CS106B
Winter 2023

Practice Final Exam 3

This is a printable version of the third set of practice problems from the practice final exam. It’s
designed to have the same format and style as the actual CS106B final exam.

Solutions can be found by visiting the Additional Practice Problems resource on the CS106B
website and looking up solutions to the corresponding problems.

2/19
Problem One: Cosmic Care Packages

At present, it costs around $5,000 to place one kilogram of material into orbit. This means that if you’re
floating on the International Space Station, you probably shouldn’t expect that much out of your meals.
They’re calibrated to be nutritionally complete and lightweight, and while there’s some effort made to
provide nice things like “flavor” and “texture,” that’s not always possible.

Let’s imagine that you want to be nice and send a cosmic care package up to the ISS with some sweets
for the crew to share. Every penny matters at five grand a kilo, so you’ll want to be very sure that what
you send up into the vast abyss will actually make the folks there happy. You have a list of the desserts
that each individual ISS crew member would enjoy. What’s the smallest collection of treats you could
send up that would ensure everyone gets something they like?

For example, suppose the ISS crew members have the following preferences, with each row represent-
ing one person’s cravings:

{ "Pumpkin pie", "Revani", "Sufganiyot" }
{ "Castella", "Kheer", "Melktert" }
{ "Po'e", "Tangyuan", "Tres leches" }
{ "Apfelstrudel", "Tangyuan" }
{ "Alfajores", "Brigadeiro", "Revani" }
{ "Baklava", "Revani" }
{ "Melktert" }
{ "Brownies", "Cannolis", "Castella", "Po'e", "Revani" }
{ "Cendol", "Kashata", "Tangyuan" }
{ "Baklava", "Castella", "Kheer", "Revani" }

The smallest care package that would cheer up the whole crew would have three items: revani, melktert,
and tangyuan. Anything smaller than this will leave someone unhappy.

Write a function
Set<string> smallestCarePackageFor(const Vector<Set<string>>& preferences);

that takes as input a list containing sets of what treats each crew member would like, then returns the
smallest care package that would make everyone on the ISS happy.

While in principle you could solve this problem by listing off all possible subsets of treats and seeing
which ones satisfy everyone’s sweet tooths, this approach is probably not going to be very fast if there
are a lot of different choices for sweets. Instead, use the following approach: pick a person who hasn’t
yet had anything sent up that would make them happy, then consider each way you could send them
something that would fill them with joy.

Some notes on this problem:
* Yep, you guessed it! You have to do this one recursively.

* To clarify, if you send up some item to space, you can assume there’s enough of it for everyone
on the space station to share. Sending up revani, for example, means sending up enough revani
for each crew member to have a piece.

* Each person’s preferences will contain at least one item. There is no fixed upper size to how
many preferences each person can have.

» If there are multiple care packages that are tied for the smallest, you can return any of them.

* In case it helps, you can assume no treat’s name is the empty string.

3/19

Set<string> smallestCarePackageFor(const Vector<Set<string>>& preferences) {

We will grade whatever you write in this box. Anything written outside of this region will be
considered scratch work. There’s additional space for your answer on the next page.

4/19

Additional space for your answer to Problem One, if you need it.

5/19

Problem Two: Slow and Steady Copying

This problem explores an alternate way to implement a vector called a backup vector. In lecture, when
we implemented the stack, we used the following strategy:

* Store all the elements in an array.
* When we run out of space in the array, double the array size, copying over all the old elements.

Although we didn’t write any code for this in lecture, this is the same way that the Vector type is imple-
mented.

This approach works very well in practice, but has one slight drawback. Even though most push opera-
tions are fast, every now and then we have to do a huge amount of work to copy over all the elements
from the old array to the new one. This then raises a question — is there a way to grow the array without
moving everything over all at once?

The backup vector is one possible way to do this. The basic idea is the following: let’s imagine that we
have a full array of elements, as shown here, and we want to append one more element to the vector:

[] alblc|d]

As before, we'll get a new array that’s twice as big as our previous one:

small

[[T TTTTTT]

large

At this point, we have two arrays, the older, smaller array (called the small array) and a newer, larger
array called the large array that’s twice as big as the small array.

However, here’s where things diverge from what we did in class. Rather than copying over all the ele-
ments, we'll just copy over the last element from the small array into the new array, as shown here:

small

—»a|b|c|d

b d

large

We'll then append our new value to the vector by placing it at the next free slot in the large array, as
shown here:

small

—»a|b|c

(aR

—> dle

large

More generally, whenever we append an element to the vector, we'll place it at the next free slot in the
large array, then copy over one more element from the small array. For example, here’s what happens if
we append f to the vector:

6/19

small

—> cl|d|e|f

large

Notice that we placed f in the next spot in the large array, then copied the last uncopied element (c)
from the small array into the large array. If we append g, we get this result:

small

—»{alb|c|d

—» |b|c|d]e|f]q

large

That is, g goes in the next free slot in the large array, and we copy the next uncopied element over from
the small array (namely, b). Finally, if we append h, we get this result:

small

—»a|b|c|d

—»a|b|c|d|e|[f]|g]h

large

Notice that our large array is now full and has all the elements that used to be in the small array. We've
copied everything over, just not all at once.

At this last point, all the elements from the small array have been copied. If we then append one more
value to the vector, we can discard it and begin this process again: get a new large array and move a sin-
gle element over. For example, here’s what it would look like if we now appended 1:

—»alblc|d|e|[f|g]|h

— h[T

small

large

Notice that the old large array is now the small array, and the current large array is a new array twice as
big as the previous one.

To summarize:

* At each point in time, we maintain two arrays, a small array and a large array, such that the large
array is twice as big as the small array.

* Whenever we append a value, if there’s room left in the large array, we place the item at the next
free slot in the large array, then copy an element over from the small array. If the large array is
full, we deallocate the small array, then allocate a new large array that’s twice as big as the old
one.

7719

There is one exception to the above rules. Specifically, when the backup vector is first created, we will
only have a large array, and there will be no small array. Until that first array fills up, we basically pro-
ceed as usual, as though we were working with a regular dynamic array.

As an example, here’s what it looks like if we start with an empty backup vector, the insert the a, b, c, d,
and e, in that order. This diagram assumes that the initial size of the large vector is two

small

ED

large

small

ED

large

5-. L
1 [

— 22}
=]
N

small

alb
alblc|d]

afblc[d
| [dle[[[|

E

large

That leaves the question of how to do lookups. To access the item at some index, you'll need to deter -
mine which of the two arrays to look at. Some elements will only be in the large array. Others will be lo-
cated only in the small array. See if you can find a general pattern you can use to determine where to
look.

8/19

Your task is to implement the following BackupVector class. We've provided the following to you. Do
not write anything on this page; you’ll implement the class on the upcoming pages.

class BackupVector {

public:
BackupVector();
~BackupVector();

/* Appends a new value to the vector. */
void append(int toAdd);

/* Returns the value at the given index. Calls error() if the index is
* out of bounds.
*/

int get(int index) const;

private:
/* The two arrays. */
int* small;
int* large;

/* The rest is up to you! */

};

9/19

/* Use the space here to write out the contents of the private section of the
* BackupVector class. We've copied what is already there, and you are
* welcome to add to this.
*/
private:
/* The two arrays. */
int* small;
int* large;

/* The rest is up to you! */

We will grade whatever you write in this box. Anything written outside of this region will be
considered scratch work.

10/ 19

/* Implement the constructor here. */
BackupVector: :BackupVector() {

/* Implement the destructor here. */
BackupVector: :~BackupVector() {

We will grade whatever you write in this box. Anything written outside of this region will be
considered scratch work. There’s more space for your answer on the next page.

11/19

/* Implement append here. */
void BackupVector::append(int value) {

We will grade whatever you write in this box. Anything written outside of this region will be
considered scratch work. There’s more space for your answer on the next page.

12/19

/* Implement get here. */
int BackupVector::get(int index) const {

We will grade whatever you write in this box. Anything written outside of this region will be
considered scratch work.

13/19

Problem Three: Rainwater Collection

You are interested in setting up a collection point to funnel rainwater into a town's water supply. The
town is next to a ridge, which for simplicity we will assume is represented as an array of the elevations
of different points along the ridge. When rain falls on the ridge, it will roll downhill along the ridge.
We'll call a point where water naturally accumulates (that is, a point lower than all neighboring points) a
“good collection point.” For example, here is a possible ridge with good collection points identified:

. 8 "

¢ & 8

®
e ', P
. ¥
o
o
11 3 4 2 o 3 12 10 14 13 6

Write a recursive function
int goodCollectionPointFor(const Vector<int>& heights);

that returns the index of a good collection point. Your solution should run in time O(log n). As a hint,
think about binary search. You can assume that all elements in the array are distinct. Also, make sure to
validate the input. It's okay for heights to be negative, but there has to be at least one element in the
heights array.

14/19

int goodCollectionPointFor(const Vector<int>& heights) {

We will grade whatever you write in this box. Write your scratchwork elsewhere.

15719

Problem Four: Complementary Strands

In humans, DNA strands are always paired with a complementary strand. This is a new strand of DNA
linked alongside the original strand, except with different nucleotides. Specifically, any time there’s an A
in the initial strand there’s a T in the complementary strand, and any time there’s a C in the initial strand
there’s a G in the complementary strand (and vice-versa). Here’s an example of what this might look like:

G TOCOlADGE T CleHA G T

A A A A h h

A 4 y A A A A A A y y

COoOoAGE T CieolA G T ClefA

We can represent a double-stranded DNA sequence as a modified doubly-linked list of nucleotides,
where each nucleotide links to the nucleotides before and after it in the sequence, as well as to the nu-
cleotide across from it:

struct Nucleotide {
char value;
Nucleotide* next;
Nucleotide* prev;
Nucleotide* across;

'A', ICI, IGI, or ITI

To the right

To the left

Vertically, to the other strand.

e e
NN

};
For example, in the picture shown above, the nucleotide G in the upper-left corner would have its prev
pointer set to nullptr, its next pointer set to the T nucleotide next to it, and its across pointer set to
the C beneath it. The C nucleotide beneath it would have its next pointer set to the A to its right, its prev
pointer set to nullptr, and its across pointer back to the G in the top strand.

Your task is to finish writing a function that works as follows. The function takes as input a single strand
of DNA whose across pointers have not been initialized. The function then constructs the complemen-
tary strand, then links the two strands together by appropriately wiring the across pointers of the two
strands.

Write a function
void addComplementaryStrand(Nucleotide* dna);

that takes as input a single strand of DNA whose across pointers have not been initialized. The function
then constructs the complementary strand, then links the two strands together by appropriately wiring
the across pointers of the two strands.

Some notes on this problem:

* The across pointers of each of the nucleotides in the input sequence have not been initialized
when this function is called. You should not assume anything about where they point.

* For full credit, your solution must run in time O(n), where n is the number of nucleotides in dna.

* The input pointer will always point to the first nucleotide in the strand, or will be nullptr if the
input DNA strand is empty.

* You can assume all letters in the DNA strand are either A, C, G, or T.

* You may not use any container types (e.g. Vector, HashSet, etc.) in the course of solving this
problem. This includes the string type.

16/19

void addComplementaryStrand(Nucleotide* dna) {

We will grade whatever you write in this box. Use the remaining space on the page for scratch work.
There’s more space on the next page, if you need it.

17719

Extra space for your answer to Problem Four, if you need it.

18/19

Problem Five: Inflating Trees

Consider the following type representing a node in a binary tree (though not necessarily a binary search
tree):

struct Node {
int value;
Node* left;
Node* right;
};

Given a binary tree represented this way, we can inflate the binary tree by replacing all null pointers that
appear in the original tree with new nodes, where each node’s value is the sum of the integers on the
path from the root of the tree to that node. (One edge case: if the tree is empty, we replace the root with
a new node whose value is zero). For example, here’s some sample trees and the result of inflating each
of them. We’ve explicitly drawn in the null left and right pointers on the initial trees to make the
transformation clearer. Although the null pointers aren’t drawn in on the trees to the right, they are still
present.

Write a function
void inflate(Node*& root);

that takes as input a pointer to the root of a tree (or to nullptr if the tree is empty), then inflates the
tree. Some notes:

* Your solution does not have to be as efficient as possible, but you should avoid any unnecessary
inefficiencies in your solution.

* You may not use any container types (e.g. Vector, HashSet, etc.) in the course of solving this
problem.

19/19

void inflate(Node*& root) {

We will grade whatever you write in this box. Use the surrounding space for scratch work.

