Programming Abstractions

CS106B

Chris Gregg
Neel Kishnani

Clinton Kwarteng

Stanford University

Today’s Agenda

® Analyzing ADT Implementations
O Arrays

o Binary Search Trees

e Hash tables
o Hash functions
o What makes a “good” hash function?

® Other uses of hashing

Stanford University

Analyzing ADT Implementations

Stanford University

Analyzing ADT Implementations

For all of our ADTs (Vector, Set, etc) our goal is to achieve fast

o Contains
o Add
o Remove

Stanford University

Implementing Set

e Let’s use an array!
e We need dynamic memory (on the heap!)

e Let’s focus on 2 versions: unsorted array and sorted array

Stanford University

Unsorted Array

Need to check if the element is contained in the array to ensure no duplicates

Contains

Add

Remove

Stanford University

Unsorted Array

Need to check if the element is contained in the array to ensure no duplicates

Contains O (n)

Add

Remove

Stanford University

Unsorted Array

Need to check if the element is contained in the array to ensure no duplicates

Contains O (n)

Add O (n)

Remove

Stanford University

Unsorted Array

Need to check if the element is contained in the array to ensure no duplicates

Contains O (n)

Add O (n)

Remove O (n)

Stanford University

Sorted Array

Binary search speeds up lookups!

Contains

Add

Remove

Stanford University

Sorted Array

Binary search speeds up lookups!

Contains

Add

Remove

O(log(n))

Stanford University

Sorted Array

Still need to shift elements over &

Contains O(log(n))
Add O (n)
Remove

Stanford University

Sorted Array

Still need to shift elements over &

Contains O(log(n))
Add O (n)
Remove O (n)

Stanford University

Next step for lookup-based structures...

Binary Search Trees

Stanford University

Stanford University

Stanford library Map and Set
classes are backed by binary search
trees

Stanford University

Binary Search Trees

Assuming a balanced binary search tree

Contains

Add

Remove

Stanford University

Binary Search Trees

Assuming a balanced binary search tree

Contains O(log(n))

Add

Remove

Stanford University

Binary Search Trees

Assuming a balanced binary search tree

Contains O(log(n))
Add O(log(n))
Remove

Stanford University

Binary Search Trees

Assuming a balanced binary search tree

Contains O(log(n))

Add O(log(n))

Remove O(log(n))

Stanford University

Can we do betterthan O (1log(n))? &

Stanford University

UG2 Package Center

e The package center gets a lot of packages throughout the quarter

e They store packages by keeping a small number of buckets for groups of
packages

e They have a rule that assigns packages to buckets

e When a student comes in to pick up their package, they know exactly
which bucket to go to

Stanford University

To: Neel Kishnani

Unique ID: NEELK
Bin Number: G-B1A1

2
11/15/2021 4:18 PM plin] ¢
(=]

JJD014600009239261945

Stanford University

Let’s introduce a special function
called a hash function

N AN
S
Hash Function

Stanford University

We'll use this hash function to assign
elements to buckets

N AN
S
Hash Function

Stanford University

Hash Functions

Important property:
The same input should produce the same output
« Functions with this property are deterministic

« More on deterministic functions in CS103!

For the purposes of CS106B, assume our hash function returns an int
o Theinput can be of any type though! (string, double, int,

etc.)

Stanford University

/N N\

N
Hash Function

Input: 12

Stanford University

/N N\

N
Hash Function

The output of

a hash

function is Input: 12
called a hash

codel Hash Code: 106107

Stanford University

/N N\

N
Hash Function

Input: 1016

Hash Code:

Stanford University

/N N\

N
Hash Function

Input: 1016

Hash Code: 309731

Stanford University

/N N\

N
Hash Function

Input: 12

Stanford University

/N N\

N
Hash Function

Input: 12

Hash Code: 106107

Stanford University

A new data structure ©

e Let’s go back to our array and treat each slot as a bucket for elements,
just like the package center!

e WEe'll assign each element we need to insert into a bucket and store it
there

Stanford University

Use a hash function to assign
elements to buckets &

Stanford University

This data structure is called a

Hash Table

Stanford University

HashTable: :HashTable () {
// Initialize array of buckets
~elements = new 1nt[NUM BUCKETS];

Stanford University

An idea for a hash function

Return the element itself!

int hashl (i1nt elem) {
return elem;

Stanford University

vold HashTable::insert (int elem) {
int bucket = hashl (elem);
~elements|[bucket] = elem;

Stanford University

Break

Stanford University

Logistics

e Assignment 7 is out now and due June 2nd
o Huffman Coding!

o Last assignment of the quarter — congrats!

e Final Exam:

8:30-11:30AM on Friday June 9t"

Same format as midterm

Practice materials up on course website

Review session happening Sunday 2-4PM in Bishop

O O O O

Stanford University

Resume

Stanford University

Our Buckets

Stanford University

int hashl (int elem) {

(0] Hash Function:
return elem;

Stanford University

int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 3
[2]
[3]
[4]

Stanford University

int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 3
[2] .
Hash Code: 3
[3]
[4]

Stanford University

int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 3

[2] .

Hash Code: 3
[3] 3 /

The hash code
[4] IS ’rhe bUCkCT

we put the

element in

Stanford University

int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 0

[2]

[3] 3

[4]

Stanford University

int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 0
[2] .
Hash Code: 0
[3] 3
[4]

Stanford University

int hashl (int elem) {

(0] 0 Hash Function: return elems:
)
[1]
Input: 0

[2] :

Hash Code: 0
[3] 3
[4]

Stanford University

int hashl (int elem) {

(0] 0 Hash Function: return elems:
}
[1]
Input: 17000
[2]
[3] 3
[4]

Stanford University

int hashl (int elem) {

(0] 0 Hash Function: return elems:
}
[1]
Input: 17000

(2]

Hash Code: 17000
[3] 3
[4]

Stanford University

[17000]

Hash Function:

Input:
Hash Code:

ea=mm \We need to enlarge

17000

our array - lots of
wasted spacell

int hashl (int elem) {
return elem;

17000
17000

Stanford University

Issue #1

This hash function could lead to a
sparse hash table

Stanford University

int hashl (int elem) {

[1] Hash Function:
return elem;
}

[2] a0

@

Input: -3

[3] 3
[4]

[17000] 17000

Stanford University

Issue #2

This hash function doesn’t handle
negative inputs

Stanford University

We want to limit the range of
possible buckets

Stanford University

A better(?) hash function

Let’s use the % operator!

int hash? (int elem) {

)

return abs (elem) % numBuckets;

Stanford University

int hash?? (int elem) {

o

return abs(elem) % numBuckets;

Input: 3

Stanford University

int hash?? (int elem) {

o

return abs(elem) % numBuckets;

[0]
)

[1]

Input: 3
2
2 Hash Code: 3
[3]
[4]

Stanford University

int hash?? (int elem) {

o

return abs(elem) % numBuckets;

[0]
)

[1]

Input: 3
2
2 Hash Code: 3
[3] 3
[4]

Stanford University

int hash?? (int elem) {

o

return abs(elem) % numBuckets;

Input: 17000

Stanford University

int hash?? (int elem) {

o

return abs(elem) % numBuckets;

(0]
)

[1]

Input: 17000
2
2 Hash Code: 0
[3] 3
[4]

Stanford University

Handles this

/ large value!

int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1]
Input: 17000
[2]
Hash Code: 0

[3] 3

[4]

Stanford University

int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1]
Input: -6
[2]
[3] 3
[4]

Stanford University

int hash?? (int elem) {

17000 return abs (elem) % numBuckets;
}
Input: ~6
Hash Code: 1
3

Stanford University

int hash?? (int elem) {

17000 return abs (elem) % numBuckets;
}
-6
Input: —6
Hash Code: 1
3
Handles this
negative
value!

Stanford University

int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1] -6
Input: 8
[2]
[3] 3
[4]

Stanford University

int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1] -6
Input: g

[2] _

Hash Code: 3
[3] 3
[4]

Stanford University

int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1] -6
Input: g
[2] _
Hash Code: 3
B
[4]

Stanford University

Hash Collisions

e Our hash function assigned two different elements to the same
bucket
o We call this a collision

e We have to decide what to do when collisions happen

e Idea: instead of having our array store int, let’s have it a linked list
o Each bucket will now be a ListNode*

o When we have a collision, we can add the new element to the
front of the listin O (1)

Stanford University

that each array element is a
pointer. More in C5107!

private:
ListNode** elements;

In the cpp file... Initialize each

bucket to the

HashTable: :HashTable () { nullptr

// Initialize array of buckets
_elements = new ListNode* [NUM BUCKETS] () ;

Stanford University

This is called a

Chaining Hash Table

Stanford University

int hash2 (int elem) {
return abs(elem) % numBuckets;

}

Input: 2

Stanford University

int hash2 (int elem) {
return abs(elem) % numBuckets;

}

[0]
Input: 2

[1]
Hash Code: 2

[2]

[3]

[4]

Stanford University

int hash2 (int elem) {
return abs(elem) % numBuckets;

}

[0]
Input: 2
[1]
Hash Code: 2
[2] 2
[3]
[4]

Stanford University

int hash2 (int elem) {
return abs(elem) % numBuckets;

}

Input: 10

Stanford University

10

int hash2 (int elem) {
return abs(elem) % numBuckets;

}

Input: 10

Hash Code: 0

Stanford University

int hash2 (int elem) {
return abs(elem) % numBuckets;

}

0] 10
Input: 7

[1]

[2] 2

[3]

[4]

Stanford University

int hash2 (int elem) {
return abs(elem) % numBuckets;

}

0] 10
Input: 7
[1]
Hash Code: 2
[2] 7 2
[3]
[4]

Stanford University

Inserting into this chaining hash table is

O(1)

Stanford University

volid HashTable::insert (int elem) {

1f (contains(elem)) return;
int bucket = hash2(elem);
ListNode* front = elements[bucket];

// Create new front of list, tack previous onto end
ListNode* cur = new ListNode{elem, front};
_elements[bucket] = cur;

Stanford University

Say you got the following elements as inputs next:

17, 22, 92, 77

Stanford University

10

[2] 77 92 22 17

Stanford University

With several collisions, our contains and remove will be

O(n)

Where n is the number of elements in the relevant bucket

Stanford University

Our goal is to get a “good” hash function that:

e Distributes elements evenly (“spread”)

e Maintains a reasonable load factor

Stanford University

Load Factor

e The average number of elements in each bucket
o If the load factor is low: wasted space

o If the load factor is high: slow operations

e The load factor of a hash table with n elements and b buckets is:

n

b

Stanford University

Good Hash Functions

e There’s tons of research in designing hash functions

e Beyond the scope of this class
o (€S161, CS166, CS265

Stanford University

HashSet

Assuming we have a good hash function

Contains

Add

Remove

Stanford University

HashSet

Assuming we have a good hash function

Contains O (n/b)

Add

Remove

Stanford University

HashSet

Assuming we have a good hash function

Contains O(n/b)
Add O(n/b)
Remove

Stanford University

HashSet

Assuming we have a good hash function

Contains O(n/b)
Add O(n/b)
Remove O(n/b)

Stanford University

With b chosen to be close to n, we can
approximate O (1) contains, add, and
remove

Stanford University

That’s just about as good as we can do!

Stanford University

The Stanford library HashSet and HashMap
are implemented with hash tables!

Stanford University

HashMap HashSet

clear() ony ~— artele) g(‘;’)
> cLear()

, containsKey (key). (1) contains(value) 0(1)
equals(map). O(N) difference(otherSet). O(N)
firstKey (). O(1) equals(set). O(N)
get (key) O(1) first() o(1)

| isEmpty() 0o(1) intersect(otherSet) O(N)

’ isSubsetOf (otherSet)

| lastkey(). o) isSupersetOf(otherSet). O(N)
mapAll(fn). O(N) last() o(1)

‘put(key, value) o(1) mapAll(fn) O(N)
remove (key) o(1) remove (value) o(1)

Stanford University

Other uses of hash functions

Stanford University

Hash Functions

e Broadly, hash functions map a value to a unique integer value

e Presents in several CS domains

e The magic of hash functions:
o They can take in any value and boil it down to a unique number

o Images, ADTs, files, etc.

e Thought question: how would you hash a string?
o Length?
o ASCIl representation?
o What about an image?

Stanford University

Hash Functions

Goal: different values should produce very
different hash codes

Stanford University

CS253: Web Security

User table (berypt)

Username Password

alice $2b%$10%$aQNesMKOHDhrkus8GZGQL.Nj11nsx12VTMTDBkykiL/
jRbb.fluGC

$2b$10$TSbaMNCCq6.xNkDVszwwhO9Fpb.eeW6aUSIFzGkPoQ
rs5RahskOUO

charlie $2b$10%.5KcQQNEfnkPBYxeiqS2ZeePXLT5)30HG7zngfesyGucOj
s37X41e

dakotah $2b$10%18n7ZLsq13ygEOM3cQ80EuBjPnGcGBUALzvIhnsKgyD
EZdEd2EFXa

62 Feross Aboukhadijeh

CS145: Data Management and Data Systems

Hashing Sorting

Big Scale

Hashing-Sorting solves “all” known data scale problems :=)
Roadmap .

Boost with a few patterns - Cache, Parallelize, Pre-fetch

THE BIG IDEA

r Note
Works for Relational, noSQL
(e.g. mySQL, postgres, BigQuery, BigTable, MapReduce, Spark)

Stantord University

Cryptographic Hash Functions

e Hash functions used in a security context
e One-way function: can’t reverse

e Collision resistant

e Most popular: SHA-256

e Morein CS155, CS 253, CS255

Stanford University

END

Stanford University

