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Today’s Agenda

® Analyzing ADT Implementations
O Arrays

o Binary Search Trees

e Hash tables
o Hash functions
o  What makes a “good” hash function?

® Other uses of hashing
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Analyzing ADT Implementations
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Analyzing ADT Implementations

For all of our ADTs (Vector, Set, etc) our goal is to achieve fast

o Contains
o Add
o Remove
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Implementing Set

e Let’s use an array!
e We need dynamic memory (on the heap!)

e Let’s focus on 2 versions: unsorted array and sorted array
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Unsorted Array

Need to check if the element is contained in the array to ensure no duplicates

Contains

Add

Remove
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Unsorted Array

Need to check if the element is contained in the array to ensure no duplicates

Contains O (n)

Add

Remove
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Unsorted Array

Need to check if the element is contained in the array to ensure no duplicates

Contains O (n)

Add O (n)

Remove
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Unsorted Array

Need to check if the element is contained in the array to ensure no duplicates

Contains O (n)

Add O (n)

Remove O (n)
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Sorted Array

Binary search speeds up lookups!

Contains

Add

Remove
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Sorted Array

Binary search speeds up lookups!

Contains

Add

Remove

O(log(n))
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Sorted Array

Still need to shift elements over &

Contains O(log(n))
Add O (n)
Remove
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Sorted Array

Still need to shift elements over &

Contains O(log(n))
Add O (n)
Remove O (n)
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Next step for lookup-based structures...

Binary Search Trees
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Stanford library Map and Set
classes are backed by binary search
trees
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Binary Search Trees

Assuming a balanced binary search tree

Contains

Add

Remove
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Binary Search Trees

Assuming a balanced binary search tree

Contains O(log(n))

Add

Remove
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Binary Search Trees

Assuming a balanced binary search tree

Contains O(log(n))
Add O(log(n))
Remove
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Binary Search Trees

Assuming a balanced binary search tree

Contains O(log(n))

Add O(log(n))

Remove O(log(n))
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Can we do betterthan O (1log(n))? &
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UG2 Package Center

e The package center gets a lot of packages throughout the quarter

e They store packages by keeping a small number of buckets for groups of
packages

e They have a rule that assigns packages to buckets

e When a student comes in to pick up their package, they know exactly
which bucket to go to
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To: Neel Kishnani

Unique ID: NEELK
Bin Number: G-B1A1

2
11/15/2021 4:18 PM plin] ¢
(=]

JJD014600009239261945
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Let’s introduce a special function
called a hash function

N AN
S
Hash Function
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We'll use this hash function to assign
elements to buckets

N AN
S
Hash Function
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Hash Functions

Important property:
The same input should produce the same output
« Functions with this property are deterministic

« More on deterministic functions in CS103!

For the purposes of CS106B, assume our hash function returns an int
o Theinput can be of any type though! (string, double, int,

etc.)
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N
Hash Function

Input: 12
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/N N\

N
Hash Function

The output of

a hash

function is Input: 12
called a hash

codel Hash Code: 106107
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N
Hash Function

Input: 1016

Hash Code:
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/N N\

N
Hash Function

Input: 1016

Hash Code: 309731
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N
Hash Function

Input: 12
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/N N\

N
Hash Function

Input: 12

Hash Code: 106107
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A new data structure ©

e Let’s go back to our array and treat each slot as a bucket for elements,
just like the package center!

e WEe'll assign each element we need to insert into a bucket and store it
there
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Use a hash function to assign
elements to buckets &
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This data structure is called a

Hash Table
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HashTable: :HashTable () {
// Initialize array of buckets
~elements = new 1nt[NUM BUCKETS];

Stanford University



An idea for a hash function

Return the element itself!

int hashl (i1nt elem) {
return elem;
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vold HashTable::insert (int elem) {
int bucket = hashl (elem);
~elements|[bucket] = elem;
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Break
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Logistics

e Assignment 7 is out now and due June 2nd
o Huffman Coding!

o Last assignment of the quarter — congrats!

e Final Exam:

8:30-11:30AM on Friday June 9t"

Same format as midterm

Practice materials up on course website

Review session happening Sunday 2-4PM in Bishop

O O O O
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Resume
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Our Buckets
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int hashl (int elem) {

(0] Hash Function:
return elem;
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int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 3
[2]
[3]
[4]
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int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 3
[2] .
Hash Code: 3
[3]
[4]
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int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 3

[2] .

Hash Code: 3
[3] 3 /

The hash code
[4] IS ’rhe bUCkCT

we put the

element in

Stanford University



int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 0

[2]

[3] 3

[4]
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int hashl (int elem) {

(0] Hash Function:
return elem;
}
[1]
Input: 0
[2] .
Hash Code: 0
[3] 3
[4]
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int hashl (int elem) {

(0] 0 Hash Function: return elems:
)
[1]
Input: 0

[2] :

Hash Code: 0
[3] 3
[4]
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int hashl (int elem) {

(0] 0 Hash Function: return elems:
}
[1]
Input: 17000
[2]
[3] 3
[4]
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int hashl (int elem) {

(0] 0 Hash Function: return elems:
}
[1]
Input: 17000

(2]

Hash Code: 17000
[3] 3
[4]
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[17000]

Hash Function:

Input:
Hash Code:

ea=mm \We need to enlarge

17000

our array - lots of
wasted spacell

int hashl (int elem) {
return elem;

17000
17000
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Issue #1

This hash function could lead to a
sparse hash table
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int hashl (int elem) {

[1] Hash Function:
return elem;
}

[2] a0

@

Input: -3

[3] 3
[4]

[17000] 17000
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Issue #2

This hash function doesn’t handle
negative inputs
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We want to limit the range of
possible buckets
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A better(?) hash function

Let’s use the % operator!

int hash? (int elem) {

)

return abs (elem) % numBuckets;
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int hash?? (int elem) {

o

return abs(elem) % numBuckets;

Input: 3
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int hash?? (int elem) {

o

return abs(elem) % numBuckets;

[0]
)

[1]

Input: 3
2
2 Hash Code: 3
[3]
[4]
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int hash?? (int elem) {

o

return abs(elem) % numBuckets;

[0]
)

[1]

Input: 3
2
2 Hash Code: 3
[3] 3
[4]
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int hash?? (int elem) {

o

return abs(elem) % numBuckets;

Input: 17000
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int hash?? (int elem) {

o

return abs(elem) % numBuckets;

(0]
)

[1]

Input: 17000
2
2 Hash Code: 0
[3] 3
[4]
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Handles this

/ large value!

int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1]
Input: 17000
[2]
Hash Code: 0

[3] 3

[4]
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int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1]
Input: -6
[2]
[3] 3
[4]
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int hash?? (int elem) {

17000 return abs (elem) % numBuckets;
}
Input: ~6
Hash Code: 1
3
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int hash?? (int elem) {

17000 return abs (elem) % numBuckets;
}
-6
Input: —6
Hash Code: 1
3
Handles this
negative
value!
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int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1] -6
Input: 8
[2]
[3] 3
[4]
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int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1] -6
Input: g

[2] _

Hash Code: 3
[3] 3
[4]
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int hash?? (int elem) {

[0] 17000 return abs(elem) % numBuckets;
}
[1] -6
Input: g
[2] _
Hash Code: 3
B
[4]
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Hash Collisions

e Our hash function assigned two different elements to the same
bucket
o We call this a collision

e We have to decide what to do when collisions happen

e Idea: instead of having our array store int, let’s have it a linked list
o Each bucket will now be a ListNode*

o When we have a collision, we can add the new element to the
front of the listin O (1)
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that each array element is a
pointer. More in C5107!

private:
ListNode** elements;

In the cpp file... Initialize each

bucket to the

HashTable: :HashTable () { nullptr

// Initialize array of buckets
_elements = new ListNode* [NUM BUCKETS] () ;
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This is called a

Chaining Hash Table
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int hash2 (int elem) {
return abs(elem) % numBuckets;

}

Input: 2
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int hash2 (int elem) {
return abs(elem) % numBuckets;

}

[0]
Input: 2

[1]
Hash Code: 2

[2]

[3]

[4]
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int hash2 (int elem) {
return abs(elem) % numBuckets;

}

[0]
Input: 2
[1]
Hash Code: 2
[2] 2
[3]
[4]
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int hash2 (int elem) {
return abs(elem) % numBuckets;

}

Input: 10
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10

int hash2 (int elem) {
return abs(elem) % numBuckets;

}

Input: 10

Hash Code: 0
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int hash2 (int elem) {
return abs(elem) % numBuckets;

}

0] 10
Input: 7

[1]

[2] 2

[3]

[4]
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int hash2 (int elem) {
return abs(elem) % numBuckets;

}

0] 10
Input: 7
[1]
Hash Code: 2
[2] 7 2
[3]
[4]

Stanford University



Inserting into this chaining hash table is

O(1)
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volid HashTable::insert (int elem) {

1f (contains(elem)) return;
int bucket = hash2(elem);
ListNode* front = elements[bucket];

// Create new front of list, tack previous onto end
ListNode* cur = new ListNode{elem, front};
_elements[bucket] = cur;
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Say you got the following elements as inputs next:

17, 22, 92, 77
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10

[2] 77 92 22 17
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With several collisions, our contains and remove will be

O(n)

Where n is the number of elements in the relevant bucket
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Our goal is to get a “good” hash function that:

e Distributes elements evenly (“spread”)

e Maintains a reasonable load factor
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Load Factor

e The average number of elements in each bucket
o If the load factor is low: wasted space

o If the load factor is high: slow operations

e The load factor of a hash table with n elements and b buckets is:

n

b
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Good Hash Functions

e There’s tons of research in designing hash functions

e Beyond the scope of this class
o (€S161, CS166, CS265
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HashSet

Assuming we have a good hash function

Contains

Add

Remove
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HashSet

Assuming we have a good hash function

Contains O (n/b)

Add

Remove
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HashSet

Assuming we have a good hash function

Contains O(n/b)
Add O(n/b)
Remove
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HashSet

Assuming we have a good hash function

Contains O(n/b)
Add O(n/b)
Remove O(n/b)
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With b chosen to be close to n, we can
approximate O (1) contains, add, and
remove
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That’s just about as good as we can do!
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The Stanford library HashSet and HashMap
are implemented with hash tables!
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HashMap HashSet

clear() ony ~— artele) g(‘;’)
> cLear()

, containsKey (key). (1) contains(value) 0(1)
equals(map). O(N) difference(otherSet). O(N)
firstKey (). O(1) equals(set). O(N)
get (key) O(1) first() o(1)

| isEmpty() 0o(1) intersect(otherSet) O(N)

’ isSubsetOf (otherSet)

| lastkey(). o) isSupersetOf(otherSet). O(N)
mapAll(fn). O(N) last() o(1)

‘put(key, value) o(1) mapAll(fn) O(N)
remove (key) o(1) remove (value) o(1)
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Other uses of hash functions
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Hash Functions

e Broadly, hash functions map a value to a unique integer value

e Presents in several CS domains

e The magic of hash functions:
o They can take in any value and boil it down to a unique number

o Images, ADTs, files, etc.

e Thought question: how would you hash a string?
o Length?
o ASCIl representation?
o What about an image?
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Hash Functions

Goal: different values should produce very
different hash codes

Stanford University



CS253: Web Security

User table (berypt)

Username Password

alice $2b%$10%$aQNesMKOHDhrkus8GZGQL.Nj11nsx12VTMTDBkykiL/
jRbb.fluGC

$2b$10$TSbaMNCCq6.xNkDVszwwhO9Fpb.eeW6aUSIFzGkPoQ
rs5RahskOUO

charlie $2b$10%.5KcQQNEfnkPBYxeiqS2ZeePXLT5)30HG7zngfesyGucOj
s37X41e

dakotah $2b$10%18n7ZLsq13ygEOM3cQ80EuBjPnGcGBUALzvIhnsKgyD
EZdEd2EFXa

62 Feross Aboukhadijeh




CS145: Data Management and Data Systems

Hashing Sorting

Big Scale

Hashing-Sorting solves “all” known data scale problems :=)
Roadmap .

Boost with a few patterns - Cache, Parallelize, Pre-fetch

THE BIG IDEA

r Note
Works for Relational, noSQL
(e.g. mySQL, postgres, BigQuery, BigTable, MapReduce, Spark)
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Cryptographic Hash Functions

e Hash functions used in a security context
e One-way function: can’t reverse

e Collision resistant

e Most popular: SHA-256

e Morein CS155, CS 253, CS255
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END
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