CS106B: Programming Abstractions

Elyse Cornwall and Amrita Kaur

June 26, 2023
Elyse Cornwall

• Stanford BS CS ’22, MS CS candidate ’24
 • Studied theory and human-computer interaction
• CS106A Head TA during school year
• CS section leader for 2 years as an undergrad
• From Milwaukee, Wisconsin
• Here are some photos of my cat, Sidibou!
Amrita Kaur

- Call me Amrita (pronounced um-rih-tha)
- From Columbia, Maryland
- Stanford BS Biology ‘20, MS CS ‘22
- Taught CS110A (systems), CS109 (probability)
- Absolutely love tennis and F1
- Guilty pleasure is reality TV (Survivor!!)
Just a Few of Your 20+ Section Leaders!
Let’s get to know each other!

• Name (and pronouns if you’re comfortable)
• What school you go to/where you’re from
• Year + (prospective) major
• Pick one (or more!)
 • What is one hobby you want to pick up?
 • What is your strangest habit?
 • What are you looking forward to this summer?
 • Anything else you would like to share with each other :)
What is CS106B About?

• Solving interesting problems and processing large datasets
• Creating and managing complex data structures
• Analyzing the efficiency of your solutions
• Practicing good programming style and coding practices
• Gaining familiarity with the C++ programming language
What is an “abstraction”?

“The essence of abstraction is preserving information that is relevant in a given context, and forgetting information that is irrelevant in that context.”

– John V. Guttag
What is an “abstraction”?

“The essence of abstraction is preserving information that is relevant in a given context, and forgetting information that is irrelevant in that context.”

– John V. Guttag

Relevant: toasting the bread
Irrelevant: infrared radiation
What is an “abstraction”?

“The essence of abstraction is preserving information that is relevant in a given context, and forgetting information that is irrelevant in that context.”

– John V. Guttag

```java
bool isPerfect(long n)
```

Relevant: whether n is a “perfect number”
Irrelevant: how the function works
Example: Data Compression

Represent all of this data... ... with only this much space!
Example: Data Compression

Using the abstraction: Huffman trees

```
  *   *   *
 / \ / \ / \
E * A * * O
 / \ / \ / \ /* N N *
/ \ / \ / \ / \D B M S
W K

10100 1011000
EWK ADBN
```
Example: Data Compression

Building the abstraction: your C++ code

EncodedData compress(string messageText)
Roadmap

Abstraction → Building Cool Things!
1. What is possible with tech and code? What isn’t possible?
Roadmap

1. What is possible with tech and code? What isn’t possible?
2. How can I use programming to solve problems that I otherwise would not be able to?
1. What is possible with tech and code? What isn’t possible?
2. How can I use programming to solve problems that I otherwise would not be able to?
3. What makes for a “good” algorithm or data structure? Why?
Roadmap

Using Abstractions | Building Abstractions
Roadmap

Using Abstractions

Abstract Data Structures

Building Abstractions
Roadmap

Using Abstractions

Abstract Data Structures

Object-Oriented Programming

Building Abstractions
Roadmap

Using Abstractions
- Object-Oriented Programming
- Abstract Data Structures

Building Abstractions
- Memory Management
- Linked Data Structures
- Advanced Algorithms
Roadmap

Using Abstractions
- Abstract Data Structures
- Object-Oriented Programming

Building Abstractions
- Memory Management
- Linked Data Structures
- Advanced Algorithms

Core Tools
Roadmap

Using Abstractions
- Abstract Data Structures
- Object-Oriented Programming

Building Abstractions
- Memory Management
- Linked Data Structures
- Advanced Algorithms

Core Tools
- C++
- Algorithmic Analysis
- Recursion
Roadmap

Using Abstractions

- Abstract Data Structures
- C++
- Algorithmic Analysis
- Recursion

Building Abstractions

- Object-Oriented Programming
- Memory Management
- Linked Data Structures
- Advanced Algorithms
Class Norms

You

• Celebrate everyone’s learning
 • Be kind
 • Don’t shame others
 • You’re not competing
 • Learning includes struggling
• Be actively engaged

Us

• Prioritize your well-being
• Provide you with as many resources as possible
• Value your feedback
Course Mechanics
Course Website

https://cs106b.stanford.edu

And this URL will live on for the next several years, even after this quarter is over:

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238
Prerequisites

• Should have either:
 • Taken CS106A
 • Taken AP CS (4 or 5 on exam)
 • Significant previous programming experience
• Take CS106A instead if you don’t have much programming experience (this is where most students start!)
 • http://cs106a.stanford.edu
• Come talk to us if you’re unsure!
Lecture and Attendance

• MTuWTh from 1:30-2:45pm in NVIDIA Auditorium
 • Most lectures will only be 60 mins, but could run over
• Lectures are recorded, but we don’t want you to rely on that
• We want to encourage you to stay up-to-date with the lectures and come to class!
 • Opportunity to have 5% of your course grade (knocked off from final exam) come from lecture attendance
 • To get credit, you must either attend lecture or watch the recording before the next class, and fill out an attendance ticket on Gradescope
• Attendance will start next class (tomorrow)!
Sections and Participation

• Weekly 50-minute section led by one of our awesome SLs
 • Discuss and solve interesting problems
• Section signups open now on class webpage (not on Axess)
 • Signups close Tuesday 5pm!
 • Not first-come first-serve
• Attendance and participation are mandatory
 • ✓ + : Showed up to section on time, followed section norms, and participated in an engaged manner
 • ✓ : Showed up to section a little late and/or minimal participation
 • 0 : Did not show up to section
• Section starts this week!
Assignments

• 6 assignments
• Usually takes 10-20 hours/assignment
• Can be written problems, hands-on exercises with the tools, targeted coding tasks, and/or a larger complete program
• Due Fridays (Assns 0-2) or Wednesdays (Assns 3-6), 11:59pm PT
• Late Policy:
 • Due Date: small on-time bonus
 • Grace Period: automatic 24-hour extension for everyone, but no bonus
 • After Grace Period: deduct 15% per late day*, up to 5 days

*shit happens, so come talk to Amrita or Elyse about extensions in special circumstances
Assignment Grading

- Graded on functionality and style
 + Exceeds our expectations, “perfect”
 ✔ + Satisfies all the requirements, good functionality and style
 ✔ Meets the requirements, but perhaps with small problems
 ✔ – Has somewhat serious problems
 – Serious problems, does not show effort or understanding
 0 Not submitted

- Interactive grading sessions with your SL
 - Get one-on-one feedback that’s more than just your grade
 - Mandatory!
Exams

• Midterm - Monday, July 17th from 7-9pm
 • Email us ASAP if you cannot make this
• Final - Friday, August 18th from 3:30-6:30pm
 • You MUST take the exam at this time
• In-person, closed-book, closed-note
Grading Scheme

- **55%** Assignments
- **10%** Midterm Exam
- **20-25%** Final Exam*
- **10%** Section participation
- **0-5%** Lecture Attendance*

* varies based on how much you complete lecture attendance ticket
Getting Help - LaIR and Office Hours

• LaIR - helper hours run by our section leaders
 • Sunday - Thursday, 5-9pm PT in Durand 353
 • Conceptual and debugging help
 • Starts this Tuesday (tomorrow!)

• Office Hours with Elyse and Amrita in Durand 303
 • Elyse: Mon 3-5pm (group), Thu 3-5pm (by appointment)
 • Amrita: Wed 3-5pm (group), Fri 10am-12pm (by appointment)
 • Group: conceptual help, high-level assignment help, and CS/life talk
 • Appointment: 15 minutes to talk about whatever you want!
Getting Help - Edstem

• Your go-to for online questions!
 • Questions about lecture - use the lecture megathread
 • Questions about assignments (conceptual or debugging)
 • We may tell you to come to LaIR
 • Questions about administrivia
• You should NEVER post assignment code in a public post
Getting Help - Friday Sessions

• Fridays from 1:30-2:45pm in NVIDIA Auditorium
• Conceptual review of the week’s lectures and extra practice problems
• Completely optional, open to all students
• Led by two amazing SLs: Yasmine and Poojan!
Getting Help - YEAH Hours

• “Your Early Assignment Help” hours
 • Fridays from 3-4pm for assignments 1-3
 • Wednesday from 5-6pm for assignments 4-6
• Get started on assignments right after they’re released, with support from an SL
• Virtual (zoom link), will be recorded
• Completely optional, open to all students
• Led by an amazing SL: Bryant!
Stanford Honor Code

1. You cannot look at solutions that are not your own
 a. This includes AI-generated solutions
2. You cannot share your solutions with anyone but course staff
3. You should cite any non-staff collaboration in your submission
 a. This collaboration must still follow rules 1 and 2

We will run plagiarism detection software at the end of the quarter
Your First C++ Program: Hello World!

Starter Project - you’ll need to complete Assignment 0 before you can run this code yourself :)

Stanford University
Announcements

• Assignment 0 (Installing Qt Creator) is due Friday at midnight
• Sign up for section - rank preferences by Tuesday 5pm!
 • Sections start this week, earliest ones are Wednesday
• Send OAE letters to Amrita and Elyse via email ASAP
Thank you!