Stacks and Queues

Amrita Kaur
July 3, 2023

Contributions made from previous CS106B Instructors Stanford University




Announcements and Reminders

* Assignment 1 due Friday at 11:59pm

* YEAH Hours recording on Canvas
* No class or LalR tomorrow
* Midterm conflicts or OAE accommodations emailed to us by 7/10

* Anonymous weekly feedback survey for extra credit
« Remember to fill out confirmation survey at the end

 About 15 people who forgot
* Due Wednesday by class time (1:30pm)

Stanford University



https://forms.gle/HcCy6kBpgThZK4Fz9

Assign O Takeaways

What are you most looking forward to in the class?

“Learning some cool C++ skills”

“Problem solving is just so much fun!”

“Gaining the skills needed to build more complex programs for my
personal projects”

“Learning about the various uses of computer science in real-life,
especially with a focus on making life easier”

“Interacting with different people from all around the world”
“Feeling accomplished after a struggle.”

Stanford University



Assign O Takeaways

* Are you worried about anything in the class?

*  “Worried about my ability to write code on paper. | know we will have
lots of practice but I'm someone who has to constantly google syntax
even for languages I've been coding in for years.”

*  “Worried that my past experience is not adequate for this class and that
C++ may be challenging language.”

* “Worried about the class size making it more difficult to communicate
with a section leader/lecturer.”

 “Worried about the fast pace of the class.”

 “Worried about not being good enough”

Stanford University



Review

Stanford University




Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Core

Algorithmic
Tools Analysis

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion

Stanford University



Roadmap

Using Abstractions

Abstract Data
Structures

C++

Object-Oriented
Programming

Algorithmic
Analysis

Memory
Management

Linked
Data
Structures

Recursion

Advanced
Algorithms

Stanford University



Abstract Data Type (ADTSs)

* Also known as containers or data structures

* Allow programmers to store data in predictable, organized ways
* (Can use without understanding the underlying implementation
* Transcends language boundaries/specific libraries

Stanford University




Vectors

* Ordered (indexed)

e J1-dimensional

* Can grow and shrink in size

* All elements must be of the same type

Stanford University




10

Grids

* Ordered (rows and cols are indexed)

e 2-dimensional

* Fixed dimensions

* All elements must be of the same type

0] 1 2
0] 2 5 -1
1 10 11 3
2 19 -4 -2
3 4 6 2

Stanford University




11

Let’s Compare

Pass by value Pass by reference
Callee gets a copy of a - Callee gets a reference to a
variable from the caller variable from the caller
function function
Changes to that variable that - Now, the callee can directly
occur in callee do not persist modify the original variable
in caller

=

Stanford University




Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *x= 3;

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

12

Stanford University



13

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *x= 3;

main

= int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

Stanford University




14

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *x= 3;

ks
int main() { main
= double weight = 1.06; 1.06
tripleWeight(weight); wei ght
cout << weight << endl;

Stanford University




15

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *x= 3;

}
int main() { i)
double weight = 1.06; 1.06
—p  tripleWeight(weight); weight
cout << weight << endl;

Stanford University




16

Let’s Trace Some Code (Pass by value)

tripleWeight
— void tripleWeight(double weight) {
weight *x= 3;
ks
int main() { main
double weight = 1.06; 1.06
tripleWeight(weight); weight
cout << weight << endl;

Stanford University




17

Let’s Trace Some Code (Pass by value)

tripleWeight
— void tripleWeight(double weight) {
1.06
weight *x= 3;
weight
ks
: : main
int main() {
double weight = 1.06; 1.06
tripleWeight(weight); weight
cout << weight << endl;

Stanford University




18

Let’s Trace Some Code (Pass by value)

tripleWeight
void tripleWeight(double weight) { 2.08
- weight *x= 3; :
weight
ks
: : main
int main() {
double weight = 1.06; 1.06
tripleWeight(weight); wei ght
cout << weight << endl;

Stanford University




19

Let’s Trace Some Code (Pass by value)

tripleWeight
void tripleWeight(double weight) {
3.18
weight *x= 3;
weight
=
: : main
int main() {
double weight = 1.06; 1.06
tripleWeight(weight); weight
cout << weight << endl;

Stanford University




—

Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *x= 3;

20

ks

int main() { main
double weight = 1.06; 1.06
tripleWeight(weight); wei ght
cout << weight << endl;

b

Stanford University



Let’s Trace Some Code (Pass by value)

void tripleWeight(double weight) {
weight *x= 3;

21

ks

int main() { main
double weight = 1.06; 1.06
tripleWeight(weight); wei ght
cout << weight << endl;

-

Stanford University



22

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *x= 3;

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

Stanford University




23

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *x= 3;

main

= int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

Stanford University




24

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *x= 3;

ks
int main() { main
= double weight = 1.06; 1.06
tripleWeight(weight); wei ght
cout << weight << endl;

Stanford University




25

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *x= 3;

}
int main() { i)
double weight = 1.06; 1.06
—p  tripleWeight(weight); weight
cout << weight << endl;

Stanford University




26

Let’s Trace Some Code (Pass by reference)

tripleWeight
— void tripleWeight(double& weight) {
weight *x= 3;
ks
int main() { main
double weight = 1.06; 1.06
tripleWeight(weight); weight
cout << weight << endl;

Stanford University




27

Let’s Trace Some Code (Pass by reference)

— void tripleWeight(double& weight) {
weight *x= 3;

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

tripleWeight

— T )

weight

main

1.06 4/

weight

Stanford University



-

28

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *x= 3;
ks

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

tripleWeight

— T )

weight

main

1.06 4/

weight

Stanford University



29

Let’s Trace Some Code (Pass by reference)

tripleWeight
void tripleWeight(double& weight) {
— weight *x= 3; \
weight
ks
: : main
int main() {
double weight = 1.06; .18 | </
tripleWeight(weight); weight
cout << weight << endl;

Stanford University




30

Let’s Trace Some Code (Pass by reference)
tripleWeight

void tripleWeight(double& weight) {

weight *x= 3; \

— } weight
int main() { main
double weight = 1.06; .18 | </
tripleWeight(weight); wei ght
cout << weight << endl;

Stanford University




31

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *x= 3;

}
. . main
int main() {
double weight = 1.06; 3.18
tripleWeight(weight); weight
—> cout << weight << endl;

}

Stanford University




32

Let’s Trace Some Code (Pass by reference)

void tripleWeight(double& weight) {
weight *x= 3;

ks

int main() { main
double weight = 1.06; 3.18
tripleWeight(weight); wei ght
cout << weight << endl;

-}

Stanford University




33

When Do We Pass by Reference?

Yes:

When we want the callee
function to edit our data

To avoid making copies of
large data structures

When we need to return
multiple values

No:

Just because

Passing by reference is risky
because another function can
modify your data!

When the data we’re passing
to the callee is small, and thus
copying isn’t expensive

Stanford University



34

What is the output of this code?

void mystery(int& b, int c, int& a) {
a++;
b--3;
c += a;

int main() {
int a = 5;
int b
int ¢ = 8;
mystery(c, a, b);
cout << a << " " KK b < "M K ¢ <K< endl;
return 0;

I
N

Stanford University




What is the output of this code?

35

void mystery(int& b, int c, int& a) { Console:
a++; //
b--; 537
c += a;

+

int main() {
int a = 5; \\
int b = 23

int ¢ = 8;

mystery(c, a, b);

cout << a << " " KK b < "M K ¢ <K< endl;
return 0;

Stanford University



Roadmap

Using Abstractions

Object-Oriented

36

Building Abstractions

_ Memory
Programming Management
Abstract Data .
Structures Linked Advanced
Data Algorithms
Structures
C : :
ore Cit Algorlthmlc Recursion
Tools Analysis

Stanford University



Stacks

Stanford Universit



38

What is a Stack?

* An abstract data type (ADT)
* Ordered collection of elements

» Stanford C++ library (here)
e #include “stack.h”
 Modeled like an actual stack (of pancakes)
* Only the top element of the stack is accessible
e Last In, First Out (LIFO)

Stanford University



https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Stack

The Stanford Stack Library

#include “stack.h”

stack.push(value): Add an element onto the top of the stack
stack.pop (): Remove an element from the top of the stack and
return it
stack.peek(): Look at the element from the top of the stack, but
don’t remove it
stack.isEmpty(): Returns a boolean value, true if the stack is
empty, false if it has at least one element

« Note: a runtime error occurs if a pop() or peek() operation is

attempted on an empty stack

stack.clear (): Removes all elements from the stack
stack.s1ize(): Returns the number of elements in the stack

For more information, check out the Stanford Stack class documentation!

39

PUSH ' \ POP

TOP

Stanford University


https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Stack.html

40

Stack Operations: Creation

Stack<string> bookStack;

bookStack

Stanford University




41

Stack Operations: Adding Elements

Stack<string> bookStack;
bookStack.push(“Ender’s Game”);

<Ender’sGame >

bookStack

Stanford University




Stack Operations: Adding Elements

Stack<string> bookStack;
bookStack.push(“Ender’s Game”);
bookStack.push(“Skyward”) ;

42

< Skyward >
<Ender’sGame >

bookStack

Stanford University



43

Stack Operations: Adding Elements

Stack<string> bookStack;
bookStack.push(“Ender’s Game”);
bookStack.push(“Skyward”) ;
bookStack.push(“Dracula”);

< Dracula >
< Skyward >
< Ender’s Game >

bookStack

Stanford University



44

Stack Operations: Removing Elements

Console:

Stack<string> bookStack; -~ N
Dracula
bookStack.push(“Ender’s Game”);
bookStack.push(“Skyward”) ;
bookStack.push(“Dracula”);

cout << bookStack.pop() << endl; (| pracula )
< Skyward >
< Ender’s Game >

bookStack

Stanford University



Stack Operations: Accessing Elements

Console:

45

Stack<string> bookStack; ™\
Dracula
bookStack.push(“Ender’s Game”); Skyward
bookStack.push(“Skyward”) ;
- J

bookStack.push(“Dracula”);
cout << bookStack.pop() << endl;

(

Skyward

)

cout << bookStack.peek() << endl;

< Ender’s Game

)

bookStack

Stanford University



46

Stack Operations: Removing Elements

Console:

Stack<string> bookStack; e ™
Dracula
bookStack.push(“Ender’s Game”); Skyward
Skyward
bookStack.push(“Skyward”) ;

L /

bookStack.push(“Dracula”);
cout << bookStack.pop() << endl;
cout << bookStack.peek() << endl;

< Skyward >
<Ender’sGame >

cout << bookStack.pop() << endl; bookStack

Stanford University




47

Stack Operations: Creation with Elements

Stack<string> bookStack = {“Ender’s Game”,
“Skyward”, “Dracula”};

< Dracula >
< Skyward >
< Ender’s Game >

bookStack

Stanford University




48

Stack Operations: Printing

Stack<string> bookStack = {“Ender’s Game”,
“Skyward”, “Dracula”};

cout << bookStack << endl;

CO”SO/e.' < Dracula >
\ Sk d
{“Ender’s Game”, < ywer >
“Skyward”, “Dracula”} <EndersGame >
bookStack
\_ %

Stanford University




49

Stack Operations: Printing

Stack<string> bookStack = {“Ender’s Game”,
“Skyward”, “Dracula”};

cout << bookStack << endl;

cout << bookStack << endl;

CO”SO/e.' < Dracula >
\ Sk d

{“Ender’s Game”, < ywer >

“Skyward”, “Dracula”} < Ender’s Game >

{“Ender’s Game”,
“Skyward”, “Dracula”}

bookStack

Stanford University




50

Queues

Stanford University




51

What is a Queue?

An abstract data type (ADT)

 Ordered collection of elements

Stanford C++ library (here)
e #include “queue.h”
Modeled like a real queue/line

First In, First Out (FIFO)

==

Stanford University



https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Queue

52

The Stanford Queue Library I
ENQUEUE nﬂnﬂn—\ DEQUEUE

#include “queue.h”

« queue.enqueue(value): Add an element to the back of the queue
« queue.dequeue(): Remove an element from the front of the queue and return it
« queue.peek(): Look at the element from the front of the queue, but don’t remove it
 queue.isEmpty(): Returnsaboolean value, true if the queue is empty, false if it
has at least one element
« Note: a runtime error occurs if a dequeue() or peek() operation is attempted on an
empty queue
« queue.clear(): Removes all elements from the queue
queue.size(): Returns the number of elements in the queue

For more information, check out the Stanford Stack class documentation!

Stanford University



https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Queue.html

53

Queue Operations: Creation

Queue<string> bankQueue;

A

Stanford University




54

Queue Operations: Creation

Queue<string> bankQueue;

bankQueue.enqueue (“Matilda”);

n

8

Stanford University




55

Queue Operations: Creation

Queue<string> bankQueue;
bankQueue.enqueue(“Matilda”);

bankQueue.enqueue (“Emma”) ;

PP
/\\'E
o1

Stanford University




Queue Operations: Creation

Queue<string> bankQueue;
bankQueue.enqueue (“Matilda”);
bankQueue.enqueue (“Emma”) ;

bankQueue.enqueue(“Coraline”);

56

A

Stanford University



57

Queue Operations: Creation

Queue<string> bankQueue;
bankQueue.enqueue (“Matilda”);
bankQueue.enqueue (“Emma”) ;
bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

PP
1]

Stanford University




58

Queue Operations: Creation

Console:

Queue<string> bankQueue; e ~
Matilda

bankQueue.enqueue (“Matilda”);

bankQueue.enqueue (“Emma”) ;

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() <X

Stanford University




Queue Operations: Creation

Console:

59

Queue<string> bankQueue; I
Matilda
bankQueue.enqueue (“Matilda”);
bankQueue.enqueue (“Emma”) ; S y
bankQueue.enqueue(“Coraline”);
cout << bankQueue.dequeue() << endl; N\
\)

S
S

w

Stanford University



60

Queue Operations: Creation

Console:

Queue<string> bankQueue; e ~
Matilda
bankQueue.enqueue(“Matilda”); Emma

bankQueue.enqueue (“Emma”) ;
_ J

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

S
S
—
==

cout << bankQueue.peek() << endl;

w

Stanford University




61

Queue Operations: Creation

Console:

Queue<string> bankQueue; e ™
Matilda
bankQueue.enqueue(“Matilda”); Emma
bankQueue.enqueue (“Emma”) ; L )
bankQueue.enqueue(“Coraline”);
cout << bankQueue.dequeue() << endl;
’ '- ?\\

cout << bankQueue.peek() << endl;

cout << bankQueue.dequeue() << endl; -

Stanford University




62

Queue Operations: Creation

Console:

Queue<string> bankQueue; e ™\
Matilda
bankQueue.enqueue(“Matilda”); Emma
Emma
bankQueue.enqueue (“Emma”) ;

\ </

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

==

cout << bankQueue.peek() << endl;

cout << bankQueue.dequeue() << endl;

Stanford University




63

Queue Operations: Creation

Console:

Queue<string> bankQueue; e ™\
Matilda
bankQueue.enqueue(“Matilda”); Emma
Emma
bankQueue.enqueue (“Emma”) ;

\ </

bankQueue.enqueue(“Coraline”);

cout << bankQueue.dequeue() << endl;

==

cout << bankQueue.peek() << endl;

cout << bankQueue.dequeue() << endl;

Stanford University




64

Queue Operations: Creation with Elements

Queue<string> bankQueue = {“Matilda”, “Emma”,
“Coraline”};

LR

Stanford University




65

Queue Operations: Printing

Queue<string> bankQueue = {“Matilda”, “Emma”,
“Coraline”};

cout << bankQueue << endl;

Console:

=2

~

{“Matilda”, “Emma”,
“Coraline”}

- 4/

Stanford University



66

Queue Operations: Printing

Queue<string> bankQueue = {“Matilda”, “Emma”,
“Coraline”};

cout << bankQueue << endl;

cout << bankQueue << endl;

Console:

~ A
{“Matilda”, “Emma”, :
“Coraline”}
{“Matilda”, “Emma”,
“Coraline”}

/

Stanford University



67

Stack Queue
Last In, First Out (LIFO) First In, First Out (FIFO)
push pop

v

<

Dracula

> enqueue dequeue

<

Skyward

< Ender’s Game

U

Stanford University



68

Tradeoffs with Stacks and Queues

What are some downsides?

* No random access of elements
* Difficult to traverse - requires removal of elements
* No easy way to search

What are some benefits?

e Useful for many real world problems
e Easy to build such that access is guaranteed to be fast

Stanford University




69

Stacks in Programming

» Stacks are very frequently used in programming
* Most computer architectures implement a stack

 There is a stack built into every program running on your computer
e Postfix notation (Reverse Polish Notation)

Stanford University




70

Stacks in Programming

int main() {
functionl();

return 0;

main

void functionl() { void function2() {
function2(); return;
return; }
}
function2
functionl functionl functionl
main main main main

Stanford University



71

Which ADT would be best for...

the undo button in a text editor?

jobs submitted to a printer that can also be cancelled?
LalR sign-up?

your browsing history?

ok owbd-~

Google spreadsheets

Stanford University




72

What is the output?

Queue<int> queue;
// produce: {1, 2, 3, 4, 5, 6}
for (int 1 = 1; 1 <= 6; 1i++) {

queue.enqueue (i) ;

}
for (int i = 0; 1 < queue.size(); i++) {
cout << queue.dequeue() << " ";
ks
cout << queue << " size " << queue.size() << endl;

Stanford University




73

What is the output?

Console:

Queue<int> queue;
// produce: {1, 2, 3, 4, 5, 6} 12 3 {4,5,6} size 3
for (int i = 1; 1 <= 63 1i++) {

gqueue.enqueue(i);

\_ /
}
for (int i = 0; 1 < queue.size(); i++) {
cout << queue.dequeue() << " ";
ks
cout << queue << " size " << queue.size() << endl;

Stanford University




ldiom 1: Emptying a Stack/Queue

Queue<int> queueldioml;

// produce: {1, 2, 3, 4, 5, 6}

for (int i = 1; 1 <= 65 1i++) {
queueldioml.enqueue(i);

Console:

123456 {} size 0

}
while (!queueldioml.isEmpty()) { -
cout << queueldioml.dequeue() << " '
}
cout << queueldioml << " size " << queueldioml.size() << endl;

74

Stanford University



75

ldiom 1: Emptying a Stack/Queue

i i C le:
Stack<int> stackIdioml; onsole

/
// produce: {1, 2, 3, 4, 5, 6} 6 54321 {} size 0
for (int i = 1; 1 <= 65 1i++) {
stackIdioml.push(i);

}

while (!stackIdioml.isEmpty()) { - /
cout << stackIdioml.pop() << " ",

}

cout << stackIdioml << " size " << stackIdioml.size() << endl;

Stanford University




76

ldiom 2: Iterating over a Stack/Queue

Queue<int> queueldiom2 = {1, 2, 3, 4, 5, 6};

int origQSize = queueldiom2.size();

for (int i=0; 1 < origQSize; i++) { Console:
int value = queueldiom2.dequeue();
cout << value << " "; 123456 {2, 4, 6}

// re-enqueue even values
if (value % 2 == 0) {
queueldiom2.enqueue(value); N )

}

cout << queueldiom2 << endl;

Stanford University




77

ldiom 2: Iterating over a Stack/Queue

Stack<int> stackIdiom2 = {1, 2, 3, 4, 5, 6};
Stack<int> result;

int origSSize = stackIdiom2.size(); Console:
for (int i=0; 1 < origSSize; 1i++) {
int value = stackIdiom2.pop(); 6 54321{6, 4, 2}
cout << value << " '
// add back even values
if (value % 2 == 0) { \_ )

result.push(value);

}
}

cout << result << endl; e
tanior niversity




78

Reversing Words in a Sentence

Let’s build a program from scratch that reverses the words in a sentence.

Example input: “the cat in the hat”
Example output: “hat the in cat the”

Let’s make a plan! Some things to think about:
* Which ADT should we use?
* What steps will we need to do?

Stanford University




Recap of ADTs So Far

ADTs with indices
Types

* Vectors (1D)
e Grids (2D)
Properties

e Easily able to search through all
elements

e Can use the indices as a way of
accessing specific elements

79

ADTs without indices
Types

* Stacks (LIFO)
* Queues (FIFO)

Properties

* Constrains the way you can insert
and remove data

* More efficient for solving specific
LIFO/FIFO problems

Stanford University



