

CS106B Practice Midterm Spring 2022 (KEY)

This is a closed note, closed-book exam. You are allowed one back-and-front page of
notes, and the reference sheet posted on the course website. You may not use any
laptops, cell phones, or internet devices of any sort, unless you are taking the exam on
a laptop, which must only be used for the exam. You will be graded on functionality—
but good style helps graders understand what you were attempting. You do not need to
#include any libraries and you do not need to forward declare any functions. You have
2 hours. We hope this exam is an exciting journey.

Last Name: _____________________

First Name: _____________________

Sunet ID (eg jdoe): _____________________

I accept the letter and spirit of the honor code. I’ve neither given nor received aid on
this exam. I pledge to write more neatly than I ever have in my entire life.

 (signed) ___

Problem Points

Algorithm Analysis and Big-O 10

Collections 12

Recursion Tracing 14

Histogram 15

Short Recursive Functions 15

Total 66

Page of
1 10

Chris Gregg

Chris Gregg
3

Chris Gregg

Question 1: Algorithm Analysis and Big O (10 Points)

Give a tight bound of the worst-case runtime complexity class for each of the following
code fragments in Big-Oh notation, in terms of variable N. (Write the growth rate as N
grows.) Write a simple expression that gives only a power of N, such as O(N2) or O(log
N), not an exact calculation like O(2N3 + 4N + 14). Write your answer in the blanks on
the right side.

Question Answer

a)

 int sum = 0;

 for (int i=0; i < N; i++) {

 for (int j=N; j > 0; j--) {

 for (int k = 0; k < N; k++) {

 for (int w = 0; w < 1000; w++) {

 sum += N;

 }

 }

 }

 }

 for (int i=0; i < 2 * N; i++) {

 sum--;

 }

O(N3)

b)

 Map<int,int> map;

 for (int i=0; i < N; i++) {

 map[i] = i * 10;

 }
 O(N log N)

c)

 Vector<int> v;

 for (int i=1; i < N; i = i * 2) {

 v.add(i + 42);

 }
 O(log N)
d)

 int sum = 0;

 for (int i=0; i < N; i++) {

 sum++;

 }

 for (int j=N; j >= 0; j--) {

 sum--;

 }

 for (int k=1; k < N; k++) {

 sum++;

 }

O(N)

e)

int result = 1;

 int x = 2;

 int y = 3;

 for (int i=0; i < 100; i++) {

 for (int j=0; j < N; j++) {

 for (int k=500; k >= 0; k--) {

 for (int p = N; p > 0; p--) {

 result += x * y + j - k + i;

 }

 }

 }

 }

O(N2)

Page of
2 10

Chris Gregg

Chris Gregg

Chris Gregg

Chris Gregg

Chris Gregg

Question 2: Stacks and / or Queues (12 Points)

Write a function to reverse the first k elements in a Queue<int>. To do so, you
may use only one additional data structure other than a Vector to temporarily
hold values (e.g., Stack, Set, Map, Queue):

void reverseFirstKFromQueue(Queue<int> &queue, int k);

Here are some examples (the front of the queue is on the left):

Initial queue: {10, 10, 30, 40, 50, 60, 70, 80, 90, 100}

After reverseFirstKFromQueue(queue, 6);

 {60, 50, 40, 30, 10, 10, 70, 80, 90, 100}

Initial queue: {1, 2, 3, 4, 5, 6, 6, 8, 9, 10}

After reverseFirstKFromQueue(queue, 2);

 {2, 1, 3, 4, 5, 6, 6, 8, 9, 10}

Initial queue: {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

After reverseFirstKFromQueue(queue, 10);

 {100, 90, 80, 70, 60, 50, 40, 30, 20, 10}

Values of k that are zero or negative, or greater than the number of elements in the queue
should not change the queue. For example:

Initial queue: {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

After reverseFirstKFromQueue(queue, 0);

 {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

After reverseFirstKFromQueue(queue, -1);

 {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

After reverseFirstKFromQueue(queue, 12);

 {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

Notes:

1. You are only allowed to use only one additional data structure to solve the problem.
Using more than one additional data structure will incur a deduction of 50% of the
points for the problem.

2. If you can only think of a way to do the problem using a Vector, you may, but it will be a
four point deduction.

3. You do not have to include any headers in your solution. 

Page of
3 10

Please put your answer to question 2 here:

void reverseFirstKFromQueue(Queue<int> &queue, int k) {

 // only reverse if the queue is not empty, or if the k is
 // greater than 1 or less than or equal to the queue size
 if ((!queue.isEmpty() &&
 k <= queue.size() &&
 k > 1) {

 Stack<int> stack;

 /* Push the first K elements into a Stack */
 for (int i = 0; i < k; i++) {
 stack.push(queue.front());
 queue.dequeue();
 }

 /* Enqueue the contents of stack
 at the back of the queue*/
 while (!stack.isEmpty()) {
 queue.enqueue(stack.pop());
 }

 /* Remove the remaining elements and
 enqueue them at the end of the Queue */
 for (int i = 0; i < queue.size() - k; i++) {
 queue.enqueue(queue.front());
 queue.dequeue();
 }

} 

Page of
4 10

Chris Gregg

Question 3: Recursion Tracing (14 points)

Part A: For each of the calls to recursionMystery1 below, indicate the return value:

int recursionMystery1(int a, int b) {

 if (a < b) return a;

 return recursionMystery1(a-b,b);

}

 Part B: What mathematical function does recursionMystery1 calculate?

 Remainder of a / b

 Part C: For each of the calls to recursionMystery2 below, indicate what is
printed out from the function:

void recursionMystery2(int a, char c) {
 if (a != 0) {
 cout << c;
 if (a % 2 == 0) {
 cout << "O";
 recursionMystery2(a - 1, c - 1);
 } else {
 recursionMystery2(a - 1, c + 1);
 cout << "R";
 }
 } else {
 cout << endl;
 }
}

Note: char characters are in increasing order, e.g., ‘a’ + 1 == ‘b’.

Call Return Value

a)	 recursionMystery1(10,4); 2
b)	 recursionMystery1(3,7); 3
c)	 recursionMystery1(15,5); 0

Call What is printed to the screen

a)	 recursionMystery2(5,’f'); fgOfgOf

RRR

b)	 recursionMystery2(4,'i'); iOhiOh

RR

Page of
5 10

Chris Gregg

Chris Gregg

Chris Gregg

Chris Gregg

Chris Gregg

Chris Gregg

Question 4: Histogram (15 points)

A common way to visualize how a class of students perform on exams is by using a
histogram, which provides an estimate of the probability distribution of the grades for
the exam. For example, given the following scores on an exam, we can draw the
histogram (shown to the right), which represents how many students received grades
in the 60s, 70s, 80s, and 90s.

A histogram can also be used to determine the distribution of grades for an entire
quarter, based on an average of each student's grades.

Consider the following map which associates student names with a vector of their
grades for the quarter. We would like to produce a histogram of student averages. In
other words, average each student's grades, then produce a histogram of the averages.

Student Grade

StudentA 97

studentB 89

studentC 93

studentD 75

studentE 94

studentF 85

studentG 88

studentH 68

studentI 79

studentJ 84

Page of
6 10

Histogram: of Averages
60s: *
70s: **
80s: ****
90s: ***

The histogram for the averages is shown to the right:

Given a map of student names (strings) as keys, and a vector (ints) to each student's
scores, your job is to write the following three functions:

[4 points]

// Returns the average value of a vector of integers.

// Assumes there is at least one grade.

double average(Vector<int> & gradeVec)

// assumption: there is at least one grade

 
double sum = 0;

 for (int grade : gradeVec) {

sum += grade; }

return sum / gradeVec.size();

}

Student Grade Average

studentA 97, 92, 88 92.3

studentB 89, 93, 77 86.3

studentC 93, 95, 105 97.7

studentD 75, 25, 50 50

studentE 94, 94, 94 94

studentF 85, 82, 73 80

studentG 88, 91, 99 92.7

studentH 68, 78, 88 78

studentI 79, 85, 77 80.3

studentJ 84, 85, 86 85

Page of
7 10

Histogram: of Averages
50s: *
70s: *
80s: ****
90s: ****

Chris Gregg

[7 points]
// Produce a map of average grade distributions, grouped by
// tens (e.g., if 8 people scored an average in the 90s, there
// would be a key in the map for 90, and its value would be 8)
void histogram(Map<string,Vector<int>> & grades,
 Map<int,int> & hist)

for (string key : grades) {  
int avg = (int)(average(grades[key]))/10 * 10;

hist[avg]++;

}

[4 points]
// Print a histogram in the following form:
// 50s:***
// 60s:*****
// 70s:**
// 80s:***
// 90s:******
//
// For the example above, the map holds the
// following key/value pairs: {50:3, 60:5, 70:2, 80:3, 90:6}
// Assume that keys and values are positive and that keys are
// multiples of ten.
void printHistogram(Map & hist)

 // print the grade then a line of asterisks
for the total for (int key : hist) {

cout << key << "s:";

for (int i=0; i < hist[key]; i++) {
cout << "*";

}
cout << endl;

}
}  

Page of
8 10

Chris Gregg

Chris Gregg

Question 5: Short Recursive Functions (15 points)

• Count 11: Given a string, compute recursively (no loops) the number of "11"
substrings in the string. The "11" substrings should not overlap. Examples:

◦ count11("11abc11") → 2
◦ count11("abc11x11x11") → 3
◦ count11("111") → 1

int count11(string s) {
 if (str.length() <= 1) {
 return 0;
 }
 if (str[0] == '1' && str[1] == '1') {
 return 1 + count11(str.substring(2));
 }
 return count11(str.substring(1));
}

• ChangeXY: Given a string, compute recursively (no loops) a new string
where all the lowercase 'x' chars have been changed to 'y' chars. Examples:

◦ changeXY("codex") → "codey"
◦ changeXY("xxhixx") → "yyhiyy"
◦ changeXY("xhixhix") → "yhiyhiy"

string changeXY(string s) {

 if (s.length() == 0) {
 return "";
 }
 if (s[0] == 'x') {
 return 'y' + changeXY(s.substr(1));
 }
 return s[0] + changeXY(s.substr(1));
}

Page of
9 10

Chris Gregg

• Permutations with no adjacent duplicates: Given a string, print out only the
permutations of the string where adjacent characters are not the same. Your
solution should print duplicate permutations, where expected. You will need a
helper function to do this recursively. Examples:

◦ permuteNoDups("aabc") → abac abca acab acba abac abca acab acba
baca baca caba caba

◦ permuteNoDups("xxy") → xyx xyx
◦ permuteNoDups("xxxxyy") → (no output)

void permuteNoDupsHelper(string rest, string soFar) {
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 string remaining = rest.substr(0, i) + rest.substr(i+1);
 char currChar = rest[i];
 // if the previous char is the current char, skip
 int soFarLen = soFar.length();
 if (soFarLen == 0 || soFar[soFarLen - 1] != currChar) {
 permuteNoDupsHelper(remaining, soFar + currChar);
 }
 }
 }
}

void permuteNoDups(string s) {
 permuteNoDupsHelper(s, "");
}

Page of
10 10

Chris Gregg

Chris Gregg

Chris Gregg

Chris Gregg

