Question 1: Algorithm Analysis and Big O (10 Points)

Give a tight bound of the worst-case runtime complexity class for each of the following code
fragments in Big-Oh notation, in terms of the variable N. (Write the growth rate as N grows.)
Write a simple expression that gives only a power of N, such as O(A2) or O(log N), not an exact
calculation like O(2Ne + 4N + 14).

For each problem below, assume that you already have the following five Stanford Library data
structures, each with N elements, which were already declared as follows (and filled). Each sub-
problem has a complete set of elements in those data structures (i.e., the problems are
independent, and modifying a container in one sub-problem does not affect the next sub-
problem). If there are multiple data structures in one problem, they all have the same N number
of elements already populated:

e Map<int, int> myMap;
¢ Set<int> mySet;

¢ Vector<int> myVector;
e Stack<int> myStack;

* Queue<int> myQueue;

You also have a GX 1d with NxN elements, defined as follows. Note: a Stanford Grid has o(1)
read time for all elements, just like a Vector.

e Grid<int> myGrid(N, N)

while (!myStack.isEmpty()) {
int x = myQueue.dequeue();
myQueue.enqueue(x * myStack.pop());

}
Answer: O(N)

for (int i = 0; i < N; i++) {
int x = myVector.remove(0);
myVector.add(N - x);

}
Answer: O(N2)

int count = 0;
for (int i = 0; i < N; i++) {
if (mySet.contains(i)) {
count++;
}
}

Answer: O(N log N)

int 1 = N;
while (i > 1) {
myQueue.enqueue (i) ;
i=1i/ 2;
}
Answer: O(log N)

for (int r = 0; r < N; r++) {
for (int ¢ = 0; ¢ < N; c++) {
myMap [myGrid[r][c]] = myGrid[c][r];
}
}

Answer: O(log N * N2)

int value = 1;

for (int i = 1; i < 20 * N; i++) {
value *= i;
myVector.add(value);

for (int j = 1; j < 200 * N; j++) {
value *= j;
myVector.add(value);

}
Answer: O(N)

Question 2: Wordle

Wordle is a word-guessing game made by Josh Wardle that gained popularity in the past year.
Here’s how the game works.

There is one word that the user is attempting to uncover, let’s call this actualWord.
When a user guesses what actualWord is, each character in

thisgues sedWord is put into one of three categories based on its presence
inactualWord:

Category 0: the character is not in actualWord

Category 1: the character is in actualWord but not in the right position
within actualWord

Category 2: the character is in actualWord andisinthe right position
within actualWord

Your task is to write a function that scores a user’s Wordle guess:

int scoreWordleGuess(string guessedWord,

string actualWord);

We’'ll say characters in Category 0 have a score of 0, characters in category 1 have a score of
1, and characters in Category 2 have a score of 2.

For example, sScoreWordleGuess ("smart", "sweat") would
return 5 since

e 's'isin Category 2, it's in "sweat" andinthe right position
e 'm' isinCategory 0, its notin " sweat"

e 'a'isin Category 1, it'sin "sweat " but not at the right position (index 2
within " smart" andindex 3 within ' sweat")

e 'r'isinCategory0,itsnotin " sweat"

e '"t'isin Category 2, it’s in "sweat" andinthe right position
Notes on this problem:

You can assume that actualWord and gues sedWord are the same length.
Both strings are non-empty, and of arbitrary size (not always 5 letters like the actual Wordle
game).

You can assume that there are no duplicate characters in

eitheractualWord orguessedWord. For example,

neither actualWord nor guessedWord wilbe "eldexr" since this word
has a double ' € '

Your solution should be case-insensitive. This means

that sScoreWordleGuess ("SMart", "sweAt") should also retum
5.

Example answers:

// Solution route 1: 0(n”2) with str.find

int scoreWordleGuess (string guessedWord, string actualWord) ({
int result = 0;
guessedWord = toLowerCase (guessedWord) ;

actualWord = tolLowerCase (actualWord) ;

for (char cur : guessedWord) {
// cur is somewhere in actualWord,
// either category 1 or 2
if (actualWord.find(cur) !'= string::npos) {
int foundIndex = actualWord.find(cur) ;
if (i == foundIndex) ({
result += 2
} else {
result += 1;

}

// else cur is not in actualWord, category O,

// don’t need to add 0 to result
}

return result;

// Solution route 2: 0(n*“2) with double for loop

int scoreWordleGuess (string guessedWord, string actualWord) {
int result = 0;
guessedWord = toLowerCase (guessedWord) ;

actualWord = tolLowerCase (actualWord) ;

for (int i = 0; i < guessedWord.size(); i++) {
char cur = guessedWord[i];
for (int j = 0; j < actualWord.size (), Jj++) {
// characters match! either category 1 or 2
if (cur == actualWord[j]) {
if (i == 3) {
result += 2;
} else {
result += 1;

}

return result;

// Solution route 3: O(n log n) with Set<char>

Set<char> getChars (string actualWord) {
Set<char> result;
for (char ch : actualWord) {
result.add(ch) ;
}

return result;

int scoreWordleGuess (string guessedWord, string actualWord) {

int result = 0;

guessedWord = toLowerCase (guessedWord) ;

actualWord = tolLowerCase (actualWord) ;

Set<char> charsInActualWord = getChars (actualWord) ;
for (int i = 0; i < guessedWord.size(); i++) {
// character is somewhere in actualWord

if (charsInActualWord.contains (guessedWord[i])) {

if (guessedWord[i] == actualWord[i]) {
result += 2;
} else {

result += 1;

}

return result;

Report the Big-O runtime of your solution:

The runtime of my scoreWordleGuess is: solution
dependent

There is a solution to scoreWorldeGuess that runsin O (. 1O0g 1n) time. If your solution

does that, explain in 50 words why that's the case. If not, please explain how you would modify
your program to do so (you do not have to modify your code, a working solution will get full
credit to the first part of this question).

Reasonable explanation, e.g., using a set as in solution 2 above

Question 3: Non-recursive "balanced
operators" with a Stack

For assignment 3, you had to write a recursive function to determine whether a bracketed string
was nested and matched ("balanced"). Now we're going to have you implement an iterative
version using a stack.

Here is the basic algorithm (without the low-level details you will need to figure out):

1. Iterate through the string, checking each character.
2. If you find an opening bracket, push it onto the stack.

3. If you find a closing bracket, pop the last value off the stack. If the stack was empty, or if
the current character and the character popped off the stack are not matching brackets,
the string is not balanced.

4. If you reach the end of the string and there are still values on the stack, the string is not
balanced.

Given a Map<char ’ char> of matching brackets, with the keys as the left brackets,
and the values as the corresponding right brackets (see the example code below), and

a string, write the functon matchedOperators, as shown below. Your code
should runin O () time, where N is the length of the string.

Note:: The Map can be any mapping of left-bracket/right-bracket. In other words, what

constitutes a "bracket" is defined by the map. Your solution should not assume that the brackets
are the same as in the homework problem. You can assume that there are unique pairs of
brackets (e.g., all values in the map will be unique). In the example below, curly braces, square

brackets, the colon / questionmark pair, and the ' | "and ' !’ pair are brackets, but
parentheses are not considered brackets.

// returns true if the string is balanced, false if it is not
balanced
bool matchedOperators (Map<char, char> operators, string s);

// Example on how to use:
int main() {
Map<char, char> ops;

ops['{'] = '"}'; // opening bracket {, closing bracket }
ops['['] '1'; // opening bracket [, closing bracket]
ops[':'] = '?'; // opening bracket :, closing bracket ?
ops['|'] = '"!'; // opening bracket |, closing bracket !

cout << std::boolalpha;

// prints true

cout << matchedOperators(ops, ":4 + 5?2 * {6 + [4-3]}") <<
endl;

// prints false

cout << matchedOperators(ops, "|[4 + 5!! * {6 + [4-3]}") <<
endl;

// prints false
cout << matchedOperators(ops, "{ [x } v 1") << endl;

// prints true
cout << matchedOperators(ops,
" int main() { int x = 2 * (vec[2] + 3); x = (1 +
random()); }")
<< endl;

}

Example solution:

bool matchedOperators (Map<char, char> operators, string s) ({
Set<char> rightOps;
for (char c : operators.values()) {
rightOps.add(c) ;
}
Stack<char> stack;
for (char c¢ : s) {
if (operators.containsKey(c)) {
// left operator
stack.push(c) ;
} else if (rightOps.contains(c)) {
// right operator
if (stack.isEmpty ()
| | operators[stack.pop()] '= c) {

return false;

}
return stack.isEmpty() ;

Question 4: The Logistic Map

The logistic map is a non-linear equation that demonstrates how chaotic behavior can arise in a
simple way. It has a recursive defintion as follows:

Tn+1 =TTy (1 — xy

This creates a sequence of values given by xo, X1, Xz, ..., Xa1, Xo. Both rand x, are constants,
with xo defined as the initial condition.

Write a recursive function to calculate x, when given the values rand xo:

double logistic(int n, double r, double x0);
Notes:

. While you can solve this with two recursive calls, your solution should only have one for
full credit to avoid an unnecessary call.

* X 0 is the return value of the function when N equals zero.
: Neither X nor X0 change while the function is running.
Example solution:

O(n) solution (for full credit):

double logistic(double n, double r, double x0) {
if (n == 0) {
return x0;
}
double previous = logistic(n - 1, r, x0);

return r * previous * (1 - previous);

O(an) solution (for partial credit):

double logisticExp (double n, double r, double x0) ({
if (n == 0) {
return x0;

}
return r * logisticExp(n - 1, r, x0)

* (1 - logisticExp(n - 1, r, x0));

Question 5: More recursion

Part A: Given a string, write a recursive function, dashSep to return a string where all

adjacent characters are separated by a dash.
Examples:

e dashSep("hello") -> "h-e-1-1-0"
e dashSep("dogs") -> "d-o-g-s"

e dashSep("abc") -> "a-b-c"

e dashSep("ab") -> "a-b"

e dashSep("a") -> "a"

° dashsep(ll ll) _> mmn

string dashSep(string s);

Example solution:

string dashSep(string s) ({
// recursively generate a string where all adjacent
// characters are separated by '-'
const string DASH = "-";
if (s.length() <= 1) {
return s;
}
return s[0] + DASH + dashSep(s.substr(l));

Part B: Given a string, write a recursive function, twinsDashtoreturna string where all

characters that are the same are separated by a dash.
Examples:

e twinsDash("hello") -> "hel-1lo"
e twinsDash("xxyy") -> "x-xy-y"

e twinsDash("aaaa") -> "a-a-a-a"

string twinsDash(string s);

Example solution:

string twinsDash(string s) {

const string DASH = "-";
if (s.length() <= 1) {

return s;
}
if (s[0] == s[1l]) {

return s[0] + DASH + twinsDash(s.substr(1l)) ;
} else {

return s[0] + twinsDash(s.substr (1))

