Testing, Vectors, and Grids

Elyse Cornwall
June 29th, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

Section policy reminder

* You have one section absence - no need to ask for permission
* You can attend another section if you have to miss your usual one

Assignment O is due tomorrow
* If you had install issues, go to LalR, office hours, or chat with us after class

Assignment 1 will be released tomorrow afternoon

Assignment 1 YEAH Hours on Friday from 3-4pm at this Zoom link
e Get started on the assignment early and ask any questions!

2
Stanford University

https://us04web.zoom.us/j/3072310995?pwd=7gcIaH24Gvcq0oglhsEuG65EZT3wcn.1

CS106B Roadmap

Using Abstractions Bwldmg Abstractions
Linked
Data
\ Structures

Core
Tools N 3
Stanford University

CS106B Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Core Algorithmic
C++ :
Tools Analysis

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion

4
Stanford University

Testing

5
Stanford University

Why is Testing Important?

For eight years, NASA’s software discarded data that deviated from
expected measurements, ignoring a growing hole in the ozone layer

6

20UEE Stanford University

https://www.pingdom.com/blog/10-historical-software-bugs-with-extreme-consequences/

Why is Testing Important?

MCAS flight control software led to Boeing 737 MAX plane crashes

7
Stanford University

source

https://www.npr.org/2021/01/08/954782512/boeing-to-pay-2-5-billion-settlement-over-deadly-737-max-crashes

Why is Testing Important?

e Software bugs have can have expensive, even deadly consequences
* As programmers, we take pride in building things that work well
* The key to writing robust, working code is writing good tests

8
Stanford University

Testing Strategies

* “Test-as-you-go”
» After each step, test thoroughly (don’t wait until the end)

9
Stanford University

Testing Strategies

* “Test-as-you-go”
» After each step, test thoroughly (don’t wait until the end)
* Basic use cases

10
Stanford University

Testing Strategies

* “Test-as-you-go”
» After each step, test thoroughly (don’t wait until the end)
* Basic use cases

 Edge cases

11
Stanford University

Pt

Te St| N g St rat' A software tester walks into a bar.
Runs into a bar.
Crawls into a bar.

° IlTeSt_a S_yo u _go Dances into a bar.

Flies into a bar.

* After each st e end)

Jumps into a bar.

e Basic use cases Andorders:

a beer.
[
d

E ge Cases 2 beers.
0 beers.
99999999 beers.
alizard in a beer glass.
-1 beer.
"qwertyuiop" beers.
Testing complete.

A real customer walks into the bar and asks where the bathroom is.

The bar goes up in flames. 12

Stanford University

SimpleTest Library

Check out the SimpleTest guide

13
Stanford University

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/resources/testing_guide.html

What is SimpleTest?

e Alibrary written by Stanford lecturers to make it easier to unit test

your C++ code
* Kind of like doctests in Python
e #include "testing/SimpleTest.h"

* You’ll use SimpleTest a lot this quarter, starting with Assignment 1!

14
Stanford University

Let’s Test Reversed

// reversed(str) returns copy of str with characters in reverse order

string reversed(string s) {
string result;
for (int i = s.length() - 1; i >= 0; i--) {
result += s[i];

}

return result;

15

Stanford University

Let’s Test Reversed

// reversed(str) returns copy of str with characters in reverse order

Note, uninitialized strings get set to default

string reversed(string s .
8 (g s) 1 value: empty string

string result;
for (int i = s.length() - 1; i >= 0; i--) {
result += s[1i]}

}

return result;

16

Stanford University

Let’s Test Reversed

// reversed(str) returns copy of str with characters in reverse order

string reversed(string s) { Can it reverse the string “cat”?

string result;

for (int i = s.length() - 1; i >= 0; i--) {

result += s[i];
What about “racecar”?

}

return result;

} What should it return for “’?

17

Stanford University

Let’s Test Reversed

string reversed(string s) {
// implementation here

/* x %k * x *x Test Cases * *x *x x *x %/

PROVIDED_TEST("Test reversed function") {
EXPECT_EQUAL (reversed("cat"), "tac");
EXPECT_EQUAL (reversed("racecar"), '"racecar");
EXPECT_EQUAL (reversed(""), "");

18
Stanford University

SimpleTest Operations

e EXPECT_EQUAL(a, b) -passesifaisequaltob

e EXPECT (a) - passes if the expression a is true

e EXPECT_ERROR(a) - passes if the expression raises an error

e EXPECT_NO_ERROR(a) - passes if the expression doesn’t raise
an error

e TIME_OPERATION(size, operation) -timesan operation

19
Stanford University

Roadmap

Using Abstractions Bwldmg Abstractions

Linked
Data
\ \ Structures

Cor
Tools

TN
A 4

- 20

Stanford University

Roadmap

Using Abstractions

Object-Oriented

Building Abstractions

' Memory
Programming Management
Linked Advanced
Data Algorithms
Structures
Core Algori |
C+ gonthr.nlc Recursion

Tools Analysis 21

Stanford University

Vectors

22
Stanford University

What is a Vector?

* An abstract data type (ADT)
e Abstraction that allows us to store data in an organized, structured way
* One of Stanford’s C++ libraries (documentation here)
e #include “vector.h”
* An ordered collection of elements that can grow and shrink in size
* Likean ArrayListinlavaor Listin Python

4 7 -3 6
© 1 2

23
Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Vector.html

Properties of a Vector

 Ordered (have indices)
 (Can grow and shrink in size
e All elements must be of the same type

24
Stanford University

Properties of a Vector

* Ordered (have indices)
 (Can grow and shrink in size
e All elements must be of the same type

25
Stanford University

Properties of a Vector

 Ordered (have indices)
* Can grow and shrink in size
e All elements must be of the same type

26
Stanford University

Properties of a Vector

 Ordered (have indices)
* Can grow and shrink in size
e All elements must be of the same type

27
Stanford University

Properties of a Vector

 Ordered (have indices)
 (Can grow and shrink in size
* All elements must be of the same type

28
Stanford University

Vector Operations: Creation

Vector<int> vec; // creates an empty 1int vector

29
Stanford University

Vector Operations: Adding Elements

Vector<int> vec; // creates an empty 1int vector

vec.add(6) ; // adds a new element

30
Stanford University

Vector Operations: Adding Elements

Vector<int> vec; // creates an empty 1int vector
vec.add(6) ;

vec.add(2); // adds to end of vector

31
Stanford University

Vector Operations: Adding Elements

Vector<int> vec; // creates an empty 1int vector
vec.add(6) ;
vec.add(2);
vec.add(-3);

32
Stanford University

Vector Operations: Creation with Elements

Vector<int> vec = {6, 2, -3}; // equivalent

33
Stanford University

Vector Operations: Accessing Elements

Vector<int> vec = {6, 2, -3}; // equivalent

cout << vec[1l] << endl; // prints 2

34
Stanford University

Vector Operations: Accessing Elements(?)

Vector<int> vec = {6, 2, -3}; // equivalent

cout << vec[3] << endl; // prints 2

@ Talk with a neighbor, what will happen?

35
Stanford University

Vector Operations: Accessing Elements(?)

Vector<int> vec = {6, 2, -3};

cout <

| S

L=

// equivalent

*x%x A fatal error was reported:

Vector: :operator []: index of 3
is outside of valid range [0..2]

6 2

-3

27

2

36
Stanford University

Vector Operations: Removing Elements

Vector<int> vec = {6, 2, -3}; // equivalent
vec.remove(0) ;

Specify index to remove at

37
Stanford University

Vector Operations: Removing Elements

Vector<int> vec = {6, 2, -3}; // equivalent
vec.remove(0) ;

Specify index to remove at

38
Stanford University

Vector Operations: Getting Size

cout << vec.size() << endl; // prints 2

Number of elements currently in vector

39
Stanford University

Vector Operations: Getting Size

cout << vec.size() << endl; // prints 2
vec.add(12);

40
Stanford University

Vector Operations: Getting Size

cout << vec.size() << endl;
vec.add(12);

cout << vec.size() << endl;

// prints 2

// prints 3

12

41
Stanford University

Traversing a Vector

// Method 1: Traditional for Tloop

Vector<int> vec = {6, 2, -3};

for (int 1 = 0; i < vec.size(); i++) {
cout << vec[i] << endl;

Loops over indices: 0, 1, 2

42

Stanford University

Traversing a Vector

// Method 1: Traditional for Tloop

Vector<int> vec = {6, 2, -3};

for (int 1 = 0; i < vec.size(); i++) {
cout << vec[i] << endl;

}

Loops over indices: 0, 1, 2

43

Stanford University

Traversing a Vector

// Method 1: Traditional for Tloop

Vector<int> vec = {6, 2, -3};

for (int 1 = 0; i < vec.size(); i++) {
cout << vec[i] << endl;

// Method 2: For-each loop

Vector<int> vec = {6, 2, -3}; Loops over the elements
for (int num: vec) {

cout << num << endl; 6 2 -3
' 0] 1 2

44
Stanford University

Traversing a Vector

// Method 1: Traditional for Tloop OUtPUt'
Vector<int> vec = {6, 2, -3}; 6
for (int i = 0; 1 < vec.size(); i++) {

cout << vec[i] << endl; 2
}

-3

// Method 2: For-each loop
Vector<int> vec = {6, 2, -3}; LOOpS over the elements
for (int num: vec) {

cout << num << endl; 6 2 -3
} 0] 2

45
Stanford University

The Stanford Vector Library

« vec.size():Returnsthe number of elements in the vector.

 vec.isEmpty(): Returns true if the vector is empty, false otherwise.

 vec|[1]: Selects the ith element of the vector.

« vec.add(value):Adds a new element to the end of the vector.

« vec.insert(index, value):Insertsthe value before the specified
index, and moves the values after it up by one index.

« vec.remove (index): Removes the element at the specified index, and
moves the rest of the elements down by one index.

« vec.clear ():Removes all elements from the vector.

 vec.sort():Sorts the elements in the list in increasing order.

For more information, check out the Stanford Vector class documentation!

46
Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Vector.html

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {
vec[i1] = vec[i] * 2;

47
Stanford University

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {

for (int 1 O; 1 < vec.size(); i++) {

vec[i1] = vec[i] * 2;

} This is a void function - it’s not returning
} anything.

48
Stanford University

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {

vec[i1] = vec[i] * 2;

o
int main() { & Attendance ticket: what gets
Vector<int> nums = {1, 2, 3, 4};

doubleVec (nums) ; printed in main?
cout << nums << endl; (LEt’S test Itl)

return 0;

49
Stanford University

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {

A
vec[i] = vec[i] * 2; N
}
}
Output:
int main() { {l, 2, 3, 4}
Vector<int> nums = {1, 2, 3, 4};
doubleVec (nums); Remember, by default, parameters
cout << nums << endl; .
, are passed by value in C++.
return 0;
}

50
Stanford University

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {

vec[i1] = vec[i] * 2;

1 How would we pass a parameter
so that the callee could modify it?

int main() {
Vector<int> nums = {1, 2, 3, 4};
doubleVec (nums) ;
cout << nums << endl;

return 0;

51
Stanford University

Pass by Reference

52
Stanford University

Let’s Compare

Pass by value

Callee gets a copy of a
variable from the caller
function

Changes to that variable that
occur in callee do not persist

in caller
E
%

53
Stanford University

Let’s Compare

Pass by value Pass by reference
Callee gets a copy of a - Callee gets a reference to a
variable from the caller variable from the caller
function function
Changes to that variable that - Now, the callee can directly
occur in callee do not persist modify the original variable
in caller

=

54
Stanford University

Let’s Edit Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {

vec[i1] = vec[i] * 2;

int main() {
Vector<int> nums = {1, 2, 3, 4};
doubleVec (nums) ;
cout << nums << endl;

return 0;

55
Stanford University

Let’s Edit Some Code

void doubleVec(Vector<int>& vec) {
for (int i = 0; i < vec.size(); 1i++) {

vec[i1] = vec[i] * 2;

We add an ampersand after the type
to indicate that it’s a reference

int main() { (Let’s test it!)

Vector<int> nums = {1, 2, 3, 4};

doubleVec (nums) ;

cout << nums << endl;

return 0;

56
Stanford University

Passing Other Types by Reference

void tripleWeight(double& weightRef) {
weightRef *= 33 // triple the weight

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl; // prints 3.18

57
Stanford University

Passing Other Types by Reference

void tripleWeight(double& weightRef) {
weightRef *= 33 // triple the weight

However, this isn’t great style...

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl; // prints 3.18

58
Stanford University

When Do We Pass by Reference?

Yes:

When we want the callee
function to edit our data

To avoid making copies of
large data structures

When we need to return
multiple values

59
Stanford University

When Do We Pass by Reference?

Yes:

When we want the callee
function to edit our data

To avoid making copies of
large data structures

When we need to return
multiple values

No:

Just because

Passing by reference is risky
because another function can
modify your data!

When the data we’re passing
to the callee is small, and thus
copying isn’t expensive

60
Stanford University

Grids

61
Stanford University

What is a Grid?

* Another one of Stanford’s C++ libraries (documentation here)
e #include “grid.h”
* A 2D array with fixed dimensions
* Array not Vector, because it cannot grow or shrink; dimensions are set

2 5 -1
10 11 3
19 -4 -2
4 6 2

62
Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

Grid Operations: Creation

// Option 1: No 1initialization
Grid<int> grid;

63
Stanford University

Grid Operations: Creation

// Option 1: No 1initialization
Grid<int> grid;

grid.resize(4, 3); // must resize or reassign before using

0] 0 0
0] 0 0
0] 0 0
0] 0 0

64
Stanford University

Grid Operations: Creation

// Option 1: No 1initialization
Grid<int> grid;

grid.resize(4, 3); // must resize or reassign before using

Notice the grid has been © ° °
filled with default values 0 0 0

or this type
f yp 5 o o
0] 0] 0]

65
Stanford University

Grid Operations: Creation

// Option 2: Specify number of rows and columns

Grid<int> grid(4, 3);

Notice the grid has been © ° °
filled with default values 0 0 0

or this type
f yp 5 o o
0] 0] 0]

66
Stanford University

Grid Operations: Creation

// Option 3: Fill in all elements
Grid<int> grid = {{2, 5, -1}, {10, 11, 3}, ... }

2 5 -1
10 11 3
19 -4 -2
4 6 2

67
Stanford University

Grid Operations: Accessing Elements

// Option 3: Fill in all elements
Grid<int> grid = {{2, 5, -1}, {10, 11, 3}, ... }
cout << grid[2][1] << endl; // we do [row][col]

2 5 -1
10 11 3
19 -4 -2
4 6 2

68
Stanford University

The Stanford Grid Library

e grid.numRows (): Returns the number of rows in the grid.

e grid.numCols(): Returnsthe number of columns in the grid.

e grid[i][7j]:selectsthe elementin the ith row and jth column.

e grid.resize(rows, cols):Changesthe dimensions of the
grid and re-initializes all entries to their default values.

e grid.inBounds(row, col):Returns true if the specified
row, column position is in the grid, false otherwise.

For more information, check out the Stanford Grid documentation!

69
Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

CAOLKKKLKKXK

@ What kind of data might you store
in a Vector? What about a Grid?

70
Stanford University

Recap

Testing

e Test incrementally and often!
WeEe'll be using SimpleTest this quarter

Vectors
e Ordered data, grows and shrinks, all one type

Pass by reference &
e Allows us to modify the original variable when passed as parameter

Grids

* 2D arrays, fixed size, all one type

71
Stanford University

Thanks! See you next week =@

72
Stanford University

