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Announcements and Reminders

* Assignment 1 due Friday at 11:59pm

* Midterm conflicts or OAE accommodations emailed to us by 7/10
* Participation grades for Week 1 Section have been posted

* Week 2 Section starts today!
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Review
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StaCkS PUSH \ POP

TOP

* Ordered
e LastIn, First Out (LIFO)
* Only the top element of the stack is accessible

* Important operations:
« stack.push(value): Add an element onto the top of the stack
 stack.pop(): Remove an element from the top of the stack and
return it
« stack.peek(): Look at the element from the top of the stack, but
don’t remove it
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BACK FRONT
Queues 65 4| 3 2 N
1

 Ordered -

* First In, First Out (FIFO)
 Add to back, remove from front
* Important operations:
« queue.enqueue(value): Add an element to the back of the
queue
« queue.dequeue(): Remove an element from the front of the
gueue and return it
« queue.peek(): Look at the element from the front of the queue,
but don’t remove it
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Queue

Last In, First Out (LIFO) First In, First Out (FIFO)
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Tradeoffs with Stacks and Queues

What are some downsides?

* No random access of elements
* Difficult to traverse - requires removal of elements
* No easy way to search

What are some benefits?

e Useful for many real world problems
e Easy to build such that access is guaranteed to be fast

Stanford University




Reversing Words in a Sentence

Let’s build a program from scratch that reverses the words in a sentence.

Example input: “the cat in the hat”
Example output: “hat the in cat the”

Let’s make a plan! Some things to think about:
* Which ADT should we use?
* What steps will we need to do?
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Reversing Words in a Sentence

ADT: Stack
Steps:

1. Read a word from the string (done reading when we reach a space)
2. Push word onto stack

3. Repeat steps 1 and 2 until we’ve pushed all the words to the stack
4. Pop the words from the stack and print with spaces
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Recap of ADTs So Far

ADTs with indices
Types

* Vectors (1D)
e Grids (2D)
Properties

e Easily able to search through all
elements

e Can use the indices as a way of
accessing specific elements
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ADTs without indices
Types

* Stacks (LIFO)
* Queues (FIFO)

Properties

* Constrains the way you can insert
and remove data

* More efficient for solving specific
LIFO/FIFO problems
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Roadmap

Using Abstractions

Object-Oriented
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Building Abstractions

_ Memory
Programming Management
Abstract Data .
Structures Linked Advanced
Data Algorithms
Structures
C : :
ore Cit Algorlthmlc Recursion
Tools Analysis
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Unordered Data

What are some examples of unordered data that you’ve encountered?

* Grocery list

* Unique visitors to a website

» Shuffled playlist of songs

* List of people who liked a post
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Sets
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What is a Set?

* An abstract data type (ADT)
* Unordered collection of elements
» Stanford C++ library (here)
e #include “set.h”
* No duplicate elements in a set
e Allunique elements
* Elements are not indexed

* Faster at finding elements than ordered data structures
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https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Set
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The Stanford Set Library

#include “set.h”

« set.add(value): Adds the value to the set, ignores if the set already
contains the value

« set.remove(value): Removes the value from the set, ignores if the value
is not in the set

« set.contains(value): Returns a boolean value, true if the set contains
the value, false otherwise

« set.isEmpty():Returns a boolean value, true if the set is empty, false
otherwise

« set.size():Returnsthe number of elements in the set

For more information, check out the Stanford Set class documentation!
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https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Set
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Set Operations: Creating

Set<string> flagSet;

flagSet

Stanford University




17

Set Operations: Adding Elements

Set<string> flagSet;
flagSet.add(“brazil”);

&

flagSet
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Set Operations: Adding Elements

Set<string> flagSet;
flagSet.add(“brazil”);
flagSet.add(“philippines”); _

flagSet
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Set Operations: Adding Elements

Set<string> flagSet;

flagSet.add(“brazil”);
flagSet.add(“philippines”); _
flagSet.add(“brazil”);

flagSet
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Set Operations: Removing Elements

Set<string> flagSet;

flagSet.add(“brazil”);
flagSet.add(“philippines”); _
flagSet.add(“brazil”);

flagSet

flagSet.remove(“brazil”);
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Set Operations: Removing Elements

Set<string> flagSet;

flagSet.add(“brazil”); |
flagSet.add(“philippines”); _
flagSet.add(“brazil”); flagSet
flagSet.remove(“brazil”);

¢¢ 3 3 1 2
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Set Operations: Removing Elements

Set<string> flagSet;

flagSet.add(“brazil”); |
flagSet.add(“philippines”); _
flagSet.add(“brazil”); flagSet

flagSet.remove(“brazil”);
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Set Operations: Checking for Elements

Set<string> flagSet;

flagSet.add(“brazil”); |
flagSet.add(“philippines”); ’
flagSet.add(“brazil”); flagSet

flagSet.remove(“brazil”);

cout << flagSet.contains(“canada”) << endl;

Console:

[false }
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Set Operations: Creating with Elements

Set<string> flagSet = {“brazil”, “philippines”,
“canada”};

Il -

flagSet
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Set Operations: Printing

Set<string> flagSet = {“brazil”, “philippines”,
“canada”};

cout << flagSet << endl;

/)
Console:
a I
{“brazil”, “canada”, lﬂ _

“philippines”}

flagSet

\ /
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Set Patterns and Pitfalls

* Use for each loops to iterate over a set
for (type currElem : set) {

// process elements one at a time

}

e Cannot use anything that attempts to index into a set

for(int 1=0; 1 < set.size(); i++) {
// does not work, no index!
cout << set[i];
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Set Operands

Sets can be compared, combined, etc
e sl == s2
true if the sets contain exactly the same elements
e sl != s2
true if the sets don't contain the exact same elements
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Set Operands

Sets can be compared, combined, etc
e sl == s2
true if the sets contain exactly the same elements
e sl != s2
true if the sets don't contain the exact same elements
e sl + s2
returns the union of s1 and s2 (i.e., all elements in both)
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Set Operands

Sets can be compared, combined, etc
e sl == s2
true if the sets contain exactly the same elements
e sl != s2
true if the sets don't contain the exact same elements
e sl + s2
returns the union of s1 and s2 (i.e., all elements in both)
e sl x s2
returns the intersection of s1 and s2 (i.e., only the elements in both sets)
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Set Operands

Sets can be compared, combined, etc

sl == s2
true if the sets contain exactly the same elements
sl != s2

true if the sets don't contain the exact same elements

sl + s2

returns the union of s1 and s2 (i.e., all elements in both)

sl *x s2

returns the intersection of s1 and s2 (i.e., only the elements in both sets)
sl - s2

returns the difference of s1 and s2 (the elements in s1 but not in s2)
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Unique Words Coding Example
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Maps
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What is a Map?

* An abstract data type (ADT)

* Unordered collection of elements
» Stanford C++ library (here)

e #include “map.h”
e Collection of pairs

* Sometimes called key/value pairs
* Use the key to quickly find the value

Keys

-~

\

~

Kendall d

Roman 4

Siobhan -

)

Values

4 )
452-4363

346-5742

947-3462

- /

 Generalization of ordered data structure, where “indices” are not

integers
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https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Map

34

The Stanford Map Library

#include “map.h”

map.clear (): Removes all key/value pairs from the map
map.containsKey (key): Returns true if the map contains a value for the given key
map [key]: Returns the value mapped to the given key
e If key is notin the map, adds it with the default value (e.g., ® or ")
map.get (key): Returns the value mapped to the given key
e If key is notin the map, returns the default value for the value type, but does not add it to the map.
map.isEmpty(): Returns true if the map contains no key/value pairs (size 0)
map.keys (): Returns a Vector copy of all keys in the map
map[key] = valueandmap.put(key, value):Addsa mapping from the given key to the given value; if the
key already exists, replaces its value with the given one
map.remove (key): Removes any existing mapping for the given key (ignored if the key doesn't exist in the map)
map.size(): Returns the number of key/value pairs in the map
map.toString(): Returns astringsuchas "{a:90, d:60, c:70}"
map.values(): Returns a Vector copy of all the values in the map

For more information, check out the Stanford Map class documentation!
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https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Map

Map Operations: Creating

Map<string, double> priceMap;

Keys

)
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priceMap
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Map Operations: Adding Elements

Keys Values
Map<string, double> priceMap; [ N e N
Nutella
priceMap[“Nutella”] = 8.99;
, \ 8.99
8 ) 8 )

priceMap
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Map Operations: Adding Elements

Keys Values
Map<string, double> priceMap; @ N N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
. Banana ~ 8.99
priceMap.put(“Banana”, 0.29); N y y

priceMap
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Map Operations: Adding Elements

Keys Values
Map<string, double> priceMap; @ N N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
. Banana ~ 8.99
priceMap.put(“Banana”, 0.29); N y y

priceMap.put(“Nutella”, 7.99); priceMap
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Map Operations: Adding Elements

Keys Values
Map<string, double> priceMap; @ N N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
. Banana ~ 7.99
priceMap.put(“Banana”, 0.29); N y y

priceMap.put(“Nutella”, 7.99); priceMap
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Map Operations: Accessing Elements

Keys Values
Map<string, double> priceMap; [ > N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
7.99
priceMap.put(“Banana”, 0.29); \\Bmm”a:: )
priceMap.put(“Nutella”, 7.99); priceMap

cout << priceMap[“Banana”] << endl;

Console:

0.29
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Map Operations: Accessing Elements

Keys Values
Map<string, double> priceMap; [ > N
Nutella 0.29
priceMap[“Nutella”] = 8.99;
7.99
priceMap.put(“Banana”, 0.29); \\Bmm”a:: .
priceMap.put(“Nutella”, 7.99); priceMap

cout << priceMap[“Banana”] << endl;

Console:

cout << priceMap.get(“Banana”) << endl; 0.29
0.29
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Map Operations: Creating with Elements

Map<string, double> priceMap =
{{“Nutella”,7.99},{“Banana”,0.29}};

Keys Values

c N N
Nutella _ 0.29
Banana ~ 7.99

S ) )

priceMap
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Map Operations: Printing

Map<string, double> priceMap =
{{“Nutella”,7.99},{“Banana”,0.29}};

cout << priceMap << endl;

Keys Values
Console: e Y Y
Nutella _ 0.29
{"Banana":0.29,
"Nutella":8.99} Banana - 7.99
A8 ) /
priceMap
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Map Patterns and Pitfalls

e Use for each loops to iterate over a map
for (type currKey : map) {
// see map values using map[currKey]

// don’t edit the map
}

for (type currKey : map.keys()) {
// see map values using map[currKey]

// can now edit the map!

44
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Map Patterns and Pitfalls

e Auto-insert: a feature that can also cause bugs
Map<string, int> fregMap;
while (true) {
string text = getLine(“Enter some text: ”);
cout << “Times seen: ” << fregMap[text] << endl;

fregMap[text]++;
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Map Patterns and Pitfalls

e Auto-insert: a feature that can also cause bugs
Map<string, int> playerPointsMap;

// players enter their name
// get key to test if it’s in the map

if (playerPointsMap[key] == 0) {

cout << key << “ already exists” << endl;
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Map Patterns and Pitfalls

e Auto-insert: a feature that can also cause bugs
Map<string, int> playerPointsMap;

// players enter their name
// get key to test if it’s in the map

if (playerPointsMap.containsKey[key]) {

cout << key << “ already exists” << endl;
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Unigue Words Coding Example
(Extended Version)
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Nested Data Structures
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Nested Data Structures

 Use one ADT as the data type inside of another ADT
* A great way of organizing data with complex structure
* Explore more in Assignment 2!
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Nested Data Structures

queue
mod way lay tap rat
mop may may rap rap
map map map map map
Queue< >
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Nested Data Structures

map
keys values
"hansa'" =i {"12:00","3:00","9:00"}
"kandula” > {"8:00","1:00"}
" ]_umpy" > {"11:00"}
"surus" —| {"5:00","3:00","9:00","2:00"}

Map< , >
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Modifying Nested Data Structures

feedingTimes map

. . keys values
We want to add a second feeding time S T
"hansa" —_—]
for "|umpy" at 4:00. "kandala" {("8:00","1:00"}
" lumpy" {"11:00™, }
Which snippets of code will correctly r—— (757007, 737007, 791007,
- T "2:00"}
update the map?

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");
feedingTimes[" lumpy"] = times;
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Modifying Nested Data Structures

feedingTimes map

We want to add a second feeding time i i {Xiluaeofm}
for “lumpy” at 4:00. :zzzzz;a" ("8:007, "1:007)

"lumpy" I :
Which snippets of code will correctly To—— oo e o0
update the map?

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes[" lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"]}
times.add("4:00")
feedingTimes["lumpy"] = times;
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| ] and = Operator Nuances

* When you use the [ ] operator to access an element from a map, you
get a reference to the map, which means that any changes you make
to the reference will be persistent in the map.

feedingTimes[" lumpy"].add("4:00");
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| ] and = Operator Nuances

When you use the [ ] operator to access an element from a map, you
get a reference to the map, which means that any changes you make
to the reference will be persistent in the map.

However, when you use the = operator to assign the result of the [ ]
operator to a variable, you get a copy of the internal data structure.

Vector times = feedingTimes["lumpy'"];

times.add("4:00");
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| ] and = Operator Nuances

* When you use the [ ] operator to access an element from a map, you
get a reference to the map, which means that any changes you make
to the reference will be persistent in the map.

 However, when you use the = operator to assign the result of the [ |
operator to a variable, you get a copy of the internal data structure.

e |f you choose to store the internal data structure in an intermediate

variable, you must do an explicit reassignment to get your changes to
persist.

feedingTimes[" lumpy"] = times;
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Nested ADTs Summary

* Powerful
* Can express highly structured and complex data
* Used in many real-world systems
* Tricky
* With increased complexity comes increased opportunities for bugs and

mistakes at each level of nesting
* Specifically in C++, working with nested data structures can be tricky due

the use of references and copies.
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Recap of ADTs

Ordered ADTs

Elements with indices

Vectors (1D)
Grids (2D)

Elements without indices

Stacks (LIFO)
Queues (FIFO)

Unordered ADTs

Sets (unique elements)
Maps (key, value pairs)
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