Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Map implemented as a Binary Search Tree (BST)

>

>

>

>

> BST balance issues
= Traversals

> Pre-order, In-order, Post-order, Breadth-first
= Applications of Traversals

Stanford University

BST and Heap Facts (cheat sheet)

Heap (Priority Queue)
= Structure: must be “complete”

= Order: parent priority must be <=
both children

> This is for min-heap, opposite is
true for max-heap
> No rule about whether left child
is > or <theright child
» Big-O: guaranteed log(n) enqueue
and dequeue
= Qperations: always add to end of

array and then “bubble up”; for
dequeue do “trickle down”

BST (Map)

Structure: any valid binary tree

Order: leftchild.key < self.key <
rightchild. key

> No duplicate keys

> Because it’s a Map, values go
along for the ride w/keys

Big-0: log(n) if balanced, but might

not be balanced, then O(n)

Operations: recursively repeat: start

atroot and go left if key < root,
and go rightif key > root

Stanford University

BST Balance Strategies

WE NEED TO BALANCE THE
TREE TO KEEP PERFORMANCE
O(LOGN) INSTEAD OF O(N)

Stanford University

Step 1: understanding
validity and equivalence
in BSTs

AVL ROTATIONS: A KEY TO
OUR REBALANCING
ALGORITHMS

Stanford University

AVL rotations: BST-order-preserving movement of nodes

= HereisaBinary Search Tree whose keys I’'m
not going to show you

> (but the nodes have colors/textures so you
can tell them apart)

= Let’s pause and think about what we know
must be true

Stanford University

. o
AVL rotations

= HereisaBinary Search Tree whose keys I’'m
not going to show you

> (but the nodes have colors/textures so you
can tell them apart)

» Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key

If key > node’s key

Go right! (if doesn’t exist—place here)
If key < node’s key

Go left! (if doesn’t exist—place here)
If key is equal, update value here.

Stanford University

. o
AVL rotations

= HereisaBinary Search Tree whose keys I’'m
not going to show you

> (but the nodes have colors/textures so you
can tell them apart)

» Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key
2. Cardinal’s key > all 7 keys to its left!

If key > node’s key

Go right! (if doesn’t exist—place here)
If key < node’s key

Go left! (if doesn’t exist—place here)
If key is equal, update value here.

Stanford University

. o
AVL rotations

= HereisaBinary Search Tree whose keys I’'m
not going to show you

> (but the nodes have colors/textures so you
can tell them apart)

» Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key
2. Cardinal’s key > all 7 keys to its left!
3. Green’s key <blue’s key < cardinal’s key

If key > node’s key

Go right! (if doesn’t exist—place here)
If key < node’s key

Go left! (if doesn’t exist—place here)
If key is equal, update value here.

Stanford University

. put() algorithm Go right! (if doesn’t exist—place here)
AVL rotations If key < node’s key

)] Go left! (if doesn’t exist—place here)
= Hereis aBinary Search Tree whose keys I’'m If key is equal, update value here.

not going to show you

> (but the nodes have colors/textures so you
can tell them apart)

» Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key
2. Cardinal’s key > all 7 keys to its left!
3. Green’s key <blue’s key < cardinal’s key

*= Those are just a few examples of the kind of
reasoning you’ll want to use for this
exercise...

Stanford University

Original
(valid BST):

AVL rotations

= Your turn: Which of the trees below are still
in BST order? (list all that apply)

Stanford University

AVL rotations

2/3 are actual AVL rotations!

In this case, our BST started balanced, so
the rotations made the less balanced. But

also useful ‘ for balancing.

(invalid)

Original
(valid BST):

Stanford University

Left-Left AVL Rotation

Original (valid but unbalanced BST):

= Right-Rightis just the mirrorimage

Left-Left rotation (restores balance):

Stanford University

Right-Left AVL Rotation

Original (valid but unbalanced BST):

= Left-Rightis just the mirrorimage

Right-Left rotation (restores balance):

Stanford University

A few BST balance strategies

AVL tree
> Uses AVL rotations to guarantee balance
Red-Black tree

> Uses AVL rotations to guarantee balance is off by no more than a constant
factor (longest path from root to leaf can be at most 2x the shortest path)

Treap

> Each node has *two* keys and a value, one is BST key, one is a min-heap
key, both kinds of trees’ order properties are maintained (!!!)

> Insert nodes according to BST keys and BST order

> Then use AVL rotations to “bubble up” the newly inserted node as needed
to restore the min-heap order property on the min-heap keys

> What could be cooler than that, amirite? ® © ® ©

Stanford University

Video: http://www.youtube.com/watch?v=vDHFF4wjWYU

Red-Black trees

Every simple path from a given node to any of its
descendant leaves contains the same number of
black nodes.

= (Thisis what guarantees “close” to balance)

Stanford University

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. http://commons.wikimedia.org/wiki/File:Red-black tree example.svg

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg
http://www.youtube.com/watch?v=vDHFF4wjWYU

Other fun types of BST

Splay tree

= Ratherthan only worrying about balance, Splay Tree dynamically
readjusts node placement based on how often users search for
an item. Most commonly-searched items rotate towards the root,
saving time.

> Example: if Google did this, “Bieber” would be near the root,
and “splay tree” would be further down by the leaves

B-Tree

= Like BST, but a node can have many children, not just two

= More branching means an even “flatter” (shorter height) tree
= Used for huge databases

Stanford University

Tree Traversals!

THESE ARE FOR ANY BINARY
TREES, BUT WE OFTEN DO
THEM ON BSTS

Stanford University

Your Turn: What does this print?

(assume we call traverse on the root node to start)

void traverse(Node* node) {
if (node != nullptr) {
cout << node->key << " "
traverse(node->left);
traverse(node->right);

}} O
ABCDEF 6 G

A.

B. ABDECF

C. DBEFCA (0) (E) (F)
D. DEBFCA

E. Other/none/more

Stanford University

Your Turn: What does this print?

(assume we call traverse on the root node to start)

void traverse(Node* node) {
if (node != nullptr) {
traverse(node->left);
traverse(node->right);
cout << node->key << " ";

J

}} O
ABCDEF 6 G

A.

B. ABDECF

C. DBEFCA (0) (E) (F)
D. DEBFCA

E. Other/none/more

Stanford University

Your Turn: What does this print?

(assume we call traverse on the root node to start)

void traverse(Node* node) {
if (node != nullptr) {
traverse(node->left);

cout << node->key << 5
traverse(node->right);

) (5

}

A. 124589 e e
B. 142985

C. 5214809 (1) (a) (9)
D. 52814059

E. Other/none/more

Stanford University

Applications of Tree
Traversals

BEAUTIFUL LITTLE THINGS
FROM AN

ALGORITHMS/THEORY
STANDPOINT, BUT THEY HAVE
A PRACTICAL SIDE TOO!

Stanford University

Traversals a very commonly-used tool in your CS toolkit

void traverse(Node* node) {
if (node != NULL) {
traverse(node->left);
// "do something”
traverse(node->right);

= Customize and move around the “do something,” and that’s the basis for
dozens of algorithms and applications

Stanford University

Stanford Library Map

= Remember how when you iterate over the Stanford library Map you get the
keys in sorted order?

> (we used this for the word occurrence counting code example in class)
= Now you know why it can do that in O(N) time!

> Stanford library Map is a BST

> In-order traversal on BST!

Stanford University

Your Turn: Applications of the traversals

= You are writing the destructor for a BST class. Given a pointer to the
root, it needs to free each node. Which traversal would form the
foundation of your destructor algorithm?

A. Pre-order

_size:| 6

B. In-order

C. Post-order _root:| 4

D. Somethingelse

void bstDestructorRecursiveHelper(Node *node) { e
if (node != nullptr) {

delete node; // pre-order e @
bstDestructorRecursiveHelper(node->left);
delete node; // in-order

bstDestructorRecursiveHelper(node->right); e Q @
delete node; // post-order

} Stanford University

Applications of the traversals

= You are writing the destructor for a BST class. Given a pointer to the
root, it needs to free each node. Which traversal would form the
foundation of your destructor algorithm?

» If we do pre-order, we dereference the node _size:| 6
pointer after delete—bad!!

> Same problem if we do in-order _root:| 4

> Post-order avoids this problem

void bstDestructorRecursiveHelper(Node *node) { e
if (node != nullptr) {

delete node; // pre-order 9 e
bstDestructorRecursiveHelper(node->left);
bstDestructorRecursiveHelper(node->right);

; O ® O

Stanford University

Applications of the traversals

= You are writing the destructor for a BST class. Given a pointer to the
root, it needs to free each node. Which traversal would form the
foundation of your destructor algorithm?

> Post-order is a good choice, because we _size:| 6
need to use the node’s fields to recurse

> Don’t want to delete fields before we use them! _root:| 4
/
void bstDestructorRecursiveHelper(Node *node) { e
if (node != nullptr) {
bstDestructorRecursiveHelper(node->left); 9 @
bstDestructorRecursiveHelper(node->right);

delete node; // post-order
} ©
\ O @

Stanford University

Breadth-First Tree Traversal

A somewhat different kind of traversal

Stanford University

How can we get code to print top-to-bottom, left-to-right order?

void traverse(Node* node) { e
if (node != nullptr) {
?? cout << node->key << " ";
traverse(node->left); e G
traverse(node->right);

) L ©® ©

}

You can’t do it by using this code and moving around the cout—we already tried
moving the cout to all 3 possible places and it didn’t print breadth-first order

= You can butyou use a queue instead of recursion
= “Breadth-first” search you’ve seen on previous assignments
= Again we see this key theme of BFS (queue) vs DFS (stack/recursion)!

Stanford University

