Sets and Maps

Amrita Kaur
July 5, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements and Reminders

* Assignment 1 due Friday at 11:59pm

* Midterm conflicts or OAE accommodations emailed to us by 7/10
* Participation grades for Week 1 Section have been posted

* Week 2 Section starts today!

Stanford University

Review

Stanford University

StaCkS PUSH \ POP

TOP

* Ordered
e LastIn, First Out (LIFO)
* Only the top element of the stack is accessible

* Important operations:
« stack.push(value): Add an element onto the top of the stack
 stack.pop(): Remove an element from the top of the stack and
return it
« stack.peek(): Look at the element from the top of the stack, but
don’t remove it

Stanford University

BACK FRONT
Queues 65 4| 3 2 N
1

 Ordered -

* First In, First Out (FIFO)
 Add to back, remove from front
* Important operations:
« queue.enqueue(value): Add an element to the back of the
queue
« queue.dequeue(): Remove an element from the front of the
gueue and return it
« queue.peek(): Look at the element from the front of the queue,
but don’t remove it

Stanford University

Stack

Queue

Last In, First Out (LIFO) First In, First Out (FIFO)

push pop

v

<

Dracula

> enqueue dequeue

<

Skyward

< Ender’s Game

U

Stanford University

Tradeoffs with Stacks and Queues

What are some downsides?

* No random access of elements
* Difficult to traverse - requires removal of elements
* No easy way to search

What are some benefits?

e Useful for many real world problems
e Easy to build such that access is guaranteed to be fast

Stanford University

Reversing Words in a Sentence

Let’s build a program from scratch that reverses the words in a sentence.

Example input: “the cat in the hat”
Example output: “hat the in cat the”

Let’s make a plan! Some things to think about:
* Which ADT should we use?
* What steps will we need to do?

Stanford University

Reversing Words in a Sentence

ADT: Stack
Steps:

1. Read a word from the string (done reading when we reach a space)
2. Push word onto stack

3. Repeat steps 1 and 2 until we’ve pushed all the words to the stack
4. Pop the words from the stack and print with spaces

Stanford University

Recap of ADTs So Far

ADTs with indices
Types

* Vectors (1D)
e Grids (2D)
Properties

e Easily able to search through all
elements

e Can use the indices as a way of
accessing specific elements

10

ADTs without indices
Types

* Stacks (LIFO)
* Queues (FIFO)

Properties

* Constrains the way you can insert
and remove data

* More efficient for solving specific
LIFO/FIFO problems

Stanford University

Roadmap

Using Abstractions

Object-Oriented

11

Building Abstractions

_ Memory
Programming Management
Abstract Data .
Structures Linked Advanced
Data Algorithms
Structures
C : :
ore Cit Algorlthmlc Recursion
Tools Analysis

Stanford University

12

Unordered Data

What are some examples of unordered data that you’ve encountered?

* Grocery list

* Unique visitors to a website

» Shuffled playlist of songs

* List of people who liked a post

Stanford University

13

Sets

Stanford University

14

What is a Set?

* An abstract data type (ADT)
* Unordered collection of elements
» Stanford C++ library (here)
e #include “set.h”
* No duplicate elements in a set
e Allunique elements
* Elements are not indexed

* Faster at finding elements than ordered data structures

Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Set

15

The Stanford Set Library

#include “set.h”

« set.add(value): Adds the value to the set, ignores if the set already
contains the value

« set.remove(value): Removes the value from the set, ignores if the value
is not in the set

« set.contains(value): Returns a boolean value, true if the set contains
the value, false otherwise

« set.isEmpty():Returns a boolean value, true if the set is empty, false
otherwise

« set.size():Returnsthe number of elements in the set

For more information, check out the Stanford Set class documentation!

Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Set

16

Set Operations: Creating

Set<string> flagSet;

flagSet

Stanford University

17

Set Operations: Adding Elements

Set<string> flagSet;
flagSet.add(“brazil”);

&

flagSet

Stanford University

18

Set Operations: Adding Elements

Set<string> flagSet;
flagSet.add(“brazil”);
flagSet.add(“philippines”); _

flagSet

Stanford University

19

Set Operations: Adding Elements

Set<string> flagSet;

flagSet.add(“brazil”);
flagSet.add(“philippines”); _
flagSet.add(“brazil”);

flagSet

Stanford University

20

Set Operations: Removing Elements

Set<string> flagSet;

flagSet.add(“brazil”);
flagSet.add(“philippines”); _
flagSet.add(“brazil”);

flagSet

flagSet.remove(“brazil”);

Stanford University

21

Set Operations: Removing Elements

Set<string> flagSet;

flagSet.add(“brazil”); |
flagSet.add(“philippines”); _
flagSet.add(“brazil”); flagSet
flagSet.remove(“brazil”);

¢¢ 3 3 1 2

Stanford University

22

Set Operations: Removing Elements

Set<string> flagSet;

flagSet.add(“brazil”); |
flagSet.add(“philippines”); _
flagSet.add(“brazil”); flagSet

flagSet.remove(“brazil”);

Stanford University

23

Set Operations: Checking for Elements

Set<string> flagSet;

flagSet.add(“brazil”); |
flagSet.add(“philippines”); ’
flagSet.add(“brazil”); flagSet

flagSet.remove(“brazil”);

cout << flagSet.contains(“canada”) << endl;

Console:

[false }

Stanford University

24

Set Operations: Creating with Elements

Set<string> flagSet = {“brazil”, “philippines”,
“canada”};

Il -

flagSet

Stanford University

25

Set Operations: Printing

Set<string> flagSet = {“brazil”, “philippines”,
“canada”};

cout << flagSet << endl;

/)
Console:
a I
{“brazil”, “canada”, lﬂ _

“philippines”}

flagSet

\ /

Stanford University

Set Patterns and Pitfalls

* Use for each loops to iterate over a set
for (type currElem : set) {

// process elements one at a time

}

e Cannot use anything that attempts to index into a set

for(int 1=0; 1 < set.size(); i++) {
// does not work, no index!
cout << set[i];

26

Stanford University

27

Set Operands

Sets can be compared, combined, etc
e sl == s2
true if the sets contain exactly the same elements
e sl != s2
true if the sets don't contain the exact same elements

Stanford University

28

Set Operands

Sets can be compared, combined, etc
e sl == s2
true if the sets contain exactly the same elements
e sl != s2
true if the sets don't contain the exact same elements
e sl + s2
returns the union of s1 and s2 (i.e., all elements in both)

Stanford University

29

Set Operands

Sets can be compared, combined, etc
e sl == s2
true if the sets contain exactly the same elements
e sl != s2
true if the sets don't contain the exact same elements
e sl + s2
returns the union of s1 and s2 (i.e., all elements in both)
e sl x s2
returns the intersection of s1 and s2 (i.e., only the elements in both sets)

Stanford University

Set Operands

Sets can be compared, combined, etc

sl == s2
true if the sets contain exactly the same elements
sl != s2

true if the sets don't contain the exact same elements

sl + s2

returns the union of s1 and s2 (i.e., all elements in both)

sl *x s2

returns the intersection of s1 and s2 (i.e., only the elements in both sets)
sl - s2

returns the difference of s1 and s2 (the elements in s1 but not in s2)

30

Stanford University

31

Unique Words Coding Example

Stanford University

32

Maps

Stanford University

What is a Map?

* An abstract data type (ADT)

* Unordered collection of elements
» Stanford C++ library (here)

e #include “map.h”
e Collection of pairs

* Sometimes called key/value pairs
* Use the key to quickly find the value

Keys

-~

\

~

Kendall d

Roman 4

Siobhan -

)

Values

4)
452-4363

346-5742

947-3462

- /

 Generalization of ordered data structure, where “indices” are not

integers

33

Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Map

34

The Stanford Map Library

#include “map.h”

map.clear (): Removes all key/value pairs from the map
map.containsKey (key): Returns true if the map contains a value for the given key
map [key]: Returns the value mapped to the given key
e If key is notin the map, adds it with the default value (e.g., ® or ")
map.get (key): Returns the value mapped to the given key
e If key is notin the map, returns the default value for the value type, but does not add it to the map.
map.isEmpty(): Returns true if the map contains no key/value pairs (size 0)
map.keys (): Returns a Vector copy of all keys in the map
map[key] = valueandmap.put(key, value):Addsa mapping from the given key to the given value; if the
key already exists, replaces its value with the given one
map.remove (key): Removes any existing mapping for the given key (ignored if the key doesn't exist in the map)
map.size(): Returns the number of key/value pairs in the map
map.toString(): Returns astringsuchas "{a:90, d:60, c:70}"
map.values(): Returns a Vector copy of all the values in the map

For more information, check out the Stanford Map class documentation!

Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Map

Map Operations: Creating

Map<string, double> priceMap;

Keys

)

35

priceMap

Stanford University

36

Map Operations: Adding Elements

Keys Values
Map<string, double> priceMap; [N e N
Nutella
priceMap[“Nutella”] = 8.99;
, \ 8.99
8) 8)

priceMap

Stanford University

37

Map Operations: Adding Elements

Keys Values
Map<string, double> priceMap; @ N N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
. Banana ~ 8.99
priceMap.put(“Banana”, 0.29); N y y

priceMap

Stanford University

38

Map Operations: Adding Elements

Keys Values
Map<string, double> priceMap; @ N N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
. Banana ~ 8.99
priceMap.put(“Banana”, 0.29); N y y

priceMap.put(“Nutella”, 7.99); priceMap

Stanford University

39

Map Operations: Adding Elements

Keys Values
Map<string, double> priceMap; @ N N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
. Banana ~ 7.99
priceMap.put(“Banana”, 0.29); N y y

priceMap.put(“Nutella”, 7.99); priceMap

Stanford University

40

Map Operations: Accessing Elements

Keys Values
Map<string, double> priceMap; [> N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
7.99
priceMap.put(“Banana”, 0.29); \\Bmm”a::)
priceMap.put(“Nutella”, 7.99); priceMap

cout << priceMap[“Banana”] << endl;

Console:

0.29

Stanford University

41

Map Operations: Accessing Elements

Keys Values
Map<string, double> priceMap; [> N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
7.99
priceMap.put(“Banana”, 0.29); \\Bmm”a:: .
priceMap.put(“Nutella”, 7.99); priceMap

cout << priceMap[“Banana”] << endl;

Console:

cout << priceMap.get(“Banana”) << endl; 0.29
0.29

Stanford University

42

Map Operations: Creating with Elements

Map<string, double> priceMap =
{{“Nutella”,7.99},{“Banana”,0.29}};

Keys Values

c N N
Nutella _ 0.29
Banana ~ 7.99

S))

priceMap

Stanford University

Map Operations: Printing

Map<string, double> priceMap =
{{“Nutella”,7.99},{“Banana”,0.29}};

cout << priceMap << endl;

Keys Values
Console: e Y Y
Nutella _ 0.29
{"Banana":0.29,
"Nutella":8.99} Banana - 7.99
A8) /
priceMap

Stanford University

Map Patterns and Pitfalls

e Use for each loops to iterate over a map
for (type currKey : map) {
// see map values using map[currKey]

// don’t edit the map
}

for (type currKey : map.keys()) {
// see map values using map[currKey]

// can now edit the map!

44

Stanford University

45

Map Patterns and Pitfalls

e Auto-insert: a feature that can also cause bugs
Map<string, int> fregMap;
while (true) {
string text = getLine(“Enter some text: ”);
cout << “Times seen: ” << fregMap[text] << endl;

fregMap[text]++;

Stanford University

46

Map Patterns and Pitfalls

e Auto-insert: a feature that can also cause bugs
Map<string, int> playerPointsMap;

// players enter their name
// get key to test if it’s in the map

if (playerPointsMap[key] == 0) {

cout << key << “ already exists” << endl;

Stanford University

47

Map Patterns and Pitfalls

e Auto-insert: a feature that can also cause bugs
Map<string, int> playerPointsMap;

// players enter their name
// get key to test if it’s in the map

if (playerPointsMap.containsKey[key]) {

cout << key << “ already exists” << endl;

Stanford University

Unigue Words Coding Example
(Extended Version)

49

Nested Data Structures

Stanford University

50

Nested Data Structures

 Use one ADT as the data type inside of another ADT
* A great way of organizing data with complex structure
* Explore more in Assignment 2!

Stanford University

51

Nested Data Structures

queue
mod way lay tap rat
mop may may rap rap
map map map map map
Queue< >

Stanford University

52

Nested Data Structures

map
keys values
"hansa'" =i {"12:00","3:00","9:00"}
"kandula” > {"8:00","1:00"}
"]_umpy" > {"11:00"}
"surus" —| {"5:00","3:00","9:00","2:00"}

Map< , >

Stanford University

53

Modifying Nested Data Structures

feedingTimes map

. . keys values
We want to add a second feeding time S T
"hansa" —_—]
for "|umpy" at 4:00. "kandala" {("8:00","1:00"}
" lumpy" {"11:00™, }
Which snippets of code will correctly r—— (757007, 737007, 791007,
- T "2:00"}
update the map?

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");
feedingTimes[" lumpy"] = times;

Stanford University

54

Modifying Nested Data Structures

feedingTimes map

We want to add a second feeding time i i {Xiluaeofm}
for “lumpy” at 4:00. :zzzzz;a" ("8:007, "1:007)

"lumpy" I :
Which snippets of code will correctly To—— oo e o0
update the map?

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes[" lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"]}
times.add("4:00")
feedingTimes["lumpy"] = times;

Stanford University

55

|] and = Operator Nuances

* When you use the [] operator to access an element from a map, you
get a reference to the map, which means that any changes you make
to the reference will be persistent in the map.

feedingTimes[" lumpy"].add("4:00");

Stanford University

56

|] and = Operator Nuances

When you use the [] operator to access an element from a map, you
get a reference to the map, which means that any changes you make
to the reference will be persistent in the map.

However, when you use the = operator to assign the result of the []
operator to a variable, you get a copy of the internal data structure.

Vector times = feedingTimes["lumpy'"];

times.add("4:00");

Stanford University

57

|] and = Operator Nuances

* When you use the [] operator to access an element from a map, you
get a reference to the map, which means that any changes you make
to the reference will be persistent in the map.

 However, when you use the = operator to assign the result of the [|
operator to a variable, you get a copy of the internal data structure.

e |f you choose to store the internal data structure in an intermediate

variable, you must do an explicit reassignment to get your changes to
persist.

feedingTimes[" lumpy"] = times;

Stanford University

58

Nested ADTs Summary

* Powerful
* Can express highly structured and complex data
* Used in many real-world systems
* Tricky
* With increased complexity comes increased opportunities for bugs and

mistakes at each level of nesting
* Specifically in C++, working with nested data structures can be tricky due

the use of references and copies.

Stanford University

Recap of ADTs

Ordered ADTs

Elements with indices

Vectors (1D)
Grids (2D)

Elements without indices

Stacks (LIFO)
Queues (FIFO)

Unordered ADTs

Sets (unique elements)
Maps (key, value pairs)

59

Stanford University

