
Programming Abstractions
CS106B

Chris Gregg
Neel Kishnani

Clinton Kwarteng

Today’s Agenda
● Analyzing ADT Implementations

○ Arrays
○ Binary Search Trees

● Hash tables
○ Hash functions
○ What makes a “good” hash function?

● Other uses of hashing

Analyzing ADT Implementations

Analyzing ADT Implementations
For all of our ADTs (Vector, Set, etc) our goal is to achieve fast

○ Contains
○ Add
○ Remove

Implementing Set

● Let’s use an array!

● We need dynamic memory (on the heap!)

● Let’s focus on 2 versions: unsorted array and sorted array

Unsorted Array

Remove

Need to check if the element is contained in the array to ensure no duplicates

Contains

Add

Unsorted Array

Remove

Need to check if the element is contained in the array to ensure no duplicates

Contains O(n)

Add

Unsorted Array

Remove

Need to check if the element is contained in the array to ensure no duplicates

Contains

Add

O(n)

O(n)

Unsorted Array

O(n)Remove

Need to check if the element is contained in the array to ensure no duplicates

Contains

Add

O(n)

O(n)

Sorted Array

Remove

Binary search speeds up lookups!

Contains

Add

Sorted Array

Remove

Binary search speeds up lookups!

Contains

Add

O(log(n))

Sorted Array
Still need to shift elements over

Contains

Add

Remove

O(log(n))

O(n)

Sorted Array
Still need to shift elements over

Contains

Add

O(n)Remove

O(log(n))

O(n)

Binary Search Trees

Next step for lookup-based structures...

Stanford library Map and Set
classes are backed by binary search

trees

Binary Search Trees

Remove

Assuming a balanced binary search tree

Contains

Add

Binary Search Trees

Remove

Assuming a balanced binary search tree

Contains

Add

O(log(n))

Binary Search Trees

Remove

Assuming a balanced binary search tree

Contains

Add

O(log(n))

O(log(n))

Binary Search Trees

O(log(n))Remove

Assuming a balanced binary search tree

Contains

Add

O(log(n))

O(log(n))

Can we do better than O(log(n))?

UG2 Package Center
● The package center gets a lot of packages throughout the quarter

● They store packages by keeping a small number of buckets for groups of
packages

● They have a rule that assigns packages to buckets

● When a student comes in to pick up their package, they know exactly
which bucket to go to

Let’s introduce a special function
called a hash function

We’ll use this hash function to assign
elements to buckets

Hash Functions
Important property:

The same input should produce the same output

● Functions with this property are deterministic
● More on deterministic functions in CS103!

For the purposes of CS106B, assume our hash function returns an int
● The input can be of any type though! (string, double, int,

etc.)

Input: 12

Input:

Hash Code:

12

106107

The output of
a hash
function is
called a hash
code!

Input:

Hash Code:

1016

Input:

Hash Code:

1016

309731

Input: 12

Input:

Hash Code:

12

106107

A new data structure
● Let’s go back to our array and treat each slot as a bucket for elements,

just like the package center!

● We’ll assign each element we need to insert into a bucket and store it
there

Use a hash function to assign
elements to buckets

This data structure is called a

Hash Table

HashTable::HashTable() {
// Initialize array of buckets
_elements = new int[NUM_BUCKETS];

}

An idea for a hash function
Return the element itself!

int hash1(int elem) {
return elem;

}

void HashTable::insert(int elem) {
int bucket = hash1(elem);
_elements[bucket] = elem;

}

Break

Logistics
● Assignment 7 is out now and due June 2nd

○ Huffman Coding!
○ Last assignment of the quarter – congrats!

● Final Exam:
○ 8:30-11:30AM on Friday June 9th

○ Same format as midterm
○ Practice materials up on course website
○ Review session happening Sunday 2-4PM in Bishop

Resume

Our Buckets

[4]

[0]

[1]

[2]

[3]

int hash1(int elem) {
return elem;

[4]

}

Hash Function:[0]

[1]

[2]

[3]

int hash1(int elem) {
return elem;

}

3

[4]

Hash Function:

Input:

[0]

[1]

[2]

[3]

int hash1(int elem) {
return elem;

}

3

3

[4]

Input:

Hash Code:

Hash Function:[0]

[1]

[2]

[3]

int hash1(int elem) {
return elem;

}

3

3

Input:

Hash Code:

Hash Function:

The hash code
is the bucket
we put the
element in

3

[0]

[1]

[2]

[3]

[4]

int hash1(int elem) {
return elem;

}

0

[4]

Input:

Hash Function:

3

[0]

[1]

[2]

[3]

int hash1(int elem) {
return elem;

}

0

0

[4]

Input:

Hash Code:

Hash Function:

3

[0]

[1]

[2]

[3]

int hash1(int elem) {
return elem;

}

0

0

[4]

Input:

Hash Code:

Hash Function:0

3

[0]

[1]

[2]

[3]

int hash1(int elem) {
return elem;

}

17000

[4]

Input:

Hash Function:0

3

[0]

[1]

[2]

[3]

Hash Function:

[4]

int hash1(int elem) {
return elem;

}

17000

17000

Input:

Hash Code:

0

3

[0]

[1]

[2]

[3]

Hash Function: int hash1(int elem) {
return elem;

}

17000

17000

Input:

Hash Code:

We need to enlarge
our array – lots of
wasted space!!

0

3

[0]

[1]

[2]

[3]

[4]

17000

…

[17000]

Issue #1

This hash function could lead to a
sparse hash table

Hash Function: int hash1(int elem) {
return elem;

}

-3Input:

0

3

[0]

[1]

[2]

[3]

[4]

…

17000[17000]

Issue #2

This hash function doesn’t handle
negative inputs

We want to limit the range of
possible buckets

A better(?) hash function
Let’s use the % operator!

int hash2(int elem) {
return abs(elem) % numBuckets;

}

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 3

[4]

[0]

[1]

[2]

[3]

Input:

Hash Code:

[4]

3

3

int hash2(int elem) {
return abs(elem) % numBuckets;

}
[0]

[1]

[2]

[3]

Input:

Hash Code:

[4]

3

3

int hash2(int elem) {
return abs(elem) % numBuckets;

}

3

[0]

[1]

[2]

[3]

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 17000

[4]

3

[0]

[1]

[2]

[3]

Input:

Hash Code:

[4]

17000

0

int hash2(int elem) {
return abs(elem) % numBuckets;

}

3

[0]

[1]

[2]

[3]

Input:

Hash Code:
17000

0

Handles this
large value!

[4]

int hash2(int elem) {
return abs(elem) % numBuckets;

}
17000

3

[0]

[1]

[2]

[3]

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: -6

[4]

17000

3

[0]

[1]

[2]

[3]

Input:

Hash Code:

[4]

-6

1

int hash2(int elem) {
return abs(elem) % numBuckets;

}
17000

3

[0]

[1]

[2]

[3]

Input:

Hash Code:
-6

1

Handles this
negative
value!

int hash2(int elem) {
return abs(elem) % numBuckets;

}
17000

-6

3

[0]

[1]

[2]

[3]

[4]

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 8

[4]

17000

-6

3

[0]

[1]

[2]

[3]

Input:

Hash Code:

[4]

8

3

int hash2(int elem) {
return abs(elem) % numBuckets;

}
17000

-6

3

[0]

[1]

[2]

[3]

Input:

Hash Code:
8

3

int hash2(int elem) {
return abs(elem) % numBuckets;

}

[4]

17000

-6

3

[0]

[1]

[2]

[3]

Hash Collisions
● Our hash function assigned two different elements to the same

bucket
○ We call this a collision

● We have to decide what to do when collisions happen

● Idea: instead of having our array store int, let’s have it a linked list
○ Each bucket will now be a ListNode*
○ When we have a collision, we can add the new element to the

front of the list in O(1)

In the cpp file…

HashTable::HashTable() {
// Initialize array of buckets
_elements = new ListNode*[NUM_BUCKETS]();

}

A double pointer! This means
that each array element is a
pointer. More in CS107!

Initialize each
bucket to the
nullptr

In the header file…

private:
ListNode** _elements;

This is called a

Chaining Hash Table

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 2
[0]

[1]

[2]

[3]

[4]

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 2

Hash Code: 2

[0]

[1]

[2]

[3]

[4]

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 2

Hash Code: 2

[0]

[1]

[2]

[3]

[4]

2

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 10
[0]

[1]

[2]

[3]

[4]

2

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 10

Hash Code: 0

[0]

[1]

[2]

[3]

[4]

2

10

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 7
[0]

[1]

[2]

[3]

[4]

2

10

int hash2(int elem) {
return abs(elem) % numBuckets;

}

Input: 7

Hash Code: 2

[0]

[1]

[2]

[3]

[4]

7

10

2

Inserting into this chaining hash table is

O(1)

void HashTable::insert(int elem) {
if (contains(elem)) return;
int bucket = hash2(elem);
ListNode* front = _elements[bucket];

// Create new front of list, tack previous onto end
ListNode* cur = new ListNode{elem, front};
_elements[bucket] = cur;

}

Say you got the following elements as inputs next:

17, 22, 92, 77

[0]

[1]

[2]

[3]

[4]

77

10

92 22 17

…

With several collisions, our contains and remove will be

O(n)

Where n is the number of elements in the relevant bucket

Our goal is to get a “good” hash function that:

● Distributes elements evenly (“spread”)

● Maintains a reasonable load factor

Load Factor
● The average number of elements in each bucket

○ If the load factor is low: wasted space
○ If the load factor is high: slow operations

● The load factor of a hash table with n elements and b buckets is:

Good Hash Functions
● There’s tons of research in designing hash functions

● Beyond the scope of this class
○ CS161, CS166, CS265

HashSet

Remove

Assuming we have a good hash function

Contains

Add

HashSet

Remove

Assuming we have a good hash function

Contains

Add

O(n/b)

HashSet

Remove

Assuming we have a good hash function

Contains

Add

O(n/b)

O(n/b)

HashSet

O(n/b)Remove

Assuming we have a good hash function

Contains

Add

O(n/b)

O(n/b)

With b chosen to be close to n,we can
approximate O(1)contains, add, and

remove

That’s just about as good as we can do!

The Stanford library HashSet and HashMap
are implemented with hash tables!

HashMap HashSet

Other uses of hash functions

Hash Functions
● Broadly, hash functions map a value to a unique integer value

● Presents in several CS domains

● The magic of hash functions:
○ They can take in any value and boil it down to a unique number
○ Images, ADTs, files, etc.

● Thought question: how would you hash a string?
○ Length?
○ ASCII representation?
○ What about an image?

Hash Functions

Goal: different values should produce very
different hash codes

CS253: Web Security

CS145: Data Management and Data Systems

Cryptographic Hash Functions
● Hash functions used in a security context

● One-way function: can’t reverse

● Collision resistant

● Most popular: SHA-256

● More in CS155, CS 253, CS255

END

