
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 Map implemented as a Binary Search Tree (BST)

› Starting with a dream: binary search in a linked list?

› How our dream provided the inspiration for the BST

› BST insert

› Big-O analysis of BST

› BST balance issues

 Traversals

› Pre-order, In-order, Post-order, Breadth-first

 Applications of Traversals

2

3

BST and Heap Facts (cheat sheet)

Heap (Priority Queue)

 Structure: must be “complete”

 Order: parent priority must be <=
both children

› This is for min-heap, opposite is
true for max-heap

› No rule about whether left child
is > or < the right child

 Big-O: guaranteed log(n) enqueue
and dequeue

 Operations: always add to end of
array and then “bubble up”; for
dequeue do “trickle down”

BST (Map)

 Structure: any valid binary tree

 Order: leftchild.key < self.key <
rightchild.key

› No duplicate keys

› Because it’s a Map, values go
along for the ride w/keys

 Big-O: log(n) if balanced, but might
not be balanced, then O(n)

 Operations: recursively repeat: start
at root and go left if key < root,
and go right if key > root

BST Balance Strategies

W E N E E D T O B A L A N C E T H E
T R E E T O K E E P P E R F O R M A N C E

O (L O G N) I N S T E A D O F O (N)

Step 1: understanding
validity and equivalence

in BSTs

A V L R O T A T I O N S : A K E Y T O
O U R R E B A L A N C I N G

A L G O R I T H M S

AVL rotations: BST-order-preserving movement of nodes

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

AVL rotations

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key

If key > node’s key
Go right! (if doesn’t exist—place here)

If key < node’s key
Go left! (if doesn’t exist—place here)

If key is equal, update value here.

put() algorithm

AVL rotations

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key

2. Cardinal’s key > all 7 keys to its left!

If key > node’s key
Go right! (if doesn’t exist—place here)

If key < node’s key
Go left! (if doesn’t exist—place here)

If key is equal, update value here.

put() algorithm

AVL rotations

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key

2. Cardinal’s key > all 7 keys to its left!

3. Green’s key < blue’s key < cardinal’s key

If key > node’s key
Go right! (if doesn’t exist—place here)

If key < node’s key
Go left! (if doesn’t exist—place here)

If key is equal, update value here.

put() algorithm

AVL rotations

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key

2. Cardinal’s key > all 7 keys to its left!

3. Green’s key < blue’s key < cardinal’s key

 Those are just a few examples of the kind of
reasoning you’ll want to use for this
exercise…

If key > node’s key
Go right! (if doesn’t exist—place here)

If key < node’s key
Go left! (if doesn’t exist—place here)

If key is equal, update value here.

put() algorithm

Original
(valid BST):AVL rotations

 Your turn: Which of the trees below are still
in BST order? (list all that apply)

(A)

(B)

(C)

Original
(valid BST):AVL rotations

 2/3 are actual AVL rotations!

 In this case, our BST started balanced, so
the rotations made the less balanced. But
also useful for balancing.

(invalid)

Original (valid but unbalanced BST):

Left-Left AVL Rotation

 Right-Right is just the mirror image

Left-Left rotation (restores balance):

Original (valid but unbalanced BST):

Right-Left AVL Rotation

Right-Left rotation (restores balance):

 Left-Right is just the mirror image

A few BST balance strategies

 AVL tree

› Uses AVL rotations to guarantee balance

 Red-Black tree

› Uses AVL rotations to guarantee balance is off by no more than a constant
factor (longest path from root to leaf can be at most 2x the shortest path)

 Treap

› Each node has *two* keys and a value, one is BST key, one is a min-heap
key, both kinds of trees’ order properties are maintained (!!!)

› Insert nodes according to BST keys and BST order

› Then use AVL rotations to “bubble up” the newly inserted node as needed
to restore the min-heap order property on the min-heap keys

› What could be cooler than that, amirite? ♥😍♥😍

Red-Black trees

Every simple path from a given node to any of its
descendant leaves contains the same number of
black nodes.

 (This is what guarantees “close” to balance)

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg

Video: http://www.youtube.com/watch?v=vDHFF4wjWYU

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg
http://www.youtube.com/watch?v=vDHFF4wjWYU

Other fun types of BST

Splay tree

 Rather than only worrying about balance, Splay Tree dynamically
readjusts node placement based on how often users search for
an item. Most commonly-searched items rotate towards the root,
saving time.

› Example: if Google did this, “Bieber” would be near the root,
and “splay tree” would be further down by the leaves

B-Tree

 Like BST, but a node can have many children, not just two

 More branching means an even “flatter” (shorter height) tree

 Used for huge databases

Tree Traversals!

T H E S E A R E F O R A N Y B I N A R Y
T R E E S , B U T W E O F T E N D O

T H E M O N B S T S

Your Turn: What does this print?
(assume we call traverse on the root node to start)

void traverse(Node* node) {
if (node != nullptr) {

cout << node->key << " ";
traverse(node->left);
traverse(node->right);

}
}

A. A B C D E F
B. A B D E C F
C. D B E F C A
D. D E B F C A
E. Other/none/more

A

B C

D E F

Your Turn: What does this print?
(assume we call traverse on the root node to start)

void traverse(Node* node) {
if (node != nullptr) {

traverse(node->left);
traverse(node->right);
cout << node->key << " ";

}
}

A. A B C D E F
B. A B D E C F
C. D B E F C A
D. D E B F C A
E. Other/none/more

A

B C

D E F

Your Turn: What does this print?
(assume we call traverse on the root node to start)

void traverse(Node* node) {
if (node != nullptr) {

traverse(node->left);
cout << node->key << " ";
traverse(node->right);

}
}

A. 1 2 4 5 8 9
B. 1 4 2 9 8 5
C. 5 2 1 4 8 9
D. 5 2 8 1 4 9
E. Other/none/more

5

2 8

1 4 9

Applications of Tree
Traversals

B E A U T I F U L L I T T L E T H I N G S
F R O M A N

A L G O R I T H M S / T H E O R Y
S T A N D P O I N T , B U T T H E Y H A V E

A P R A C T I C A L S I D E T O O !

Traversals a very commonly-used tool in your CS toolkit

void traverse(Node* node) {

if (node != NULL) {

traverse(node->left);

// "do something”

traverse(node->right);

}

}

 Customize and move around the “do something,” and that’s the basis for
dozens of algorithms and applications

Stanford Library Map

 Remember how when you iterate over the Stanford library Map you get the
keys in sorted order?

› (we used this for the word occurrence counting code example in class)

 Now you know why it can do that in O(N) time!

› Stanford library Map is a BST

› In-order traversal on BST!

Your Turn: Applications of the traversals

 You are writing the destructor for a BST class. Given a pointer to the
root, it needs to free each node. Which traversal would form the
foundation of your destructor algorithm?

A. Pre-order

B. In-order

C. Post-order

D. Something else

5

2 8

1 4 9

_size:

_root:

6

void bstDestructorRecursiveHelper(Node *node) {
if (node != nullptr) {

delete node; // pre-order
bstDestructorRecursiveHelper(node->left);
delete node; // in-order
bstDestructorRecursiveHelper(node->right);
delete node; // post-order

}
}

Applications of the traversals

 You are writing the destructor for a BST class. Given a pointer to the
root, it needs to free each node. Which traversal would form the
foundation of your destructor algorithm?

› If we do pre-order, we dereference the node
pointer after delete—bad!!

› Same problem if we do in-order

› Post-order avoids this problem

void bstDestructorRecursiveHelper(Node *node) {
if (node != nullptr) {

delete node; // pre-order
bstDestructorRecursiveHelper(node->left);
bstDestructorRecursiveHelper(node->right);

}
}

5

2 8

1 4 9

_size:

_root:

6

Applications of the traversals

 You are writing the destructor for a BST class. Given a pointer to the
root, it needs to free each node. Which traversal would form the
foundation of your destructor algorithm?

› Post-order is a good choice, because we
need to use the node’s fields to recurse

› Don’t want to delete fields before we use them!

void bstDestructorRecursiveHelper(Node *node) {
if (node != nullptr) {

bstDestructorRecursiveHelper(node->left);
bstDestructorRecursiveHelper(node->right);
delete node; // post-order

}
}

5

2 8

1 4 9

_size:

_root:

6

Breadth-First Tree Traversal
A somewhat different kind of traversal

How can we get code to print top-to-bottom, left-to-right order?

void traverse(Node* node) {
if (node != nullptr) {

?? cout << node->key << " ";
traverse(node->left);
traverse(node->right);

}
}

You can’t do it by using this code and moving around the cout—we already tried
moving the cout to all 3 possible places and it didn’t print breadth-first order
 You can but you use a queue instead of recursion
 “Breadth-first” search you’ve seen on previous assignments
 Again we see this key theme of BFS (queue) vs DFS (stack/recursion)!

5

2 8

1 4 9

