
Testing, Vectors, and Grids
Elyse Cornwall

June 29th, 2023

Contributions made from previous CS106B Instructors

Announcements

• Section policy reminder
• You have one section absence - no need to ask for permission

• You can attend another section if you have to miss your usual one

• Assignment 0 is due tomorrow
• If you had install issues, go to LaIR, office hours, or chat with us after class

• Assignment 1 will be released tomorrow afternoon

• Assignment 1 YEAH Hours on Friday from 3-4pm at this Zoom link
• Get started on the assignment early and ask any questions!

2

https://us04web.zoom.us/j/3072310995?pwd=7gcIaH24Gvcq0oglhsEuG65EZT3wcn.1

CS106B Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

3

CS106B Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

4

Testing

5

Why is Testing Important?

For eight years, NASA’s software discarded data that deviated from

expected measurements, ignoring a growing hole in the ozone layer

source

6

https://www.pingdom.com/blog/10-historical-software-bugs-with-extreme-consequences/

Why is Testing Important?

MCAS flight control software led to Boeing 737 MAX plane crashes

source

7

https://www.npr.org/2021/01/08/954782512/boeing-to-pay-2-5-billion-settlement-over-deadly-737-max-crashes

Why is Testing Important?

• Software bugs have can have expensive, even deadly consequences

• As programmers, we take pride in building things that work well

• The key to writing robust, working code is writing good tests

8

Testing Strategies

• “Test-as-you-go”
• After each step, test thoroughly (don’t wait until the end)

9

Testing Strategies

• “Test-as-you-go”
• After each step, test thoroughly (don’t wait until the end)

• Basic use cases

10

Testing Strategies

• “Test-as-you-go”
• After each step, test thoroughly (don’t wait until the end)

• Basic use cases

• Edge cases

11

Testing Strategies

• “Test-as-you-go”
• After each step, test thoroughly (don’t wait until the end)

• Basic use cases

• Edge cases

12

SimpleTest Library
Check out the SimpleTest guide

13

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/resources/testing_guide.html

What is SimpleTest?

• A library written by Stanford lecturers to make it easier to unit test

your C++ code
• Kind of like doctests in Python

• #include "testing/SimpleTest.h"
• You’ll use SimpleTest a lot this quarter, starting with Assignment 1!

14

Let’s Test Reversed

// reversed(str) returns copy of str with characters in reverse order

string reversed(string s) {

 string result;

 for (int i = s.length() - 1; i >= 0; i--) {

 result += s[i];

 }

 return result;

}

15

Let’s Test Reversed

// reversed(str) returns copy of str with characters in reverse order

string reversed(string s) {

 string result;

 for (int i = s.length() - 1; i >= 0; i--) {

 result += s[i];

 }

 return result;

}

Note, uninitialized strings get set to default
value: empty string

16

Let’s Test Reversed

// reversed(str) returns copy of str with characters in reverse order

string reversed(string s) {

 string result;

 for (int i = s.length() - 1; i >= 0; i--) {

 result += s[i];

 }

 return result;

}

Can it reverse the string “cat”?

What about “racecar”?

What should it return for “”?

17

Let’s Test Reversed

string reversed(string s) {
// implementation here

}

/* * * * * * Test Cases * * * * * */
PROVIDED_TEST("Test reversed function") {
 EXPECT_EQUAL(reversed("cat"), "tac");
 EXPECT_EQUAL(reversed("racecar"), "racecar");
 EXPECT_EQUAL(reversed(""), "");
}

18

SimpleTest Operations

• EXPECT_EQUAL(a, b) - passes if a is equal to b
• EXPECT(a) - passes if the expression a is true
• EXPECT_ERROR(a) - passes if the expression raises an error
• EXPECT_NO_ERROR(a) - passes if the expression doesn’t raise

an error
• TIME_OPERATION(size, operation) - times an operation

19

Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

20

Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

21

Vectors

22

What is a Vector?

• An abstract data type (ADT)
• Abstraction that allows us to store data in an organized, structured way

• One of Stanford’s C++ libraries (documentation here)
• #include “vector.h”

• An ordered collection of elements that can grow and shrink in size
• Like an ArrayList in Java or list in Python

4 7 -3 6
0 1 2 3

23

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Vector.html

Properties of a Vector

• Ordered (have indices)

• Can grow and shrink in size

• All elements must be of the same type

4 7 -3 6
0 1 2 3

24

Properties of a Vector

• Ordered (have indices)

• Can grow and shrink in size

• All elements must be of the same type

4 7 -3 6
0 1 2 3

25

Properties of a Vector

• Ordered (have indices)

• Can grow and shrink in size

• All elements must be of the same type

4 7 -3 6 2
0 1 2 3 4

26

Properties of a Vector

• Ordered (have indices)

• Can grow and shrink in size

• All elements must be of the same type

4 7 -3 6
0 1 2 3

27

Properties of a Vector

• Ordered (have indices)

• Can grow and shrink in size

• All elements must be of the same type

4 7 -3 6
0 1 2 3

28

Vector Operations: Creation

Vector<int> vec; // creates an empty int vector

29

Vector Operations: Adding Elements

Vector<int> vec; // creates an empty int vector

vec.add(6); // adds a new element

6 7 -3 6
0

30

Vector Operations: Adding Elements

Vector<int> vec; // creates an empty int vector

vec.add(6);

vec.add(2); // adds to end of vector

6 2 -3 6
0 1

31

Vector Operations: Adding Elements

Vector<int> vec; // creates an empty int vector

vec.add(6);

vec.add(2);

vec.add(-3);

6 2 -3 6
0 1 2

32

Vector Operations: Creation with Elements

Vector<int> vec = {6, 2, -3}; // equivalent

6 2 -3 6
0 1 2

33

6 2 -3 6

Vector Operations: Accessing Elements

Vector<int> vec = {6, 2, -3}; // equivalent

cout << vec[1] << endl; // prints 2

0 1 2

34

Vector Operations: Accessing Elements(?)

Vector<int> vec = {6, 2, -3}; // equivalent

cout << vec[3] << endl; // prints 2

6 2 -3 ??
0 1 2

👥 Talk with a neighbor, what will happen?

35

Vector Operations: Accessing Elements(?)

Vector<int> vec = {6, 2, -3}; // equivalent

cout << vec[3] << endl; // prints 2

6 2 -3 ??
0 1 2

Talk with a neighbor, what will happen?

*** A fatal error was reported:

Vector::operator []: index of 3
is outside of valid range [0..2]

36

Vector Operations: Removing Elements

Vector<int> vec = {6, 2, -3}; // equivalent

vec.remove(0);

6 2 -3
0 1 2

Specify index to remove at

37

Vector<int> vec = {6, 2, -3}; // equivalent

vec.remove(0);

2 -3

Vector Operations: Removing Elements

0 1

Specify index to remove at

38

cout << vec.size() << endl; // prints 2

2 -3

Vector Operations: Getting Size

0 1

Number of elements currently in vector

39

cout << vec.size() << endl; // prints 2

vec.add(12);

2 -3 12

Vector Operations: Getting Size

0 1 2

40

cout << vec.size() << endl; // prints 2

vec.add(12);

cout << vec.size() << endl; // prints 3

2 -3 12

Vector Operations: Getting Size

0 1 2

41

Traversing a Vector

// Method 1: Traditional for loop
Vector<int> vec = {6, 2, -3};
for (int i = 0; i < vec.size(); i++) {

cout << vec[i] << endl;
}

// Method 2: for-each loop
Vector<int> vec = {1, 0, 6};
for (int num: vec) {

cout << num << endl;
}

6 2 -3
0 1 2

Loops over indices: 0, 1, 2

42

Traversing a Vector

// Method 1: Traditional for loop
Vector<int> vec = {6, 2, -3};
for (int i = 0; i < vec.size(); i++) {

cout << vec[i] << endl;
}

// Method 2: for-each loop
Vector<int> vec = {1, 0, 6};
for (int num: vec) {

cout << num << endl;
}

Output:

6

2

-3

6 2 -3
0 1 2

Loops over indices: 0, 1, 2

43

Traversing a Vector

// Method 1: Traditional for loop
Vector<int> vec = {6, 2, -3};
for (int i = 0; i < vec.size(); i++) {

cout << vec[i] << endl;
}

// Method 2: For-each loop
Vector<int> vec = {6, 2, -3};
for (int num: vec) {

cout << num << endl;
}

Loops over the elements

6 2 -3
0 1 2

44

Traversing a Vector

// Method 1: Traditional for loop
Vector<int> vec = {6, 2, -3};
for (int i = 0; i < vec.size(); i++) {

cout << vec[i] << endl;
}

// Method 2: For-each loop
Vector<int> vec = {6, 2, -3};
for (int num: vec) {

cout << num << endl;
}

Output:

6

2

-3

Loops over the elements

6 2 -3
0 1 2

45

The Stanford Vector Library

• vec.size(): Returns the number of elements in the vector.
• vec.isEmpty(): Returns true if the vector is empty, false otherwise.
• vec[i]: Selects the ith element of the vector.
• vec.add(value): Adds a new element to the end of the vector.
• vec.insert(index, value): Inserts the value before the specified

index, and moves the values after it up by one index.
• vec.remove(index): Removes the element at the specified index, and

moves the rest of the elements down by one index.
• vec.clear(): Removes all elements from the vector.
• vec.sort(): Sorts the elements in the list in increasing order.

For more information, check out the Stanford Vector class documentation!

46

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Vector.html

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
 for (int i = 0; i < vec.size(); i++) {
 vec[i] = vec[i] * 2;
 }
}

int main() {
 Vector<int> nums = {1, 2, 3, 4};
 doubleVec(nums);
 cout << nums << endl;
 return 0;
}

47

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
 for (int i = 0; i < vec.size(); i++) {
 vec[i] = vec[i] * 2;
 }
}

int main() {
 Vector<int> nums = {1, 2, 3, 4};
 doubleVec(nums);
 cout << nums << endl;
 return 0;
}

This is a void function - it’s not returning
anything.

48

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
 for (int i = 0; i < vec.size(); i++) {
 vec[i] = vec[i] * 2;
 }
}

int main() {
 Vector<int> nums = {1, 2, 3, 4};
 doubleVec(nums);
 cout << nums << endl;
 return 0;
}

🎟 Attendance ticket: what gets
printed in main?
(Let’s test it!)

49

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
 for (int i = 0; i < vec.size(); i++) {
 vec[i] = vec[i] * 2;
 }
}

int main() {
 Vector<int> nums = {1, 2, 3, 4};
 doubleVec(nums);
 cout << nums << endl;
 return 0;
}

Remember, by default, parameters
are passed by value in C++.

Output:
{1, 2, 3, 4}

50

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
 for (int i = 0; i < vec.size(); i++) {
 vec[i] = vec[i] * 2;
 }
}

int main() {
 Vector<int> nums = {1, 2, 3, 4};
 doubleVec(nums);
 cout << nums << endl;
 return 0;
}

How would we pass a parameter
so that the callee could modify it?

51

Pass by Reference

52

Let’s Compare

Pass by value

• Callee gets a copy of a
variable from the caller
function

• Changes to that variable that
occur in callee do not persist
in caller

53

Let’s Compare

Pass by value

• Callee gets a copy of a
variable from the caller
function

• Changes to that variable that
occur in callee do not persist
in caller

Pass by reference

• Callee gets a reference to a
variable from the caller
function

• Now, the callee can directly
modify the original variable

54

Let’s Edit Some Code

void doubleVec(Vector<int> vec) {
 for (int i = 0; i < vec.size(); i++) {
 vec[i] = vec[i] * 2;
 }
}

int main() {
 Vector<int> nums = {1, 2, 3, 4};
 doubleVec(nums);
 cout << nums << endl;
 return 0;
}

55

Let’s Edit Some Code

void doubleVec(Vector<int>& vec) {
 for (int i = 0; i < vec.size(); i++) {
 vec[i] = vec[i] * 2;
 }
}

int main() {
 Vector<int> nums = {1, 2, 3, 4};
 doubleVec(nums);
 cout << nums << endl;
 return 0;
}

We add an ampersand after the type
to indicate that it’s a reference
(Let’s test it!)

56

Passing Other Types by Reference

void tripleWeight(double& weightRef) {
weightRef *= 3; // triple the weight

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl; // prints 3.18

}
57

Passing Other Types by Reference

void tripleWeight(double& weightRef) {
weightRef *= 3; // triple the weight

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl; // prints 3.18

}

However, this isn’t great style…

58

When Do We Pass by Reference?

Yes:

• When we want the callee
function to edit our data

• To avoid making copies of
large data structures

• When we need to return
multiple values

59

When Do We Pass by Reference?

Yes:

• When we want the callee
function to edit our data

• To avoid making copies of
large data structures

• When we need to return
multiple values

No:

• Just because

• Passing by reference is risky
because another function can
modify your data!

• When the data we’re passing
to the callee is small, and thus
copying isn’t expensive

60

Grids

61

What is a Grid?

• Another one of Stanford’s C++ libraries (documentation here)
• #include “grid.h”

• A 2D array with fixed dimensions
• Array not Vector, because it cannot grow or shrink; dimensions are set

2 5 -1

10 11 3

19 -4 -2

4 6 2
62

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

Grid Operations: Creation

// Option 1: No initialization

Grid<int> grid;

63

Grid Operations: Creation

// Option 1: No initialization

Grid<int> grid;

grid.resize(4, 3); // must resize or reassign before using

0 0 0

0 0 0

0 0 0

0 0 0
64

Grid Operations: Creation

// Option 1: No initialization

Grid<int> grid;

grid.resize(4, 3); // must resize or reassign before using

0 0 0

0 0 0

0 0 0

0 0 0

Notice the grid has been
filled with default values
for this type

65

Grid Operations: Creation

// Option 2: Specify number of rows and columns

Grid<int> grid(4, 3);

0 0 0

0 0 0

0 0 0

0 0 0

Notice the grid has been
filled with default values
for this type

66

Grid Operations: Creation

// Option 3: Fill in all elements

Grid<int> grid = {{2, 5, -1}, {10, 11, 3}, ... }

2 5 -1

10 11 3

19 -4 -2

4 6 2
67

Grid Operations: Accessing Elements

// Option 3: Fill in all elements

Grid<int> grid = {{2, 5, -1}, {10, 11, 3}, ... }

cout << grid[2][1] << endl; // we do [row][col]

2 5 -1

10 11 3

19 -4 -2

4 6 2
68

The Stanford Grid Library

• grid.numRows(): Returns the number of rows in the grid.

• grid.numCols(): Returns the number of columns in the grid.

• grid[i][j]: selects the element in the ith row and jth column.

• grid.resize(rows, cols): Changes the dimensions of the

grid and re-initializes all entries to their default values.

• grid.inBounds(row, col): Returns true if the specified

row, column position is in the grid, false otherwise.

For more information, check out the Stanford Grid documentation!

69

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

👥 What kind of data might you store
in a Vector? What about a Grid?

70

Recap

• Testing
• Test incrementally and often!

• We’ll be using SimpleTest this quarter

• Vectors
• Ordered data, grows and shrinks, all one type

• Pass by reference &
• Allows us to modify the original variable when passed as parameter

• Grids
• 2D arrays, fixed size, all one type

71

Thanks! See you next week 😎

72

