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Announcements

Section policy reminder

* You have one section absence - no need to ask for permission
* You can attend another section if you have to miss your usual one

Assignment O is due tomorrow
* If you had install issues, go to LalR, office hours, or chat with us after class

Assignment 1 will be released tomorrow afternoon

Assignment 1 YEAH Hours on Friday from 3-4pm at this Zoom link
e Get started on the assignment early and ask any questions!
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https://us04web.zoom.us/j/3072310995?pwd=7gcIaH24Gvcq0oglhsEuG65EZT3wcn.1
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Testing
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Why is Testing Important?

For eight years, NASA’s software discarded data that deviated from
expected measurements, ignoring a growing hole in the ozone layer

6

20UEE  Stanford University



https://www.pingdom.com/blog/10-historical-software-bugs-with-extreme-consequences/

Why is Testing Important?

MCAS flight control software led to Boeing 737 MAX plane crashes
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https://www.npr.org/2021/01/08/954782512/boeing-to-pay-2-5-billion-settlement-over-deadly-737-max-crashes

Why is Testing Important?

e Software bugs have can have expensive, even deadly consequences
* As programmers, we take pride in building things that work well
* The key to writing robust, working code is writing good tests
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Testing Strategies

* “Test-as-you-go”
» After each step, test thoroughly (don’t wait until the end)
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Testing Strategies

* “Test-as-you-go”
» After each step, test thoroughly (don’t wait until the end)
* Basic use cases

 Edge cases
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Pt

Te St| N g St rat' A software tester walks into a bar.
Runs into a bar.
Crawls into a bar.

° IlTeSt_a S_yo u _go Dances into a bar.

Flies into a bar.

* After each st e end)

Jumps into a bar.

e Basic use cases Andorders:

a beer.
[
d

E ge Cases 2 beers.
0 beers.
99999999 beers.
alizard in a beer glass.
-1 beer.
"qwertyuiop" beers.
Testing complete.

A real customer walks into the bar and asks where the bathroom is.

The bar goes up in flames. 12
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SimpleTest Library

Check out the SimpleTest guide
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https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/resources/testing_guide.html

What is SimpleTest?

e Alibrary written by Stanford lecturers to make it easier to unit test

your C++ code
* Kind of like doctests in Python
e #include "testing/SimpleTest.h"

* You’ll use SimpleTest a lot this quarter, starting with Assignment 1!
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Let’s Test Reversed

// reversed(str) returns copy of str with characters in reverse order

string reversed(string s) {
string result;
for (int i = s.length() - 1; i >= 0; i--) {
result += s[i];

}

return result;
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Let’s Test Reversed

// reversed(str) returns copy of str with characters in reverse order

Note, uninitialized strings get set to default

string reversed(string s .
8 ( g s) 1 value: empty string

string result;
for (int i = s.length() - 1; i >= 0; i--) {
result += s[1i]}

}

return result;
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Let’s Test Reversed

// reversed(str) returns copy of str with characters in reverse order

string reversed(string s) { Can it reverse the string “cat”?

string result;

for (int i = s.length() - 1; i >= 0; i--) {

result += s[i];
What about “racecar”?

}

return result;

} What should it return for “’?
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Let’s Test Reversed

string reversed(string s) {
// implementation here

/* x %k * x *x Test Cases * *x *x x *x %/

PROVIDED_TEST("Test reversed function") {
EXPECT_EQUAL (reversed("cat"), "tac");
EXPECT_EQUAL (reversed("racecar"), '"racecar");
EXPECT_EQUAL (reversed(""), "");
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SimpleTest Operations

e EXPECT_EQUAL(a, b) -passesifaisequaltob

e EXPECT (a) - passes if the expression a is true

e EXPECT_ERROR(a) - passes if the expression raises an error

e EXPECT_NO_ERROR(a) - passes if the expression doesn’t raise
an error

e TIME_OPERATION(size, operation) -timesan operation
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Vectors
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What is a Vector?

* An abstract data type (ADT)
e Abstraction that allows us to store data in an organized, structured way
* One of Stanford’s C++ libraries (documentation here)
e #include “vector.h”
* An ordered collection of elements that can grow and shrink in size
* Likean ArrayListinlavaor Listin Python

4 7 -3 6
© 1 2
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https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Vector.html

Properties of a Vector

 Ordered (have indices)
 (Can grow and shrink in size
e All elements must be of the same type
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Properties of a Vector

 Ordered (have indices)
 (Can grow and shrink in size
* All elements must be of the same type
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Vector Operations: Creation

Vector<int> vec; // creates an empty 1int vector
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Vector Operations: Adding Elements

Vector<int> vec; // creates an empty 1int vector

vec.add(6) ; // adds a new element
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Vector Operations: Adding Elements

Vector<int> vec; // creates an empty 1int vector
vec.add(6) ;

vec.add(2); // adds to end of vector
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Vector Operations: Adding Elements

Vector<int> vec; // creates an empty 1int vector
vec.add(6) ;
vec.add(2);
vec.add(-3);
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Vector Operations: Creation with Elements

Vector<int> vec = {6, 2, -3}; // equivalent
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Vector Operations: Accessing Elements

Vector<int> vec = {6, 2, -3}; // equivalent

cout << vec[1l] << endl; // prints 2
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Vector Operations: Accessing Elements(?)

Vector<int> vec = {6, 2, -3}; // equivalent

cout << vec[3] << endl; // prints 2

@ Talk with a neighbor, what will happen?
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Vector Operations: Accessing Elements(?)

Vector<int> vec = {6, 2, -3};

cout <

| S

L=

// equivalent

*x%x A fatal error was reported:

Vector: :operator []: index of 3
is outside of valid range [0..2]

6 2

-3

27

2
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Vector Operations: Removing Elements

Vector<int> vec = {6, 2, -3}; // equivalent
vec.remove(0) ;

Specify index to remove at
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Vector Operations: Removing Elements

Vector<int> vec = {6, 2, -3}; // equivalent
vec.remove(0) ;

Specify index to remove at

38
Stanford University




Vector Operations: Getting Size

cout << vec.size() << endl; // prints 2

Number of elements currently in vector
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Vector Operations: Getting Size

cout << vec.size() << endl; // prints 2
vec.add(12);
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Vector Operations: Getting Size

cout << vec.size() << endl;
vec.add(12);

cout << vec.size() << endl;

// prints 2

// prints 3

12
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Traversing a Vector

// Method 1: Traditional for Tloop

Vector<int> vec = {6, 2, -3};

for (int 1 = 0; i < vec.size(); i++) {
cout << vec[i] << endl;

Loops over indices: 0, 1, 2
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Traversing a Vector

// Method 1: Traditional for Tloop

Vector<int> vec = {6, 2, -3};

for (int 1 = 0; i < vec.size(); i++) {
cout << vec[i] << endl;

}

Loops over indices: 0, 1, 2
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Traversing a Vector

// Method 1: Traditional for Tloop

Vector<int> vec = {6, 2, -3};

for (int 1 = 0; i < vec.size(); i++) {
cout << vec[i] << endl;

// Method 2: For-each loop

Vector<int> vec = {6, 2, -3}; Loops over the elements
for (int num: vec) {

cout << num << endl; 6 2 -3
' 0] 1 2
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Traversing a Vector

// Method 1: Traditional for Tloop OUtPUt'
Vector<int> vec = {6, 2, -3}; 6
for (int i = 0; 1 < vec.size(); i++) {

cout << vec[i] << endl; 2
}

-3

// Method 2: For-each loop
Vector<int> vec = {6, 2, -3}; LOOpS over the elements
for (int num: vec) {

cout << num << endl; 6 2 -3
} 0] 2
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The Stanford Vector Library

« vec.size():Returnsthe number of elements in the vector.

 vec.isEmpty(): Returns true if the vector is empty, false otherwise.

 vec|[1]: Selects the ith element of the vector.

« vec.add(value):Adds a new element to the end of the vector.

« vec.insert(index, value):Insertsthe value before the specified
index, and moves the values after it up by one index.

« vec.remove (index): Removes the element at the specified index, and
moves the rest of the elements down by one index.

« vec.clear ():Removes all elements from the vector.

 vec.sort():Sorts the elements in the list in increasing order.

For more information, check out the Stanford Vector class documentation!
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https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Vector.html

Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {
vec[i1] = vec[i] * 2;
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Let’s Trace Some Code

void doubleVec(Vector<int> vec) {

for (int 1 O; 1 < vec.size(); i++) {

vec[i1] = vec[i] * 2;

} This is a void function - it’s not returning
} anything.
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Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {

vec[i1] = vec[i] * 2;

o
int main() { & Attendance ticket: what gets
Vector<int> nums = {1, 2, 3, 4};

doubleVec (nums) ; printed in main?
cout << nums << endl; (LEt’S test Itl)

return 0;
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Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {

A
vec[i] = vec[i] * 2; N
}
}
Output:
int main() { {l, 2, 3, 4}
Vector<int> nums = {1, 2, 3, 4};
doubleVec (nums); Remember, by default, parameters
cout << nums << endl; .
, are passed by value in C++.
return 0;
}
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Let’s Trace Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {

vec[i1] = vec[i] * 2;

1 How would we pass a parameter
so that the callee could modify it?

int main() {
Vector<int> nums = {1, 2, 3, 4};
doubleVec (nums) ;
cout << nums << endl;

return 0;
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Pass by Reference
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Let’s Compare

Pass by value

Callee gets a copy of a
variable from the caller
function

Changes to that variable that
occur in callee do not persist

in caller
E
%

53
Stanford University




Let’s Compare

Pass by value Pass by reference
Callee gets a copy of a - Callee gets a reference to a
variable from the caller variable from the caller
function function
Changes to that variable that - Now, the callee can directly
occur in callee do not persist modify the original variable
in caller

=
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Let’s Edit Some Code

void doubleVec(Vector<int> vec) {
for (int i = 0; i < vec.size(); 1i++) {

vec[i1] = vec[i] * 2;

int main() {
Vector<int> nums = {1, 2, 3, 4};
doubleVec (nums) ;
cout << nums << endl;

return 0;
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Let’s Edit Some Code

void doubleVec(Vector<int>& vec) {
for (int i = 0; i < vec.size(); 1i++) {

vec[i1] = vec[i] * 2;

We add an ampersand after the type
to indicate that it’s a reference

int main() { (Let’s test it!)

Vector<int> nums = {1, 2, 3, 4};

doubleVec (nums) ;

cout << nums << endl;

return 0;
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Passing Other Types by Reference

void tripleWeight(double& weightRef) {
weightRef *= 33 // triple the weight

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl; // prints 3.18
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Passing Other Types by Reference

void tripleWeight(double& weightRef) {
weightRef *= 33 // triple the weight

However, this isn’t great style...

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl; // prints 3.18
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When Do We Pass by Reference?

Yes:

When we want the callee
function to edit our data

To avoid making copies of
large data structures

When we need to return
multiple values
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When Do We Pass by Reference?

Yes:

When we want the callee
function to edit our data

To avoid making copies of
large data structures

When we need to return
multiple values

No:

Just because

Passing by reference is risky
because another function can
modify your data!

When the data we’re passing
to the callee is small, and thus
copying isn’t expensive
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Grids
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What is a Grid?

* Another one of Stanford’s C++ libraries (documentation here)
e #include “grid.h”
* A 2D array with fixed dimensions
* Array not Vector, because it cannot grow or shrink; dimensions are set

2 5 -1
10 11 3
19 -4 -2
4 6 2
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https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

Grid Operations: Creation

// Option 1: No 1initialization
Grid<int> grid;
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Grid Operations: Creation

// Option 1: No 1initialization
Grid<int> grid;

grid.resize(4, 3); // must resize or reassign before using

0] 0 0
0] 0 0
0] 0 0
0] 0 0

64
Stanford University




Grid Operations: Creation

// Option 1: No 1initialization
Grid<int> grid;

grid.resize(4, 3); // must resize or reassign before using

Notice the grid has been © ° °
filled with default values 0 0 0

or this type
f yp 5 o o
0] 0] 0]
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Grid Operations: Creation

// Option 2: Specify number of rows and columns

Grid<int> grid(4, 3);

Notice the grid has been © ° °
filled with default values 0 0 0

or this type
f yp 5 o o
0] 0] 0]
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Grid Operations: Creation

// Option 3: Fill in all elements
Grid<int> grid = {{2, 5, -1}, {10, 11, 3}, ... }

2 5 -1
10 11 3
19 -4 -2
4 6 2
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Grid Operations: Accessing Elements

// Option 3: Fill in all elements
Grid<int> grid = {{2, 5, -1}, {10, 11, 3}, ... }
cout << grid[2][1] << endl; // we do [row][col]

2 5 -1
10 11 3
19 -4 -2
4 6 2
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The Stanford Grid Library

e grid.numRows (): Returns the number of rows in the grid.

e grid.numCols(): Returnsthe number of columns in the grid.

e grid[i][7j]:selectsthe elementin the ith row and jth column.

e grid.resize(rows, cols):Changesthe dimensions of the
grid and re-initializes all entries to their default values.

e grid.inBounds(row, col):Returns true if the specified
row, column position is in the grid, false otherwise.

For more information, check out the Stanford Grid documentation!
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https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

CAOLKKKLKKXK

@ What kind of data might you store
in a Vector? What about a Grid?
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Recap

Testing

e Test incrementally and often!
WeEe'll be using SimpleTest this quarter

Vectors
e Ordered data, grows and shrinks, all one type

Pass by reference &
e Allows us to modify the original variable when passed as parameter

Grids

* 2D arrays, fixed size, all one type
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Thanks! See you next week =@
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