
Stacks and Queues
Amrita Kaur

July 3, 2023

Contributions made from previous CS106B Instructors

Announcements and Reminders

• Assignment 1 due Friday at 11:59pm
• YEAH Hours recording on Canvas

• No class or LaIR tomorrow

• Midterm conflicts or OAE accommodations emailed to us by 7/10

• Anonymous weekly feedback survey for extra credit
• Remember to fill out confirmation survey at the end

• About 15 people who forgot

• Due Wednesday by class time (1:30pm)

2

https://forms.gle/HcCy6kBpgThZK4Fz9

• What are you most looking forward to in the class?
• “Learning some cool C++ skills”

• “Problem solving is just so much fun!”

• “Gaining the skills needed to build more complex programs for my

personal projects”

• “Learning about the various uses of computer science in real-life,

especially with a focus on making life easier”

• “Interacting with different people from all around the world”

• “Feeling accomplished after a struggle.”

Assign 0 Takeaways

3

• Are you worried about anything in the class?
• “Worried about my ability to write code on paper. I know we will have

lots of practice but I'm someone who has to constantly google syntax

even for languages I've been coding in for years.”

• “Worried that my past experience is not adequate for this class and that

C++ may be challenging language.”

• “Worried about the class size making it more difficult to communicate

with a section leader/lecturer.”

• “Worried about the fast pace of the class.”

• “Worried about not being good enough”

Assign 0 Takeaways

4

Review

5

Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

6

Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

7

Abstract Data Type (ADTs)

• Also known as containers or data structures

• Allow programmers to store data in predictable, organized ways

• Can use without understanding the underlying implementation

• Transcends language boundaries/specific libraries

8

Vectors

9

4 7 -3 6
0 1 2 3

• Ordered (indexed)

• 1-dimensional

• Can grow and shrink in size

• All elements must be of the same type

Grids

10

0 1 2

• Ordered (rows and cols are indexed)

• 2-dimensional

• Fixed dimensions

• All elements must be of the same type

2 5 -1

10 11 3

19 -4 -2

4 6 2

0

1

2

3

Let’s Compare

Pass by value

• Callee gets a copy of a
variable from the caller
function

• Changes to that variable that
occur in callee do not persist
in caller

Pass by reference

• Callee gets a reference to a
variable from the caller
function

• Now, the callee can directly
modify the original variable

11

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

12

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

13

main

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

14

main

weight

1.06

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

15

main

weight

1.06

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

16

main

weight

1.06

tripleWeight

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

17

main

weight

1.06

tripleWeight

weight

1.06

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

18

main

weight

1.06

tripleWeight

weight

1.063.18

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

19

main

weight

1.06

tripleWeight

weight

3.18

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

20

main

weight

1.06

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

21

main

weight

1.06

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

22

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

23

main

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

24

main

weight

1.06

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

25

main

weight

1.06

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

26

main

weight

1.06

tripleWeight

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

27

main

weight

1.06

tripleWeight

weight

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

28

main

weight

1.06

tripleWeight

weight

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

29

main

weight

3.18

tripleWeight

weight

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

30

main

weight

3.18

tripleWeight

weight

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

31

main

weight

3.18

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

32

main

weight

3.18

When Do We Pass by Reference?

Yes:

• When we want the callee
function to edit our data

• To avoid making copies of
large data structures

• When we need to return
multiple values

No:

• Just because

• Passing by reference is risky
because another function can
modify your data!

• When the data we’re passing
to the callee is small, and thus
copying isn’t expensive

33

What is the output of this code?

34

void mystery(int& b, int c, int& a) {
 a++;
 b--;
 c += a;
}

int main() {
 int a = 5;
 int b = 2;
 int c = 8;
 mystery(c, a, b);
 cout << a << " " << b << " " << c << endl;
 return 0;
}

What is the output of this code?

35

void mystery(int& b, int c, int& a) {
 a++;
 b--;
 c += a;
}

int main() {
 int a = 5;
 int b = 2;
 int c = 8;
 mystery(c, a, b);
 cout << a << " " << b << " " << c << endl;
 return 0;
}

5 3 7

Console:

Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

36

Stacks

37

What is a Stack?

• An abstract data type (ADT)
• Ordered collection of elements

• Stanford C++ library (here)
• #include “stack.h”

• Modeled like an actual stack (of pancakes)

• Only the top element of the stack is accessible

• Last In, First Out (LIFO)

38

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Stack

The Stanford Stack Library

39

#include “stack.h”

• stack.push(value): Add an element onto the top of the stack
• stack.pop(): Remove an element from the top of the stack and

return it
• stack.peek(): Look at the element from the top of the stack, but

don’t remove it
• stack.isEmpty(): Returns a boolean value, true if the stack is

empty, false if it has at least one element
• Note: a runtime error occurs if a pop() or peek() operation is

attempted on an empty stack
• stack.clear(): Removes all elements from the stack
• stack.size(): Returns the number of elements in the stack

For more information, check out the Stanford Stack class documentation!

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Stack.html

Stack Operations: Creation

40

Stack<string> bookStack;

bookStack

Stack Operations: Adding Elements

41

Stack<string> bookStack;

bookStack.push(“Ender’s Game”);

bookStack

Ender’s Game

Ender’s Game

Stack Operations: Adding Elements

42

Stack<string> bookStack;

bookStack.push(“Ender’s Game”);

bookStack.push(“Skyward”);

bookStack

Skyward

Dracula

Ender’s Game

Stack Operations: Adding Elements

43

Stack<string> bookStack;

bookStack.push(“Ender’s Game”);

bookStack.push(“Skyward”);

bookStack.push(“Dracula”);

bookStack

Skyward

Dracula

Ender’s Game

Stack Operations: Removing Elements

44

Stack<string> bookStack;

bookStack.push(“Ender’s Game”);

bookStack.push(“Skyward”);

bookStack.push(“Dracula”);

cout << bookStack.pop() << endl;

bookStack

Skyward

Dracula

Console:

Stack<string> bookStack;

bookStack.push(“Ender’s Game”);

bookStack.push(“Skyward”);

bookStack.push(“Dracula”);

cout << bookStack.pop() << endl;

cout << bookStack.peek() << endl;
Ender’s Game

Stack Operations: Accessing Elements

45

bookStack

Skyward

Dracula

Console:

Dracula
Skyward

Stack<string> bookStack;

bookStack.push(“Ender’s Game”);

bookStack.push(“Skyward”);

bookStack.push(“Dracula”);

cout << bookStack.pop() << endl;

cout << bookStack.peek() << endl;

cout << bookStack.pop() << endl;
Ender’s Game

Stack Operations: Removing Elements

46

bookStack

Skyward

Dracula

Console:

Dracula
Skyward
Dracula
Skyward
Skyward

Dracula

Ender’s Game

Stack Operations: Creation with Elements

47

Stack<string> bookStack = {“Ender’s Game”,
“Skyward”, “Dracula”};

bookStack

Skyward

Dracula

Ender’s Game

Stack Operations: Printing

48

Stack<string> bookStack = {“Ender’s Game”,
“Skyward”, “Dracula”};

cout << bookStack << endl;

bookStack

Skyward{“Ender’s Game”,
“Skyward”, “Dracula”}

Console:

Dracula

Ender’s Game

Stack Operations: Printing

49

Stack<string> bookStack = {“Ender’s Game”,
“Skyward”, “Dracula”};

cout << bookStack << endl;

cout << bookStack << endl;

bookStack

Skyward{“Ender’s Game”,
“Skyward”, “Dracula”}

Console:

{“Ender’s Game”,
“Skyward”, “Dracula”}
{“Ender’s Game”,
“Skyward”, “Dracula”}

Queues

50

What is a Queue?

• An abstract data type (ADT)
• Ordered collection of elements

• Stanford C++ library (here)
• #include “queue.h”

• Modeled like a real queue/line

• First In, First Out (FIFO)

51

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Queue

The Stanford Queue Library

52

#include “queue.h”

• queue.enqueue(value): Add an element to the back of the queue
• queue.dequeue(): Remove an element from the front of the queue and return it
• queue.peek(): Look at the element from the front of the queue, but don’t remove it
• queue.isEmpty(): Returns a boolean value, true if the queue is empty, false if it

has at least one element
• Note: a runtime error occurs if a dequeue() or peek() operation is attempted on an

empty queue
• queue.clear(): Removes all elements from the queue
• queue.size(): Returns the number of elements in the queue

For more information, check out the Stanford Stack class documentation!

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Queue.html

Queue Operations: Creation

53

Queue<string> bankQueue;

Queue Operations: Creation

54

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

Queue Operations: Creation

55

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

bankQueue.enqueue(“Emma”);

Queue Operations: Creation

56

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

bankQueue.enqueue(“Emma”);

bankQueue.enqueue(“Coraline”);

Queue Operations: Creation

57

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

bankQueue.enqueue(“Emma”);

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

Queue Operations: Creation

58

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

bankQueue.enqueue(“Emma”);

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

Matilda

Console:

Queue Operations: Creation

59

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

bankQueue.enqueue(“Emma”);

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

Matilda

Console:

Queue Operations: Creation

60

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

bankQueue.enqueue(“Emma”);

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

cout << bankQueue.peek() << endl;

Matilda

Console:

Matilda
Emma

Queue Operations: Creation

61

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

bankQueue.enqueue(“Emma”);

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

cout << bankQueue.peek() << endl;

cout << bankQueue.dequeue() << endl;

Matilda

Console:

Matilda
Emma

Queue Operations: Creation

62

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

bankQueue.enqueue(“Emma”);

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

cout << bankQueue.peek() << endl;

cout << bankQueue.dequeue() << endl;

Matilda

Console:

Matilda
Emma
Matilda
Emma
Emma

Queue Operations: Creation

63

Queue<string> bankQueue;

bankQueue.enqueue(“Matilda”);

bankQueue.enqueue(“Emma”);

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

cout << bankQueue.peek() << endl;

cout << bankQueue.dequeue() << endl;

Matilda

Console:

Matilda
Emma
Matilda
Emma
Emma

Queue Operations: Creation with Elements

64

Queue<string> bankQueue = {“Matilda”, “Emma”,
“Coraline”};

Queue Operations: Printing

65

Queue<string> bankQueue = {“Matilda”, “Emma”,
“Coraline”};

cout << bankQueue << endl;

{“Matilda”, “Emma”,
“Coraline”}

Console:

Queue Operations: Printing

66

Queue<string> bankQueue = {“Matilda”, “Emma”,
“Coraline”};

cout << bankQueue << endl;

cout << bankQueue << endl;

{“Matilda”, “Emma”,
“Coraline”}

Console:

{“Matilda”, “Emma”,
“Coraline”}
{“Matilda”, “Emma”,
“Coraline”}

Stack

67

Last In, First Out (LIFO) First In, First Out (FIFO)

Queue

Dracula

Ender’s Game

Skyward

push pop

enqueue dequeue

Tradeoffs with Stacks and Queues

What are some downsides?

• No random access of elements

• Difficult to traverse - requires removal of elements

• No easy way to search

68

What are some benefits?

• Useful for many real world problems

• Easy to build such that access is guaranteed to be fast

Stacks in Programming

• Stacks are very frequently used in programming
• Most computer architectures implement a stack

• There is a stack built into every program running on your computer

• Postfix notation (Reverse Polish Notation)

69

Stacks in Programming

70

int main() {
…
function1();
…
return 0;

}

void function2() {
…
return;

}

void function1() {
…
function2();
…
return;

}

main

function1

main

function2

function1

main

function1

main main

Which ADT would be best for…

1. the undo button in a text editor?

2. jobs submitted to a printer that can also be cancelled?

3. LaIR sign-up?

4. your browsing history?

5. Google spreadsheets

71

What is the output?

Queue<int> queue;
// produce: {1, 2, 3, 4, 5, 6}
for (int i = 1; i <= 6; i++) {

queue.enqueue(i);
}
for (int i = 0; i < queue.size(); i++) {

cout << queue.dequeue() << " ";
}
cout << queue << " size " << queue.size() << endl;

72

What is the output?

Queue<int> queue;
// produce: {1, 2, 3, 4, 5, 6}
for (int i = 1; i <= 6; i++) {

queue.enqueue(i);
}
for (int i = 0; i < queue.size(); i++) {

cout << queue.dequeue() << " ";
}
cout << queue << " size " << queue.size() << endl;

73

1 2 3 {4,5,6} size 3

Console:

Idiom 1: Emptying a Stack/Queue

Queue<int> queueIdiom1;
// produce: {1, 2, 3, 4, 5, 6}
for (int i = 1; i <= 6; i++) {

queueIdiom1.enqueue(i);
}
while (!queueIdiom1.isEmpty()) {

cout << queueIdiom1.dequeue() << " ";
}

cout << queueIdiom1 << " size " << queueIdiom1.size() << endl;

74

1 2 3 4 5 6 {} size 0

Console:

Idiom 1: Emptying a Stack/Queue

Stack<int> stackIdiom1;
// produce: {1, 2, 3, 4, 5, 6}
for (int i = 1; i <= 6; i++) {

stackIdiom1.push(i);
}
while (!stackIdiom1.isEmpty()) {

cout << stackIdiom1.pop() << " ";
}

cout << stackIdiom1 << " size " << stackIdiom1.size() << endl;

75

6 5 4 3 2 1 {} size 0

Console:

Idiom 2: Iterating over a Stack/Queue

Queue<int> queueIdiom2 = {1, 2, 3, 4, 5, 6};

int origQSize = queueIdiom2.size();
for (int i=0; i < origQSize; i++) {

int value = queueIdiom2.dequeue();
 cout << value << " ";
 // re-enqueue even values
 if (value % 2 == 0) {
 queueIdiom2.enqueue(value);
 }
}
cout << queueIdiom2 << endl;

76

1 2 3 4 5 6 {2, 4, 6}

Console:

Idiom 2: Iterating over a Stack/Queue

Stack<int> stackIdiom2 = {1, 2, 3, 4, 5, 6};
Stack<int> result;

int origSSize = stackIdiom2.size();
for (int i=0; i < origSSize; i++) {

int value = stackIdiom2.pop();
 cout << value << " ";
 // add back even values
 if (value % 2 == 0) {
 result.push(value);
 }
}
cout << result << endl;

77

6 5 4 3 2 1 {6, 4, 2}

Console:

Reversing Words in a Sentence

Let’s build a program from scratch that reverses the words in a sentence.

Example input: “the cat in the hat”

Example output: “hat the in cat the”

Let’s make a plan! Some things to think about:

• Which ADT should we use?

• What steps will we need to do?

78

Recap of ADTs So Far

ADTs with indices

79

Types

• Vectors (1D)
• Grids (2D)

Properties

• Easily able to search through all
elements

• Can use the indices as a way of
accessing specific elements

ADTs without indices
Types

• Stacks (LIFO)
• Queues (FIFO)

Properties

• Constrains the way you can insert
and remove data

• More efficient for solving specific
LIFO/FIFO problems

