
CS106B Debugger Tutorial

Hi everybody!

As part of Assignment 0, we'd like you to
get a little bit of practice using the

debugger in Qt Creator.

The debugger is a tool you can use to help
see what your program is doing as you

run it.

It's really useful for helping find errors in
your programs, and the more practice you
get with it, the easier it'll be to correct

mistakes in the programs you write.

Think of this guide as a little tutorial
walkthrough to help give you a sense of

how to use the debugger and how to make
sense of what you're seeing.

To start things off, open up the Name Hash
program you ran in Part One of this assignment.
Scroll down to the nameHash function so that you
can see the entire function in your window.

Move your mouse cursor so that it's in the space
right before the line number for line 66.

Now, click the mouse!

When you do, you should see a red circle with a
little hourglass pop up.

This is called a breakpoint. If we run the program
in debug mode, whenever the program gets to
this line, it will pause and open up the debugger

so we can see what's going on.

Now, we're going to run this program in debug
mode. To do so, click on the “run in debug mode”
button in the bottom-right corner of the screen.
It's the one just below the regular green “run”

button. When you do...

... you should see something like this! Notice that
a bunch of extra panels popped up in Qt Creator.
We'll talk about what each of these windows mean

in a second.

In the meantime, type in the first name Ada and hit
enter, as shown here. We specifically want you to
enter Ada here, not your actual first name.

(Unless your first name is Ada.)😃

Now, type in Lovelace as a last name, but
don't hit enter yet!

As soon as you hit enter, a bunch of things are
going to pop up in Qt Creator. Don't panic! It's

normal.

With that said, hit enter,
and watch the magic happen!

Shazam! We're back in Qt Creator, and there's
tons of values showing up everywhere.

There's a lot going on right here. Let's see what's
happening.

First, notice that our red breakpoint now has a
yellow arrow in it.

This yellow arrow indicates where in the program
we are right now. The program stopped running at
this line because we hit that breakpoint you set

earlier.

Whenever you pop up the debugger, it's good to
figure out exactly where you are in the program
that you're running, so you'll get into the habit

of checking for this yellow arrow.

Next, let's take a look at this panel.
This is called the call stack.

Right now, we know we're in the nameHash
function, because our helpful friend the Yellow

Arrow tells us exactly what line we're on!

However, the yellow arrow can't tell us exactly
how we got to this part of the program. What
part of the program actually called nameHash?

The call stack can tell us exactly that!

Notice that the call stack lists a series of different
functions in order. Here, it has nameHash (where
we are now) at the top, and right below that is

studentMain.

Go and double-click the call to studentMain
on Level 2. When you do...

You’ll end up over here!

Notice that the yellow arrow
points to Line 31. That line
includes a call to the nameHash
function. This is the part of

the code that actually
called nameHash, which is how
we got to the line with the

breakpoint!

Generally speaking, you can use the call stack as a
way to see which function calls got us to the point

where the program paused at the breakpoint!

Depending on your OS, you might see some
additional functions beneath studentMain.

What are those?

These grayed-out functions represent helper
functions our libraries automagically call to help

get your program set up.

You don’t need to worry about these. They’ll
show up in all the programs you run and you can

safely ignore them.

In the meantime, let’s get back to our nameHash
function. To do that, double-click on the

nameHash entry at the top of the call stack. When
you do...

You'll be teleported back here!

Let's quickly recap what we've seen so far.

To set a breakpoint so that we can pause the
program and look around, click in the margin just
before the line number where you want to pause.

Once the breakpoint is reached, it will pull up all
sorts of useful information.

The yellow arrow points out where we are right now.

The call stack shows us how we got into the current
function.

Now, let's see how we can read the values of the
variables in this function.

Look up at this panel over here.

This window lets you take a look at all the values
of the local variables that are in scope now.

(Don’t worry if you see different values or “not
accessible” on your system – that’s okay!)

Depending on what OS you're using, these might be
in a different order, and there might be some
weird-looking ones in there in addition to nicer

ones like ch and hashVal.

If we ignore the weird-looking ones, we can
see some nice, familiar names.

For example, here you can see the values of
kLargePrime and kSmallPrime, which match the

values they were declared with.

We can also see that, at this point, hashVal
is still zero.

As we walk through the program one step at a time,
we'll see these values change.

Now, let's take a look at this for loop.

This loop is a range-based for loop. It says
“for each character in the string first + last,

do something with that character.”

Remember (from a while back) that we entered
the name Ada Lovelace?

If we take a look at the current value of the
variable ch, we can see that it has the value A.

That's the first letter of the name Ada Lovelace.

So now we know where we are (line 66), how we got
there (main called nameHash), and the values in the

program at this point.

Now, let's do something really cool – we're going to
run this program one line at a time, watching what

happens at each step!

Right above the stack trace, you'll see there are
some small button icons.

These buttons let you resume the program, stop the
program, walk through it one line at a time, etc.

Move your mouse so that you're hovering over the
button that's third from the left. If you hover

over it, it should say “step over.”

Once you're confident that you're on the “Step Over”
button – and not the “Step Into” or “Step Out”

buttons – go and click it! When you do...

...your window should look something like this.

Okay! A few things have changed. Let's see what's
going on.

First, notice that our helpful Yellow Arrow friend
is now pointing at line 67.

We're now at the line right after the one where
we stopped. You just ran a single line of the

program! Pretty cool!

So what did that line of code do?

This line converts ch to lower case. The tolower
function takes in a character and returns a lower-
case version of it, so this overwrites ch with a

lower-case version of itself.

You can actually see this by looking at the values
panel over on the side!

Notice that the value associated with ch has changed
from 'A' to 'a' – it's now in lower-case!

If you'll notice, this value is in red while all the
other values are in black.

This indicates that the value here has changed since
the previous step. This is a really useful way to
keep track of what's changing as you run the

program.

Now, let's take a look at line 67, where we are
right now.

Not gonna lie, this is a pretty dense line of
code. It performs some weird sort of

mathematical calculation on a bunch of different
values.

Fundamentally, though, it's just computing some
weird function of some values and stashing it into

hashVal.

Let's go run that line of code and see what
happens!

Hover over the “Step Over” button, confirm that
the button you're clicking really is “Step Over,”

and click it! When you do...

... you'll end up with something like this!

Let's see what's changed.

First, notice that the value stored in hashVal
changed to 97. We know that it changed because the

value is in red, and we know that nothing else
changed because nothing else is in red!

Second, notice that we're back up at the top of
the for loop, since that's where the yellow arrow
is pointing. We ended up back here because this

is the next line that gets executed.

We just single-stepped through a single iteration
of that loop! Pretty cool!

Let's go do it again!

Again, move your mouse over the Step Over
button (and make sure it says “Step Over” and

not something else!), then click it.

Now we're here! Notice that ch now has the value
'd', which is the second letter of the name Ada.

Go click “Step Over” again to run this line of
code.

You should be here now. Notice that none of the
values changed. That makes sense, since all we did
was convert a lower-case 'd' to a lower-case 'd'.

Now, click “Step Over” one more time.

You'll now be at this point in the program. We've
covered up the value of hashVal in this image, because

at this point you should be able to see what hashVal is by
reading the value in the side pane. This is the special value
we want you to tell us when submitting the assignment!

? ? ? ?Look here!

?????

? ? ? ?

?????

To finish up this section on the debugger, we'd like to show
you two last little techniques that you might find useful

when debugging programs.

? ? ? ?

?????
To start this off, click on the the breakpoint that we set

earlier in the program. If you do...

?????

... it should clear the breakpoint. Now, if we were to run
this program again in debug mode, it would not stop at this

point, since nothing's telling it to!

? ? ? ?

? ? ? ?

?????

Now, take a look back at these buttons.

? ? ? ?

?????

Hover your mouse over the one that's
 on the far right. When you hover over

it, it should say “Step Out.”

? ? ? ?

?????

Don’t click just yet. But when you do click,
it will run the rest of the nameHash

function until it finishes and returns.

? ? ? ?

?????

Now, go click that button. If you did
everything right...

... you should end up with something that
looks like this!

Let's take a minute to get our bearings.
Where exactly are we?

Well, the yellow arrow indicates that we're
back in main again. Cool!

We can see that the nameHash function
returned 15058255. Thanks, debugger!

(A note: it seems like on some Macs, this
number doesn’t display. Don’t worry if you
don’t see it – just continue on as usual.)

But if we look up over here, we see that
hashValue isn’t storing 15058255, even though that’s

what was returned.

(You might see a number other than 0 on
your system – that’s okay.)

But it looks like we're setting hashValue
equal to the number that was returned by
the nameHash function. What's going on?

This is pretty cool, actually!

What's happened is that we've just returned
from nameHash with a value, but since we're

going through the program one step at a time,
we haven't actually assigned that value to

hashValue yet!

Let's do a “Step Over” so that we can finish
executing this line. Click “Step Over,” and

if you did everything right...

... you should see the right value get stored
(notice it's in red!) and we've moved to the

next line.

At this point, we've seen just about everything
we care about. Rather than single-stepping
all the way to the end, let's just tell the

program to keep on running.

To do this, click on this button. If you hover
over it, it says “Continue,” and that button
means “unpause the program and let it keep

running from here.”

If you do, you should see something like this.
(The program window might not automatically
pop up. That's okay! Just open it manually.)

Our program is now done running!

So there you have it! You've now gotten more
familiar with the debugger!

You know how to set a breakpoint to pause the
program at a particular point.

You know how to read the call stack and to
see the values of local variables.

You know how to single-step the program and
see what values change.

You know how to run a function to completion,
and how to let the program keep on running.

As you write more and more complicated
programs this quarter, you'll get a lot more
familiar using the debugger and seeing how

your programs work.

And, if you continue to build larger and larger
pieces of software, you'll find that knowing how

to use a debugger is a surprisingly valuable
skill!

Hope this helps, and welcome to CS106B!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

