
Sets and Maps
Amrita Kaur

July 5, 2023

Contributions made from previous CS106B Instructors

Announcements and Reminders

• Assignment 1 due Friday at 11:59pm

• Midterm conflicts or OAE accommodations emailed to us by 7/10

• Participation grades for Week 1 Section have been posted

• Week 2 Section starts today!

2

Review

3

Stacks

4

• Ordered

• Last In, First Out (LIFO)

• Only the top element of the stack is accessible

• Important operations:

• stack.push(value): Add an element onto the top of the stack

• stack.pop(): Remove an element from the top of the stack and

return it

• stack.peek(): Look at the element from the top of the stack, but

don’t remove it

Queues

5

• Ordered

• First In, First Out (FIFO)

• Add to back, remove from front

• Important operations:

• queue.enqueue(value): Add an element to the back of the

queue

• queue.dequeue(): Remove an element from the front of the

queue and return it

• queue.peek(): Look at the element from the front of the queue,

but don’t remove it

Stack

6

Last In, First Out (LIFO) First In, First Out (FIFO)

Queue

Dracula

Ender’s Game

Skyward

push pop

enqueue dequeue

Tradeoffs with Stacks and Queues

What are some downsides?

• No random access of elements

• Difficult to traverse - requires removal of elements

• No easy way to search

7

What are some benefits?

• Useful for many real world problems

• Easy to build such that access is guaranteed to be fast

Reversing Words in a Sentence

Let’s build a program from scratch that reverses the words in a sentence.

Example input: “the cat in the hat”

Example output: “hat the in cat the”

Let’s make a plan! Some things to think about:

• Which ADT should we use?

• What steps will we need to do?

8

Reversing Words in a Sentence

ADT: Stack

Steps:

1. Read a word from the string (done reading when we reach a space)

2. Push word onto stack

3. Repeat steps 1 and 2 until we’ve pushed all the words to the stack

4. Pop the words from the stack and print with spaces

9

Recap of ADTs So Far

ADTs with indices

10

Types

• Vectors (1D)
• Grids (2D)

Properties

• Easily able to search through all
elements

• Can use the indices as a way of
accessing specific elements

ADTs without indices
Types

• Stacks (LIFO)
• Queues (FIFO)

Properties

• Constrains the way you can insert
and remove data

• More efficient for solving specific
LIFO/FIFO problems

Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

11

Unordered Data

What are some examples of unordered data that you’ve encountered?

• Grocery list

• Unique visitors to a website

• Shuffled playlist of songs

• List of people who liked a post

12

Sets

13

What is a Set?

• An abstract data type (ADT)
• Unordered collection of elements

• Stanford C++ library (here)
• #include “set.h”

• No duplicate elements in a set
• All unique elements

• Elements are not indexed

• Faster at finding elements than ordered data structures

14

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Set

The Stanford Set Library

15

#include “set.h”
• set.add(value): Adds the value to the set, ignores if the set already

contains the value
• set.remove(value): Removes the value from the set, ignores if the value

is not in the set
• set.contains(value): Returns a boolean value, true if the set contains

the value, false otherwise
• set.isEmpty(): Returns a boolean value, true if the set is empty, false

otherwise
• set.size(): Returns the number of elements in the set

For more information, check out the Stanford Set class documentation!

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Set

Set Operations: Creating

16

Set<string> flagSet;

flagSet

Set Operations: Adding Elements

17

Set<string> flagSet;

flagSet.add(“brazil”);

flagSet

Set Operations: Adding Elements

18

Set<string> flagSet;

flagSet.add(“brazil”);

flagSet.add(“philippines”);

flagSet

Set Operations: Adding Elements

19

Set<string> flagSet;

flagSet.add(“brazil”);

flagSet.add(“philippines”);

flagSet.add(“brazil”); flagSet

Set Operations: Removing Elements

20

Set<string> flagSet;

flagSet.add(“brazil”);

flagSet.add(“philippines”);

flagSet.add(“brazil”);

flagSet.remove(“brazil”);
flagSet

Set Operations: Removing Elements

21

Set<string> flagSet;

flagSet.add(“brazil”);

flagSet.add(“philippines”);

flagSet.add(“brazil”);

flagSet.remove(“brazil”);

cout << flagSet.remove(“philippines”) << endl;

flagSet

Set Operations: Removing Elements

22

Set<string> flagSet;

flagSet.add(“brazil”);

flagSet.add(“philippines”);

flagSet.add(“brazil”);

flagSet.remove(“brazil”);
flagSet

Set Operations: Checking for Elements

23

Set<string> flagSet;

flagSet.add(“brazil”);

flagSet.add(“philippines”);

flagSet.add(“brazil”);

flagSet.remove(“brazil”);

cout << flagSet.contains(“canada”) << endl;

false

Console:

flagSet

Set Operations: Creating with Elements

24

Set<string> flagSet = {“brazil”, “philippines”,
“canada”};

flagSet

Set Operations: Printing

25

Set<string> flagSet = {“brazil”, “philippines”,
“canada”};

cout << flagSet << endl;

flagSet

{“brazil”, “canada”,
“philippines”}

Console:

Set Patterns and Pitfalls

• Use for each loops to iterate over a set

for(type currElem : set) {

 // process elements one at a time
}

26

• Cannot use anything that attempts to index into a set

for(int i=0; i < set.size(); i++) {
// does not work, no index!
cout << set[i];

}

Set Operands

Sets can be compared, combined, etc
• s1 == s2

true if the sets contain exactly the same elements

• s1 != s2
true if the sets don't contain the exact same elements

27

Set Operands

Sets can be compared, combined, etc
• s1 == s2

true if the sets contain exactly the same elements

• s1 != s2
true if the sets don't contain the exact same elements

• s1 + s2
returns the union of s1 and s2 (i.e., all elements in both)

28

Set Operands

Sets can be compared, combined, etc
• s1 == s2

true if the sets contain exactly the same elements

• s1 != s2
true if the sets don't contain the exact same elements

• s1 + s2
returns the union of s1 and s2 (i.e., all elements in both)

• s1 * s2
returns the intersection of s1 and s2 (i.e., only the elements in both sets)

29

Set Operands

Sets can be compared, combined, etc
• s1 == s2

true if the sets contain exactly the same elements

• s1 != s2
true if the sets don't contain the exact same elements

• s1 + s2
returns the union of s1 and s2 (i.e., all elements in both)

• s1 * s2
returns the intersection of s1 and s2 (i.e., only the elements in both sets)

• s1 - s2
returns the difference of s1 and s2 (the elements in s1 but not in s2)

30

Unique Words Coding Example

31

Maps

32

What is a Map?

• An abstract data type (ADT)
• Unordered collection of elements

• Stanford C++ library (here)
• #include “map.h”

• Collection of pairs
• Sometimes called key/value pairs

• Use the key to quickly find the value

• Generalization of ordered data structure, where “indices” are not

integers

33

Keys Values

Kendall

Roman

Siobhan

452-4363

346-5742

947-3462

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Map

The Stanford Map Library

34

#include “map.h”
• map.clear(): Removes all key/value pairs from the map

• map.containsKey(key): Returns true if the map contains a value for the given key

• map[key]: Returns the value mapped to the given key

• If key is not in the map, adds it with the default value (e.g., 0 or "")

• map.get(key): Returns the value mapped to the given key

• If key is not in the map, returns the default value for the value type, but does not add it to the map.

• map.isEmpty(): Returns true if the map contains no key/value pairs (size 0)

• map.keys(): Returns a Vector copy of all keys in the map

• map[key] = value and map.put(key, value): Adds a mapping from the given key to the given value; if the

key already exists, replaces its value with the given one

• map.remove(key): Removes any existing mapping for the given key (ignored if the key doesn't exist in the map)

• map.size(): Returns the number of key/value pairs in the map

• map.toString(): Returns a string such as "{a:90, d:60, c:70}"

• map.values(): Returns a Vector copy of all the values in the map

For more information, check out the Stanford Map class documentation!

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Map

Map Operations: Creating

35

Map<string, double> priceMap;
Keys Values

priceMap

Map Operations: Adding Elements

36

Map<string, double> priceMap;

priceMap[“Nutella”] = 8.99;

Keys Values

priceMap

Nutella

8.99

Map Operations: Adding Elements

37

Map<string, double> priceMap;

priceMap[“Nutella”] = 8.99;

priceMap.put(“Banana”, 0.29);

Keys Values

priceMap

Nutella

8.99Banana

0.29

Map Operations: Adding Elements

38

Map<string, double> priceMap;

priceMap[“Nutella”] = 8.99;

priceMap.put(“Banana”, 0.29);

priceMap.put(“Nutella”, 7.99);

Keys Values

priceMap

Nutella

8.99Banana

0.29

Map Operations: Adding Elements

39

Map<string, double> priceMap;

priceMap[“Nutella”] = 8.99;

priceMap.put(“Banana”, 0.29);

priceMap.put(“Nutella”, 7.99);

Keys Values

priceMap

Nutella

7.99Banana

0.29

Map Operations: Accessing Elements

40

Map<string, double> priceMap;

priceMap[“Nutella”] = 8.99;

priceMap.put(“Banana”, 0.29);

priceMap.put(“Nutella”, 7.99);

cout << priceMap[“Banana”] << endl;

Keys Values

priceMap

Nutella

7.99Banana

0.29

0.29

Console:

Map Operations: Accessing Elements

41

Map<string, double> priceMap;

priceMap[“Nutella”] = 8.99;

priceMap.put(“Banana”, 0.29);

priceMap.put(“Nutella”, 7.99);

cout << priceMap[“Banana”] << endl;

cout << priceMap.get(“Banana”) << endl;

Keys Values

priceMap

Nutella

7.99Banana

0.29

0.29

Console:

0.29
0.29

Map Operations: Creating with Elements

42

Map<string, double> priceMap =
{{“Nutella”,7.99},{“Banana”,0.29}};

Keys Values

priceMap

Nutella

7.99Banana

0.29

Map Operations: Printing

43

Map<string, double> priceMap =
{{“Nutella”,7.99},{“Banana”,0.29}};

cout << priceMap << endl;

Keys Values

priceMap

Nutella

7.99Banana

0.29
{"Banana":0.29,
"Nutella":8.99}

Console:

Map Patterns and Pitfalls

• Use for each loops to iterate over a map

for(type currKey : map) {

 // see map values using map[currKey]

// don’t edit the map
}

44

for(type currKey : map.keys()) {

 // see map values using map[currKey]

// can now edit the map!
}

Map Patterns and Pitfalls

• Auto-insert: a feature that can also cause bugs

Map<string, int> freqMap;

while (true) {

string text = getLine(“Enter some text: ”);

cout << “Times seen: ” << freqMap[text] << endl;

freqMap[text]++;

}

45

Map Patterns and Pitfalls

• Auto-insert: a feature that can also cause bugs

Map<string, int> playerPointsMap;

// players enter their name

…

// get key to test if it’s in the map

if (playerPointsMap[key] == 0) {

cout << key << “ already exists” << endl;

}

46

Map Patterns and Pitfalls

• Auto-insert: a feature that can also cause bugs

Map<string, int> playerPointsMap;

// players enter their name

…

// get key to test if it’s in the map

if (playerPointsMap.containsKey[key]) {

cout << key << “ already exists” << endl;

}

47

Unique Words Coding Example
(Extended Version)

48

Nested Data Structures

49

Nested Data Structures

• Use one ADT as the data type inside of another ADT

• A great way of organizing data with complex structure

• Explore more in Assignment 2!

50

Nested Data Structures

51

Nested Data Structures

52

Modifying Nested Data Structures

We want to add a second feeding time

for “lumpy” at 4:00.

53

Which snippets of code will correctly

update the map?

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] = times;

Modifying Nested Data Structures

We want to add a second feeding time

for “lumpy” at 4:00.

54

Which snippets of code will correctly

update the map?

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] = times;

[] and = Operator Nuances

• When you use the [] operator to access an element from a map, you

get a reference to the map, which means that any changes you make

to the reference will be persistent in the map.

feedingTimes["lumpy"].add("4:00");

55

[] and = Operator Nuances

• When you use the [] operator to access an element from a map, you

get a reference to the map, which means that any changes you make

to the reference will be persistent in the map.

• However, when you use the = operator to assign the result of the []

operator to a variable, you get a copy of the internal data structure.

Vector times = feedingTimes["lumpy"];

times.add("4:00");

56

[] and = Operator Nuances

• When you use the [] operator to access an element from a map, you

get a reference to the map, which means that any changes you make

to the reference will be persistent in the map.

• However, when you use the = operator to assign the result of the []

operator to a variable, you get a copy of the internal data structure.

• If you choose to store the internal data structure in an intermediate

variable, you must do an explicit reassignment to get your changes to

persist.

feedingTimes["lumpy"] = times;

57

Nested ADTs Summary

• Powerful
• Can express highly structured and complex data

• Used in many real-world systems

• Tricky
• With increased complexity comes increased opportunities for bugs and

mistakes at each level of nesting

• Specifically in C++, working with nested data structures can be tricky due

the use of references and copies.

58

Recap of ADTs

Ordered ADTs

59

Elements with indices

• Vectors (1D)
• Grids (2D)

Elements without indices

• Stacks (LIFO)
• Queues (FIFO)

Unordered ADTs

• Sets (unique elements)
• Maps (key, value pairs)

