 One difference: a map has keys and values

 So remember our binary search array? 

 Now imagine each number stored in here is a key, and has a value 
attached to it:

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

"A" “B+" "A-" “B" “C+" "A+" "A-" "A" “B-" "A" "A"



The centrality of search for Map interface

 And each number stored in here is a key, and has a value attached to 
it (not all pictured)

_root:

_size: 29

"A"

"B+" "A-"

"A+" "B"



Implementing Map interface with a Binary Search Tree (BST)

 Binary Search Tree is one option for implementing Map

› C++’s Standard Template Library (STL) uses a Red-Black tree (a type of 
BST) for their map

› Stanford library also uses a BST

 Another Map implementation is a hash table 

› We will talk about this later! 

› This is what Stanford’s HashMap uses



TreeMap

T H I S  I S  B A S I C A L L Y  T H E  S A M E  
A S  S T A N F O R D  M A P .

H E R E  I N  C L A S S  W E ’ L L  C A L L  I T  
T R E E M A P J U S T  T O  B E  E X P L I C I T  

A B O U T  I T S  I M P L E M E N T A T I O N .



tree-map.h

template <typename Key, typename Value> 
class TreeMap { 
public: 

TreeMap(); 
~TreeMap(); 

bool isEmpty() const;
int size() const;
bool containsKey(const Key& key) const; 
void put(const Key& key, const Value& value); 
Value get(const Key& key) const; 
Value& operator[](const Key& key);

//...(continued on next slide)



tree-map.h

// class TreeMap continued...

private: 

struct node { 

Key   key; 

Value value; 

node* left;

node* right; 

}; 

int _size; 

node* _root; 

}; 

key:

value:

left:

right:

_root:

_size:

TreeMap

node

key:

value:

left:

node
key:

value:

left:

node



BST put()
_root:

_size: 29

Pretty simple!

 If key > node’s key

› Go right!

 If key < node’s key

› Go left!

 If there is nothing currently in 
the direction you are going, 
that’s where you end up

 Example: put(23, value)



Question about our BST put() algorithm:

FAQ. What do we do if the key is equal to the node’s key?

Stanford Map example:

Map<int, string> mymap;

mymap.put(5, "five");

mymap.put(5, "cinco");        // what should happen?

cout << mymap.get(5) << endl; // what should print?

Pretty simple!

 If key > node’s key

› Go right!

 If key < node’s key

› Go left!



BST put() algorithm:

 If key > node’s key

› Go right! (if doesn’t exist—place here)

 If key < node’s key

› Go left! (if doesn’t exist—place here)

 If key is equal, update value here.



BST put()

Insert: 22, 9, 34, 18, 3

Your Turn: How many of these result in the same tree structure as above?

22, 34, 9, 18, 3

22, 18, 9, 3, 34

22, 9, 3, 18, 34

A. None of these
B. 1 of these
C. 2 of these
D. All of these

If key > node’s key
Go right! (if doesn’t exist—place here)

If key < node’s key
Go left! (if doesn’t exist—place here)

If key is equal, update value here.



BST Big-O Performance

W H A T  C A N  W E  E X P E C T  F R O M  A  
B S T - B A S E D  M A P ?



Your Turn: What is the worst case cost for doing containsKey() 
in a BST?

A. O(1)

B. O(log n)

C. O(n)

D. O(n log n)

E. O(n2)



What is the worst case cost for doing containsKey() 
in a BST if the BST is balanced?

O(logN)—awesome!

BSTs are great when balanced 

BSTs are bad when unbalanced

 …and Balance depends on order of insert of elements…

 …but user controls this, not “us” (author of the Map class)…

 …no way for “us” (author of Map class) to ensure our Map doesn’t 
perform terribly 



Your Turn: how many worst-case BSTs are there?

One way to create a bad BST is to insert the elements in decreasing order: 34, 22, 9, 3

That’s not the only way…

How many distinctly structured BSTs are there that exhibit the worst case height (worst 
case is where height equals number of nodes) for a tree with the 4 nodes listed above?

A. 1-3

B. 4-5

C. 6-7

D. 8-9

E. More than 9

Bonus question: general formula for any BST of size n?

Extra bonus question (CS109): what is this as a fraction of all trees (i.e., probability of worst -
case tree).



BST and Heap quick 
recap/cheat sheet

I T  C A N  B E  E A S Y  T O  G E T  
C O N F U S E D  B E T W E E N  B S T  A N D  

H E A P — H E R E ’ S  A  Q U I C K  
G U I D E !
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BST and Heap Facts (cheat sheet)

Heap (Priority Queue)

 Structure: must be “complete”

 Order: parent priority must be <= 
both children 

› This is for min-heap, opposite is 
true for max-heap

› No rule about whether left child 
is > or < the right child

 Big-O: guaranteed log(n) enqueue
and dequeue

 Operations: always add to end of 
array and then “bubble up”; for 
dequeue do “trickle down”

BST (Map)

 Structure: any valid binary tree

 Order: leftchild.key < self.key < 
rightchild.key

› No duplicate keys

› Because it’s a Map, values go 
along for the ride w/keys

 Big-O: log(n) if balanced, but might 
not be balanced, then O(n)

 Operations: recursively repeat: start 
at root and go left if key < root, go 
right if key > root


