
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

End of Quarter Details

 Week 10 assignment schedule:

› Assignment 7 (Huffman Coding) is out now and due Wednesday 12/7

 Week 10 lecture schedule:

› Today/Monday: quarter wrap-up lecture

› Wednesday: “Ask Me Anything” with the CS106B teaching team

› Friday: no class

2

Final Exam Info

Final Exam Details

 The exam is Monday December 12 8:30am-11:30am.

 Locations by first letter of your surname/family/last name.

› Last names Aalami-Hekmat, in Cemex Auditorium

› Last names Heng-Zu, in Dinkelspiel Auditorium

› Students with special circumstances (SCPD, OAE) will receive an email
from Head TA Neel with your arrangements.

 You will write your answers directly on the paper exam.

 The exam is closed-book and closed-device.

› Like the midterm, we’ll provide a reference sheet for Stanford library
collections and other common functions, and you may bring 1-page/2-
sides of notes (8.5" x 11")

4

Final Exam Topics

The emphasis of topics is heavier on topics that came after the midterm, since we
haven’t tested those yet.

 ADTs

 Recursion

 Backtracking

 Big-O analysis

 Pointers, new & delete, linked lists, memory diagrams, heap vs stack

 Classes and objects

 Binary heaps

 Binary search trees (BSTs)

 Tree traversals

 Searching and sorting algorithms, Graphs, Hashing

 Anything on any assignment

5

Final Exam Study Strategy

 Don’t memorize things—either write it in notes, or learn the concept

› If you’ve got flash cards, you’re approaching this with the wrong mindset

› No big multiple choice/true-false section where memorized facts would be tested

 Read the book and re-watch lectures (but only in a targeted way)

› Computer science is about creating things, so do some practice problems

› Re-do questions from lecture, do old section problems, do the practice exam

› Practice problems from lecture and section, and CodeStepByStep.com are great to
work through as well.

› If you identify an area for improvement in doing the above, then re-watch lecture
videos or read the book as needed

 Do the practice exam, preferably on paper

› As with the midterm, the practice exam gives you practice not only with topics but
with the logistics of writing an exam on paper

6

http://codestepbystep.com/

Breadth-First Search in a
Graph

G R A P H A L G O R I T H M S

Breadth-First Search
A B

E F

C D

G H

I J

L

K

BFS is useful for finding the
shortest path between two
nodes (in an unweighted, or

equally-weighted graph).

Breadth-First Search
A B

E F

C D

G H

I J

L

K

Example: What is the shortest
way to go from F to G?

One way (not the shortest):
F E I  G 3 edges

BFS is useful for finding the
shortest path between two
nodes (in an unweighted, or

equally-weighted graph).

Breadth-First Search
A B

E F

C D

G H

I J

L

K

Example: What is the shortest
way to go from F to G?

One way (not the shortest):
F E I  G 3 edges

Shortest way:
F K G 2 edges

BFS is useful for finding the
shortest path between two
nodes (in an unweighted, or

equally-weighted graph).

BFS is useful for finding the
shortest path between two

nodes.

Map Example:
What is the shortest way to
go from Yosemite to Palo

Alto?

A B

E F

C D

G H

I J

L

K

A B

E F

C D

G H

I J

L

K

A BFS algorithm for graphs with a special property…

TO START:
(1)Color all nodes GREY to

mean UNVISITED
(2)Queue is empty

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

F

TO START:
(1)Color all nodes GREY to

mean UNVISITED
(2)Queue is empty

(3)Enqueue the desired start
node, change its color to

mark it VISITED

A BFS algorithm for graphs with a special property…

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

F
LOOP PROCEDURE:
(1)Dequeue a node

(2)Set current node’s
UNVISITED neighbors’

parent pointers to current
node, then enqueue them

(and mark them visited
when we enqueue)

A BFS algorithm for graphs with a special property…

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

A B D E K

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

C H

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

L
J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

Done!

Now we know that to go from
Yoesmite (F) to Palo Alto (J),
we should go:

F->E->I->L->J
(4 edges)

(note we follow the parent
pointers backwards)

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:
(1) We used a queue
(2) What’s left is a kind of

subset of the edges, in the
form of ‘parent’ pointers

(3) If you follow the parent
pointers from the desired
end point, you will get
back to the start point,
and it will be the shortest
way to do that

Quick question about efficiency…

Let’s say that you have an extended family with somebody living in
every major city in the western U.S.

Quick question about efficiency…

You’re all in Yosemite for a family reunion, and you’ve been tasked with
making custom Yosemite-to-home-city driving directions for everyone.

Quick question about efficiency…

 You’ve already run the BFS algorithm and calculated the shortest path
for yourself to return home from the reunion (Yosemite to Palo Alto)

 The Big-O cost of doing that for yourself works out to O(E log2V)

› Where V is the number of nodes/cities, and E is the number of
edges/road segments

You’re all in Yosemite for a family reunion, and you’ve been tasked with
making custom Yosemite-to-home-city driving directions for everyone.

Quick question about efficiency…

 You’ve already run the BFS algorithm and calculated the shortest path
for yourself to return home from the reunion (Yosemite to Palo Alto)

 O(E log2V) was the Big-O cost of doing that for yourself

› Where V is the number of nodes/cities, and E is the number of
edges/road segments

You’re all in Yosemite for a family reunion, and you’ve been tasked with
making custom Yosemite-to-home-city driving directions for everyone.

Your Turn: How long will it take you, in total, to calculate
the shortest paths for you and all of your relatives?

A. O(VE log2V)
B. O(E log2V2)
C. O(V log2E)
D. O(E log2V)
E. Something else

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:
(1) We used a queue
(2) What’s left is a kind of

subset of the edges, in the
form of ‘parent’ pointers

(3) If you follow the parent
pointers from the desired
end point, you will get
back to the start point,
and it will be the shortest
way to do that

And you have that info
not only for the node you
were interested in, but as

a side effect also for
every node in the graph!

Quick question about efficiency…

 You’ve already run the BFS algorithm and calculated the shortest path
for yourself to return home from the reunion (Yosemite to Palo Alto)

 O(E log2V) was the Big-O cost of doing that for yourself

› Where V is the number of nodes/cities, and E is the number of
edges/road segments

You’re all in Yosemite for a family reunion, and you’ve been tasked with
making custom Yosemite-to-home-city driving directions for everyone.

Your Turn: How long will it take you, in total, to use BFS to
calculate the shortest paths for you and all of your relatives?

A. O(VE log2V)
B. O(E log2V2)
C. O(V log2E)
D. O(E log2V)
E. Something else

No additional work for BFS
to determine the shortest

paths for all your relatives,
vs just for yourself!

Big O Quick Reference (see also http://bigocheatsheet.com/)

What Cost

• Hash table average case (good design) O(1)

• Balanced trees
• Heap, BST with balancing such as Red-Black

• Binary search on sorted array

O(logn)

• Linked list find
• Inserting into beginning of array/Vector
• Hash table worst case
• Unbalanced tree (e.g. unbalanced BST) worst case

O(n)

• Good sorting
• Mergesort, Heapsort, Quicksort (expected)

O(nlogn)

• Bad sorting
• Insertion, Bubble, Selection, Quicksort (worst case)

O(n2)

Quarter Wrap-Up

W H A T D I D W E S E T O U T T O D O
I N T H E B E G I N N I N G ?

W H E R E A R E W E N O W ?

Goals for this Course

 Learn how to model and solve complex problems with
computers.

 To that end:

 Explore common abstractions for representing problems.

 Harness recursion and understand how to think about problems
recursively.

 Bring added rigor to your understanding of algorithmic
performance, so you can quantitatively compare approaches for
solving problems.

From here on out, there are no obvious answers to any
problem worth your hourly rate. 

• Programming is all about exploring new ways to model and solve
problems.

• There are choices and tradeoffs in how we model these and how
we implement them!

• Skilled computer scientists recognize that any problem worth
tackling has many possible models and many possible solutions,
often none of which is clearly better than the others in all
dimensions

• Array or linked list? BST or hash table?

• Tradeoffs!

You are part of a very challenging course,
in the best CS department in the world,
and you are so, so close to completing this course!

Congratulations!!
You’ve almost made it through CS106B!

 So…what next?

That’s a lot of material to cover in 10 weeks

What next?

C S O P T I O N S A F T E R C S 1 0 6 B

CS106B

Programming

Abstractions

CS107
Computer

Organization and

Systems

CS111

Principles of

Computer Systems

CS103
Mathematical

Foundations of

Computing

CS109
Intro to Probability

for Computer

Scientists

CS161

Design and Analysis

of Algorithms

The CS Core

T
h

e
o

ryS
y

st
e

m
s

Can computers solve all mathematical problems?
Spoiler: no!

Why are some problems harder than others?
We can do find in an unsorted array in O(N), and we can sort an unsorted array in

O(NlogN). Is sorting just inherently a harder problem, or are there better O(N) sorting

algorithms yet to be discovered?

How can we be certain about this?

CS107
Computer Organization and Systems

How do we encode text, numbers,

programs, etc. using just 0s and 1s?

Where does memory come from?

How is it managed?

How do compilers, debuggers, etc. work?

CS107 in the news: Heartbleed
 In April 2014, security experts warned that

users of thousands of websites, including many
crucial apps such as banking, shopping,
needed to change their passwords due to
potential exposure caused by the “Heartbleed”
vulnerability

 Heartbleed exploited a buffer overrun bug in
OpenSSL
› SSL is the layer that secures web interactions,

i.e., it’s what makes the “s” in “https://” mean
something

CS107 in the news: Heartbleed

 The protocol allows you to send
“heartbeat” messages, which basically say:

› Are you still there? If you
are, repeat this message back
to me:

• "hello"

› The length of the message I
want you to send back to me is
this many bytes:

• 5 bytes

 (Recall each char is one byte)

CS107 in the news: Heartbleed

 The protocol allows you to send
“heartbeat” messages, which basically say:

› Are you still there? If you
are, repeat this message back
to me:

• "hello"

› The length of the message I
want you to send back to me is
this many bytes:

• 5 bytes

 (Recall each char is one byte)

 The server code has a loop that uses the
requested number of bytes to send the
requested echo message back, something like
this (not the actual code, but the same
concept):

char *reply = getReplyMsg(); // "hello"

int n_bytes = getReplyLen(); // 5

string newMsg = "Yes alive here's proof: ";

for (int i = 0; i < n_bytes; i++) {

newMsg += reply[i];

}

sendReply(newMsg);

CS107 in the news: Heartbleed

 The protocol allows you to send
“heartbeat” messages, which basically say:

› Are you still there? If you
are, repeat this message back
to me:

• "hello"

› The length of the message I
want you to send back to me is
this many bytes:

• 5 bytes

 (Recall each char is one byte)

 The server code has a loop that uses the
requested number of bytes to send the
requested echo message back, something like
this (not the actual code, but the same
concept):

char *reply = getReplyMsg(); // "hello"

int n_bytes = getReplyLen(); // 5

string newMsg = "Yes alive here's proof: ";

for (int i = 0; i < n_bytes; i++) {

newMsg += reply[i];

}

sendReply(newMsg);Your Turn: why would this code
potentially compromise the server’s

security and data?

Think about
this loop
condition

CS107 in the news: Chrome

 On Oct 31, 2019, Google
disclosed that there was a
bug in Chrome that caused
a security breach

 The bug was that the
program accesses memory
after it has already been
freed/deleted

› Usually works, but
incorrect and sometimes
causes the bug

CS107 in the news: Chrome

 On Oct 31, 2019, Google
disclosed that there was a
bug in Chrome that caused
a security breach

 The bug was that the
program accesses memory
after it has already been
freed/deleted

› Usually works, but
incorrect and sometimes
causes the bug

int *array = new int[CAPACITY];

// … use array as usual …

delete [] array;

// … time passes …

int val = array[i]; // bad!!

What CS103 and CS017 Aren't

 CS107-style systems programming is one kind of programming.

 One that I really love! But one of many, and it’s a matter of personal taste.

 Neither CS107 nor CS103 is a litmus test for whether you can be a computer
scientist.

 Neither CS107 nor CS103 is indicative of what being a computer scientist is
“really like.”

 CS107 does a lot of low-level programming. You don't have to do low-level
programming to be a good computer scientist.

 CS103 does a lot of proof-writing. You don’t have to do proof-writing to be a
good computer scientist.

CS107E
Computer Organization and Systems—Embedded

 Counts for prerequisites

etc. the same as original

CS107, but covers the topics

with a twist: embedded work

on Raspberry Pi

Other CS Courses

CS106L
Learning the Standard Template Library (STL)

 In CS106B, we learn the Stanford Library containers

 Now learn the industrial-strength ones!

CS182
Computers, Ethics, and Public Policy

 Did you love the thought-provoking issues raised in the embedded ethics
segments in this class?

 Want to dive deeper into that topic and more, and be prepared to
participate in urgent, ongoing conversations in media, government, non-
profits, and the tech industry?

We have the power to control and create technology, but how should we
use it? Who should get a say in how it’s used?

Options besides CS Major

CS Minor: only 5 more classes!

 103, 107, 109, two your choice—fun!

CS Coterminal MS degree

 Earn an MS in CS while you are here earning your BS

 Possible for CS majors and other majors

› ex: Psych major, CS co-term

See you Wednesday!

