Classes

Amrita Kaur
July 20, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

 None:)

Stanford University

Subsets

Given a group of people, generate all possible teams, or subsets, of
these people:

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}
{“Amrita”, “Elyse”}
{“Amrita”, “Taylor”}
{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}
Stanford University

Making a Decision Tree

* Decision at each step (each level of the tree)
* Are we going to include a given element in our subset?
e Options at each decision (branches from each node)
* Include the element
 Don’t Include the element
* Information you need to store along the way

* Set you’ve built so far
* Remaining elements in original set

Stanford University

Remaining Elements:

{“Amrita”,

bh

“Elyse”,

“Taylor”}
No Amrita Yes Amrita

¢ b2l
n {“Elyse”,
“Taylor”}

No Elyse Yes Elyse No Elyse Yes Elyse
0 ‘I {“Taylor”}
No Yes No Yes No Yes No Yes
Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor

D) (e (w)

Stanford University

Remaining Elements:

{“Amrita”,

13 bh

Elyse”,

“Taylor”}
No Amrita Yes Amrita

14 b2l
‘I {“Elyse”,
“Taylor”}

No Elyse Yes Elyse No Elyse Yes Elyse
gi :I {“Taylor”}
No Yes No Yes No Yes No Yes
Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor

oo (o mma g

Base Case: No remaining people to choose from

Stanford University

Remaining Elements:

{“Amrita”,

13 bh

Elyse”,

“Taylor”}
No Amrita Yes Amrita

14 b2l
‘I {“Elyse”,
“Taylor”}

No Elyse Yes Elyse No Elyse Yes Elyse
gi :I {“Taylor”}
No Yes No Yes No Yes No Yes
Taylor Taylor Taylor Taylor Taylor Taylor Taylor Taylor

D emas g

Recursive Case: Pick someone from set. Choose whether to include them.

Stanford University

Takeaways

e "Choose / explore / unchoose" pattern in backtracking

// choose

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper (remaining, chosen);

chosen = chosen + elem

listSubsetHelper (remaining, chosen);

// unchoose by adding it back to possible choices
chosen = chosen - elem;

remaining = remailning + elem 5 Stanford University

Takeaways

e "Choose / explore / unchoose" pattern in backtracking

// choose

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem

listSubsetHelper (remaining, chosen);

// unchoose by adding it back to possible choices

chosen = chosen - elem;

remaining = remailning + elem 5 Stanford University

10

Takeaways

e "Choose / explore / unchoose" pattern in backtracking

// choose

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper (remaining, chosen);

chosen = chosen + elem

listSubsetHelper(remaining, chosen); // add elem to chosen
// unchoose by adding it back to possible choices

chosen = chosen - elem;

remaining = remailning + elem 5 Stanford University

11

Takeaways

e "Choose / explore / unchoose" pattern in backtracking
* Necessary because we’re passing sets by reference and editing them

// choose

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper (remaining, chosen);

chosen = chosen + elem

listSubsetHelper (remaining, chosen);

// unchoose by adding it back to possible choices
chosen = chosen - elem;

remaining = remaining + e'l.em; Stanford University

12

Solution Code for Subsets

void listSubsetsHelper (Set<string>& remaining, Set<string>& chosen) {
if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first(); . InFJUt'
remaining = remaining - current; Cho-' ces = {“E” ’ “T”};
listSubsetsHelper (remaining, chosen);
chosen = chosen * current; What is the output of this function:
listSubsetsHelper (remaining, chosen); 1) Wlth the unchoose step?
chosen = chosen - current; .
remaining = remaining + current; 2) Without the unchoose Step?

}
void listSubsets(Set<string>& choices) {
Set<string> tracked;

listSubsetsHelper (choices, tracked);

Stanford University

13

Tracing through Broken Code

Stanford University

14

int main () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

Stanford University

15

int main () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

main()

Stanford University

16

int main () {

Set<string> friends = {“E”, “T”};
listSubsets(friends);
return 0;

main()

Stanford University

17

int main_ () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

main()

Stanford University

18

int main_ () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

main()

friends:

{“E”’ “T”}

Stanford University

19

int main () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

main()

friends:

{“E”’ “T”}

Stanford University

20

void listSubsets(Set<string>& choices) {
Set<string> tracked;
listSubsetsHelper (choices, tracked);

main()

friends:

{“E”’ “T”}

Stanford University

21

main()
friends:

{“E”, «T”3 *

void listSubsets(Set<string>& choices) |{
Set<string> tracked;

listSubsetsHelper (choices, tracked);
1 listSubsets()

choices: | ===

Stanford University

22

void listSubsets(Set<string>& choices) {
L?et<string> tracked;
listSubsetsHelper (choices, tracked);

main()

friends:

{“E”, «T»} *

listSubsets()

choices: | ===

tracked:

{}

Stanford University

23

void listSubsets(Set<string>& choices) {
Set<string> tracked;

listSubsetsHelper (choices, tracked);

main()

friends:

{“E”, «T”3 *

listSubsets()

choices: | ===

tracked:

{}

Stanford University

24

l .
main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«E?, «T»} ‘_
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
|| return; choices: | ===
— }
string current = remaining.first(); tracked:
remaining = remaining - current; {}

listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

Stanford University

25

| :
main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«E?, «T»}
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
- return; choices:
— }
string current = remaining.first(); tracked:
remaining = remaining - current; {}
listSubsetsHelper(remaining, chosen); ListSub 1
chosen = chosen + current; istSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | e
} chosen:

Stanford University

26

| :
main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«E?, «T»}
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
- return; choices:
— }
string current = remaining.first(); tracked:
remaining = remaining - current; {}
listSubsetsHelper(remaining, chosen); ListSub 1
chosen = chosen + current; istSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | e
} chosen:

Stanford University

27

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
s
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()
friends:

{“E”’ “T”}

listSubsets()
choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

Stanford University

28

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {
if (remaining.isEmpty()) {
cout << chosen << endl;
return;

}

string current = remaining.first();

remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()
friends

{“E”, “T”}

listSubsets()
choices:

tracked:

{}

listSubsetsHelper ()

remaining:
chosen:

current: | “E”

Stanford University

29

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{“E”, “T”}

listSubsets()
choices:

tracked:

{}

listSubsetsHelper ()

remaining:
chosen:

current: | “E”

Stanford University

30

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {
if (remaining.isEmpty()) {
cout << chosen << endl;
return;

}

string current = remaining.first();

remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;

listSubsetsHelper(remaining, chosen);

main()

friends:

{“T”}

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

Stanford University

31

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{“T”}

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

Stanford University

32

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{“T”}

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

Stanford University

| main() 33
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
— | return; tracked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
¥ current: | “E”
— listSubsetsHelper ()
remaining: | =
chosen:

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;
return;

}

string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()
friends:

{“T”}

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

listSubsetsHelper ()

remaining:

chosen:

34

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{“T”}

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

listSubsetsHelper ()

remaining:

chosen:

35

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{“T”}

36

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
ListSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{“T”}

37

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

PrSity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
ListSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{3

38

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{3

39

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {
if (remaining.isEmpty()) {
cout << chosen << endl;
return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{3

40

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

PrSity

| main() 41
| friends:
| [void listSubsetsHelper (Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {}
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— listSubsetsHelper ()l | ListSubsetsHelper ()
remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

| main() 42
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {}
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— listSubsetsHelper ()l | ListSubsetsHelper ()
remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

| main() 43
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {}
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— listSubsetsHelper ()l | ListSubsetsHelper ()
remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

44

{}

| main()
friends:
void listSubsetsHelper (Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
tracked:
} L,
string current = remaining.first(); {}
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
listSubsetsHelper ()| |listSubsetsHelper ()
remaining: remaining: | =
chosen: chosen:
current: | “T”

PrSity

I main() 45
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {
if (remaining.isEmpty()) {
cout << chosen << endl;
return;
}
string current = remaining.first();
remaining = remaining - current;

listSubsetsHelper(remaining, chosen);

chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{3

46

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper (remaining, chosen);

chosen = chosen + current;

listSubsetsHelper(remaining, chosen);

main()

friends:

{3

47

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper (remaining, chosen);

chosen = chosen + current;

listSubsetsHelper(remaining, chosen);

main()

friends:

{3

48

listSubsets()

choices:

tracked:

{“T”}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;

listSubsetsHelper(remaining, chosen);

main()

friends:

{3

49

listSubsets()

choices:

tracked:

{“T”}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {
if (remaining.isEmpty()) {
cout << chosen << endl;
return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{3

50

listSubsets()

choices:

tracked:

{“T”}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

PrSity

| main() >1
friends:
| [void listSubsetsHelper (Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
—1_ } | tracked:
string current = remaining.first(); {4177}
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— I listSubsetsHelper ()

remaining:

{}

chosen:

. «T” .
current: T brsity

| main() >2
| friends:
| [void listSubsetsHelper (Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {4173
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— listSubsetsHelper ()l | ListSubsetsHelper ()
0 remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

| main() >3
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {4173
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— listSubsetsHelper ()l | ListSubsetsHelper ()
0 remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

| main() >4
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {4173
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— listSubsetsHelper ()l | ListSubsetsHelper ()
0 remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

| main() >>
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {4173
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— listSubsetsHelper ()l | ListSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:
current: | “T” brsity

I main() >6
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {“T”}
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:
current: | “T” brsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;

listSubsetsHelper(remaining, chosen);

main()

friends:

{3

57

listSubsets()

choices:

tracked:

{“T”}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}
{“T”}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

| main() >8
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
-1 return; tracked:
} {477}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
4 current: | “E”
— listSubsetsHelper ()
remaining: | =
{}
{477} chosen:
current: | “T” brsity

| main() >9
friends:
void listSubsetsHelper (Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) {] listSubsets()
cout << chosen << endl; choices:
return;
—_ } tracked:
string current = remaining.first(); {417}
remaining = remaining - current; 15 stSub 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | e
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
{}
{“T”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()

friends:

{3

listSubsets()

choices:

tracked:

{“T”}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}
{“T”}

60

Stanford University

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()
friends:

{3

listSubsets()

choices:

tracked:
(19 i) (13 bbl
{“E”, “T”}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}
{“T”}

61

Stanford University

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()
friends:

{3

listSubsets()

choices:

tracked:
(19 i) (13 bbl
{“E”, “T”}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}
{“T”}

62

Stanford University

| main() 63
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {“E”, “«T»}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
} current: | “E”
{}
{“7”}

Stanford University

| main() 64
friends:
l
[void listSubsetsHelper (Set<string>& rema‘in‘ing,] tJ
. _ . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
— | return; tracked:
} {“E”, “«T»}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
¥ current: | “E”
— listSubsetsHelper ()
remaining: | =
0 ©
{477} chosen:

Stanford University

| main() 65
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
. _ . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { hoA
cout << chosen << endl; choices:
— | return; tracked:
} {“E”, “«T»}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
¥ current: | “E”
— listSubsetsHelper ()
remaining: | =
{}
{477} chosen:

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {
if (remaining.isEmpty()) {
cout << chosen << endl;
return;

}

string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()
friends:

{3

listSubsets()

choices:

tracked:
(19 i) (13 bbl
{“E”, “T”}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}
{“T”}

listSubsetsHelper ()

remaining:

chosen:

66

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {
if (remaining.isEmpty()) {
cout << chosen << endl;
return;

¥

string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()
friends:

{3

listSubsets()

choices:

tracked:
(19 i) (13 bbl
{“E”, “T”}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}
{“T”}
{“E”’ “T”}

listSubsetsHelper ()

remaining:

chosen:

67

Stanford University

| main() 68
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
. o . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
— | return; tracked:
} {“E”, “«T»}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
¥ current: | “E”
— listSubsetsHelper ()
remaining: | =
{}
{477} chosen:
{“E”’ “T”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);

main()
friends:

{3

listSubsets()

choices:

tracked:
(19 i) (13 bbl
{“E”, “T”}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}
{“T”}
{“E”’ “T”}

69

Stanford University

| main() 70
friends:
void listSubsetsHelper (Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) {] listSubsets()
cout << chosen << endl; choices:
return;
—_ } tracked:
string current = remaining.first(); {“E”, “T”}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | e
} listSubsetsHelper(remaining, chosen); chosen:
current: | “E”
{}
{“T”}
{“E”’ “T”}

Stanford University

| main() 71
void listSubsets(Set<string>& choices) { friends:
Set<string> tracked; 1} ¢
listSubseEsHelper(choices, tracked); listSubsets ()
) choices: | ===x
- tracked:
{“E”, “T”}

{}
{“T”}
{“E”’ “T”}

Stanford University

| main() 72
void listSubsets(Set<string>& choices) { friends:
Set<string> tracked; 1} ¢
listSubsetsHelper(choices, tracked); listSubsets ()
) choices: | ===x
- tracked:
{“E”, “T”}

{}
{“T”}
{“E”’ “T”}

Stanford University

main() 3

friends:

‘E’, ‘T’}; {}

int main () {
Set<string> friends = {‘A’,

listSubsets(friends);
return 0;

{3}
{ (13 T 2 }
{“E”, “T”}

Stanford University

main() 74

friends:

‘E’, ‘T’}; {}

int main () {
Set<string> friends = {‘A’,

listSubsets(friends);
return 0;

{3}
{ (13 T 2 }
{“E”, “T”}

Stanford University

75

{}
{“T”}
{“E”, “T”}

Stanford University

76

Tracing through Fixed Code!

Stanford University

77

int main () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

Stanford University

78

int main () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

main()

Stanford University

79

int main () {

Set<string> friends = {“E”, “T”};
listSubsets(friends);
return 0;

main()

Stanford University

80

int main_ () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

main()

Stanford University

81

int main_ () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

main()

friends:

{“E”’ “T”}

Stanford University

82

int main () {
Set<string> friends = {“E”, “T”};

listSubsets(friends);
return 0;

main()

friends:

{“E”’ “T”}

Stanford University

83

void listSubsets(Set<string>& choices) {
Set<string> tracked;
listSubsetsHelper (choices, tracked);

main()

friends:

{“E”’ “T”}

Stanford University

84

main()
friends:

{“E”, «T”3 *

void listSubsets(Set<string>& choices) |{
Set<string> tracked;

listSubsetsHelper (choices, tracked);
1 listSubsets()

choices: | ===

Stanford University

85

void listSubsets(Set<string>& choices) {
L?et<string> tracked;
listSubsetsHelper (choices, tracked);

main()

friends:

{“E”, «T»} *

listSubsets()

choices: | ===

tracked:

{}

Stanford University

86

void listSubsets(Set<string>& choices) {
Set<string> tracked;

listSubsetsHelper (choices, tracked);

main()

friends:

{“E”, «T”3 *

listSubsets()

choices: | ===

tracked:

{}

Stanford University

87

| :
main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«E?, «T»} ‘_
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
|| return; choices: | ===
~ }
string current = remaining.first(); SEE et
remaining = remaining - current; {}

listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);
chosen = chosen - current;

remaining = remaining + current;

Stanford University

88

: main()
void listSubsetsHelper (Set<string>& remaining, friends:
[Set<string>& chosen) {] {«E”, «T7»}
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
|| return; choices:
— ¥
string current = remaining.first(); tracked:
remaining = remaining - current; {3}
listSubsetsHelper(remaining, chosen); .
chosen = chosen + current; ListSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | s
chosen = chosen - current;
o o chosen:
remaining = remaining + current;
¥

Stanford University

89

: main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«E”, «T7»}
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
|| return; choices:
— ¥
string current = remaining.first(); tracked:
remaining = remaining - current; {3}
listSubsetsHelper(remaining, chosen); .
chosen = chosen + current; ListSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | s
chosen = chosen - current;
o o chosen:
remaining = remaining + current;
¥

Stanford University

90

: main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«E”, «T7»}
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
|| return; choices:
— s
string current = remaining.first(); tracked:
remaining = remaining - current; {3}
listSubsetsHelper(remaining, chosen); .
chosen = chosen + current; ListSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | s
chosen = chosen - current;
o o chosen:
remaining = remaining + current;
¥

Stanford University

91

| :
main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«E?, «T»}
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
- return; choices:
— s
string current = remaining.first(); IFEE e
remaining = remaining - current; {}
listSubsetsHelper(remaining, chosen); ListSub e
chosen = chosen + current; istSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | e
chosen = chosen - current;
o - chosen:
remaining = remaining + current;
¥ current: | “E”

Stanford University

92

| :
main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«E?, «T»}
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
- return; choices:
— ¥
string current = remaining.first(); IFEE e
remaining = remaining - current; {}
listSubsetsHelper(remaining, chosen); ListSub e
chosen = chosen + current; istSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | e
chosen = chosen - current;
o - chosen:
remaining = remaining + current;
¥ current: | “E”

Stanford University

93

: main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«T”}
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
|| return; choices:
— ¥
string current = remaining.first(); SEE et
remaining = remaining - current; {3}
listSubsetsHelper(remaining, chosen); .
chosen = chosen + current; ListSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | s
chosen = chosen - current;
o o chosen:
remaining = remaining + current;
} current: | “E”

Stanford University

94

: main()
void listSubsetsHelper (Set<string>& remaining, friends:
Set<string>& chosen) { {«T”}
if (remaining.isEmpty()) {]
cout << chosen << endl; listSubsets()
|| return; choices:
— ¥
string current = remaining.first(); tracked:
remaining = remaining - current; {}
listSubsetsHelper(remaining, chosen); .
chosen = chosen + current; ListSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | s
chosen = chosen - current;
o o chosen:
remaining = remaining + current;
} current: | “E”

Stanford University

95

: main()
I friends:
void listSubsetsHelper (Set<string>& remaining, («T7}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; .
H | return; choices:
} tracked:
string current = remaining.first(); {3}
remaining = remaining - current;
listSubsetsHelper (remaining, chosen); listSubsetsHelper ()
chosen = chosen + current; remaining: | ==
listSubsetsHelper(remaining, chosen);
chosen = chosen - current; chosen:
remaining = remaining + current; CUFFare | s
4 1}

Stanford University

| main() %
I friends:
{“T”}
[void listSubsetsHelper (Set<string>& remaining,]
. _ . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
-1 return; tracked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
remaining: | =
chosen:

Stanford University

| main() 7
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. _ . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hot
cout << chosen << endl; chotces:
—_ return; traCked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
- } listSubsetsHelper ()
remaining: | =

chosen:

Stanford University

| main() 98
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. o . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hot
cout << chosen << endl; chotces:
—_ return; traCked:
I {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
- } listSubsetsHelper ()
remaining: | =

chosen:

Stanford University

| main() =
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. o . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hoA
cout << chosen << endl; chotces:
—_ return; traCked:
I {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
- } listSubsetsHelper ()

remaining:

chosen:

. «T” .
current: T brsity

| main() 100
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. o . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hot
cout << chosen << endl; chotces:
—_ return; traCked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
ListSubsetsHelper(remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
- } listSubsetsHelper ()

remaining:

chosen:

. «T” .
current: T brsity

| main() 101
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
. o . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
-1 return; tracked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
ListSubsetsHelper(remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()

remaining:

chosen:

. «T” .
current: T brsity

| main() 102
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
. o . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
-1 return; tracked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()

remaining:

chosen:

. «T” .
current: T brsity

| main() 103
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
—1_ } | tracked:
string current = remaining.first(); {3}
remaining = remaining - current;)
listSubsetsHelper(remaining, chosen); listSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— I listSubsetsHelper ()

remaining:

chosen:

. «T” .
current: T brsity

| main() 104
| friends:
| [void listSubsetsHelper (Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

| main() 105
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

| main() 106
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

I main() 107
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

I main() 108
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {
if (remaining.isEmpty()) {
cout << chosen << endl;
return;
}
string current = remaining.first();
remaining = remaining - current;

listSubsetsHelper(remaining, chosen);

chosen = chosen + current;
listSubsetsHelper(remaining, chosen);
chosen = chosen - current;

remaining = remaining + current;

main()

friends:

{3

109

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper (remaining, chosen);

chosen = chosen + current;

listSubsetsHelper(remaining, chosen);
chosen = chosen - current;
remaining = remaining + current;

main()

friends:

{3

110

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper (remaining, chosen);

chosen = chosen + current;

listSubsetsHelper(remaining, chosen);
chosen = chosen - current;
remaining = remaining + current;

main()

friends:

{3

111

listSubsets()

choices:

tracked:

{“T”}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;

listSubsetsHelper(remaining, chosen);

chosen = chosen - current;
remaining = remaining + current;

main()

friends:

{3

112

listSubsets()

choices:

tracked:

{“T”}

listSubsetsHelper ()

remaining:

chosen:

current:

(13 E”

{}

listSubsetsHelper ()

remaining:

chosen:

current:

“T”

Prsity

| main() 113
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
—1_ } | tracked:
string current = remaining.first(); L
remaining = remaining - current;)
listSubsetsHelper(remaining, chosen); listSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— I listSubsetsHelper ()

remaining:

{}

chosen:

. «T” .
current: T brsity

| main() 114
friends:
| [void listSubsetsHelper (Set<string>& remaining,] {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
—1_ } | tracked:
string current = remaining.first(); L
remaining = remaining - current;)
listSubsetsHelper(remaining, chosen); listSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— I listSubsetsHelper ()

remaining:

{}

chosen:

. «T” .
current: T brsity

| main() 115
| friends:
| [void listSubsetsHelper (Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {4173
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

I main() 116
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {“T”}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

I main() 117
| friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {“T”}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
chosen: chosen:
current: | “T” brsity

118

I main()
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
tracked:
} L,
string current = remaining.first(); {4177}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:

current:

“T”

Prsity

119

I main()
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
tracked:
} L,
string current = remaining.first(); {4177}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:

current:

“T”

Prsity

| main() 120
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {477}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | “g»
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:

. «T” .
current: T brsity

| main() 121
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {477}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:

. «T” .
current: T brsity

| main() 122
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:

. «T” .
current: T brsity

| main() 123
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; CUFFare | s
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:

. «T” .
current: T brsity

| main() 124
friends:
. . . L. I {477}
void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; CUFFare | s
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:

. «T” .
current: T brsity

| main() 125
friends:
. . . L. I {477}
void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
¥ {}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
— listSubsetsHelper ()
0 remaining:
{477} chosen:

. «T” .
current: T brsity

| main() 126
friends:
void listSubsetsHelper (Set<string>& remaining, {«T”}
Set<string>& chosen) {
if (remaining.isEmpty()) {] listSubsets()
cout << chosen << endl; choices:
return;
—1_ } tracked:
string current = remaining.first(); {3}
remaining = remaining - current; .
listSubsetsHelper(remaining, chosen); listSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
{}
{“7”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);

chosen = chosen + current;

LlistSubsetsHelper(remaining, chosen);
chosen = chosen - current;
remaining = remaining + current;

main()
friends:

{“T”}

127

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}

{“T”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);

chosen = chosen + current;

LlistSubsetsHelper(remaining, chosen);
chosen = chosen - current;
remaining = remaining + current;

main()
friends:

{“T”}

128

listSubsets()

choices:

tracked:

{“E”}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}

{“T”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;

listSubsetsHelper(remaining, chosen);

chosen = chosen - current;
remaining = remaining + current;

main()
friends:

{“T”}

129

listSubsets()

choices:

tracked:

{“E”}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}

{“T”}

Stanford University

| main() 130
friends:
. . . L. I {477}
void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
4
{}
{“7”}

Stanford University

| main() 131
I friends:
{“T”}
[void listSubsetsHelper (Set<string>& rema‘in‘ing,]
. _ . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
— | return; tracked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
remaining: | =
{}
{477} chosen:

Stanford University

| main() 132
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. _ . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hot
cout << chosen << endl; chotces:
—_ return; traCked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
- } listSubsetsHelper ()
remaining: | =
{}
{417} chosen:

Stanford University

| main() 133
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. o . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hot
cout << chosen << endl; chotces:
—_ return; traCked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
- } listSubsetsHelper ()
remaining: | =
{}
{417} chosen:

Stanford University

| main() 134
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. o . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hot
cout << chosen << endl; chotces:
—_ return; traCked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
- } listSubsetsHelper ()
remaining: | =
{}
{417} chosen:

. «T” .
current: T brsity

| main() 135
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. o . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hot
cout << chosen << endl; chotces:
—_ return; traCked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
- } listSubsetsHelper ()
remaining: | =
{}
{417} chosen:

. «T” .
current: T brsity

| main() 136
friends:
1
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{417} chosen:

. «T” .
current: T brsity

| main() 137
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:

. «T” .
current: T brsity

| main() 138
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
—1_ } | tracked:
string current = remaining.first(); {“E”}
remaining = remaining - current;)
listSubsetsHelper(remaining, chosen); listSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— I listSubsetsHelper ()
0 remaining:
{417} chosen:
current: | “T” brsity

139

| main()
friends:
|| void listSubsetsHelper (Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
tracked:
} L,
string current = remaining.first(); {“E”}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:

current:

“T”

Prsity

140

I main()
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
tracked:
} L,
string current = remaining.first(); {“E”}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:

current:

“T”

Prsity

141

I main()
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
tracked:
} L,
string current = remaining.first(); {“E”}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:

current:

“T”

Prsity

142

I main()
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
tracked:
} L,
string current = remaining.first(); {“E”}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:
{“E”}

current:

“T”

Prsity

143

I main()
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
tracked:
} L,
string current = remaining.first(); {“E”}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:
{“E”}

current:

“T”

Prsity

| main() 144
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:
{“E”}

. «T” .
current: T brsity

| main() 145
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
LlistSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
[istSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:
{“E”}

. «T” .
current: T brsity

| main() 146
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
. o . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
— | return; tracked:
} {“E”, “«T»}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper(remaining, chosen); remaining: | me
chosen = chosen + current;
[istSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
remaining: | =
{}
{477} chosen:
{“E”}

. «T” .
current: T brsity

| main() 147
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
. o . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
-1 return; tracked:
} {“E”, “«T»}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | “g»
remaining = remaining + current;
= listSubsetsHelper ()
remaining: | =
{}
{477} chosen:
{“E”}

. «T” .
current: T brsity

| main() 148
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
—1_ } | tracked:
string current = remaining.first(); {“E”, “T”}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— I listSubsetsHelper ()
remaining: | =
{}
{477} chosen:
{“E”}
current: | “T” brsity

| [void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {]

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);
chosen = chosen - current;

main()

friends:

{3

149

listSubsets()

choices:

tracked:

—)

{“E”, “T”}

listSubsetsHelper ()

remaining:

chosen:

remaining = remaining + current; current: | “E”
¥
listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
{417} chosen: chosen:
{“E”}

current:

“T”

Prsity

I main() 150
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {“E”, “T”}
remaining = remaining - current; 15 stSub Hel
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
1477} chosen: chosen:
{“E”}
current: | “T” brsity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {
if (remaining.isEmpty()) {
cout << chosen << endl;
return;

}

string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);
chosen = chosen - current;

main()

friends:

{3

151

listSubsets()

choices:

tracked:

—)

{“E”, “T”}

listSubsetsHelper ()

remaining:

chosen:

remaining = remaining + current; current: | “E”
¥
listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
{417} chosen: chosen:
{“E”}

current:

“T”

Prsity

I main() 152
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {“E”, “T”}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
{::T:} chosen: chosen:
{“E”}
{“E”, “T”} current: | “T” Ly

I main() 153
friends:
| void listSubsetsHelper(Set<string>& remaining, {}
Set<string>& chosen) {
if (remaining.isEmpty()) { listSubsets()
cout << chosen << endl; choices:
return;
— tracked:
- 1 L
string current = remaining.first(); 4 {“E”, “T”}
remaining = remaining - current; 15 b 1
listSubsetsHelper(remaining, chosen); istSubsetsHelper ()
chosen = chosen + current; remaining: | s
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current;
remaining = remaining + current; current: | “E”
¥
— listSubsetsHelper ()| |listSubsetsHelper ()
0 remaining: remaining: | =
{::T:} chosen: chosen:
{“E”}
{“E”, “T”} current: | “T” Ly

| main() 154
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
. o . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
-1 return; tracked:
} {“E”, “«T»}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | “g»
remaining = remaining + current;
= listSubsetsHelper ()
remaining: | =
{}
{477} chosen:
{“E”}

{“E”, “T”} Current: “T” Ersity

| main() 155
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
. o . Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { o
cout << chosen << endl; choices:
-1 return; tracked:
} {“E”, “«T»}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
remaining: | =
{}
{477} chosen:
{“E”}

{“E”, “T”} Current: “T” Ersity

| main() 156
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:
{“E”}

{“E”, “T”} Current: “T” Ersity

| main() 157
friends:
l
void listSubsetsHelper (Set<string>& remaining, tJ
Set<string>& chosen) { listSubsets ()
if (remaining.isEmpty()) { .
cout << chosen << endl; ETIEasE
—1_ return; tracked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | me
chosen = chosen + current;
listSubsetsHelper(remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
= listSubsetsHelper ()
0 remaining:
{477} chosen:
{“E”}

{“E”, “T”} Current: “T” Ersity

| main() 158
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. o . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hot
cout << chosen << endl; chotces:
—_ return; traCked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
- } listSubsetsHelper ()
remaining: | =
{}
E:E:% chosen:

{“E”, “T”} Current: “T” Ersity

| main() 159
I friends:
{“T”}
void listSubsetsHelper (Set<string>& remaining,
. o . Set<string>& chosen) { listSubsets()
if (remaining.isEmpty()) { hot
cout << chosen << endl; chotces:
—_ return; traCked:
} {“E”}
string current = remaining.first();
remaining = remaining - current; listSubsetsHelper ()
listSubsetsHelper (remaining, chosen); remaining: | e
chosen = chosen + current;
listSubsetsHelper (remaining, chosen); chosen:
chosen = chosen - current; current: | «g»
remaining = remaining + current;
|} listSubsetsHelper ()
remaining: | =
{}
{477} chosen:
{“E”}

{“E”, “T”} Current: “T” Ersity

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
}
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;

listSubsetsHelper(remaining, chosen);

chosen = chosen - current;
remaining = remaining + current;

main()
friends:

{“T”}

160

listSubsets()

choices:

tracked:

{“E”}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}

{“T”}
{“ E”}
{“E”, “T”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);
chosen = chosen - current;
remaining = remaining + current;

main()
friends:

{“T”}

161

listSubsets()

choices:

tracked:

{“E”}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}

{“T”}

{“ E”}
{“E”, “T”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,
Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);
chosen = chosen - current;
remaining = remaining + current;

main()
friends:

{“T”}

162

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}

{“T”}

{“ E”}
{“E”, “T”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);
chosen = chosen - current;

remaining = remaining + current;

main()
friends:

{“T”}

163

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}

{“T”}
{“ E”}
{“E”, “T”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);
chosen = chosen - current;

remaining = remaining + current;

main()
friends:

{“E”, “T”}

164

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}

{“T”}
{“ E”}
{“E”, “T”}

Stanford University

void listSubsetsHelper (Set<string>& remaining,

Set<string>& chosen) {

if (remaining.isEmpty()) {

cout << chosen << endl;

return;
¥
string current = remaining.first();
remaining = remaining - current;
listSubsetsHelper(remaining, chosen);
chosen = chosen + current;
listSubsetsHelper(remaining, chosen);
chosen = chosen - current;
remaining = remaining + current;

main()
friends:

{“E”, “T”}

165

listSubsets()

choices:

tracked:

{}

listSubsetsHelper ()

remaining:

chosen:

current: | “E”

{}

{“T”}
{“ E”}
{“E”, “T”}

Stanford University

I main() 166
i . . . friends:
void listSubsets(Set<string>& choices) { :1”en f "
Set<string> tracked; fEs T ¢
listSubsetsHelper (choices, tracked); listSubsets()
} choices: | ===
- tracked:
{1
{}
{“T”}
{“E”}
{“E”, “T”}

Stanford University

I main() 167
i . . . friends:
void listSubsets(Set<string>& choices) { ‘I‘qfn f "
Set<string> tracked; (Eo 10 ¢
listSubsetsHelper (choices, tracked); listSubsets()
} choices: | ===
- tracked:
{1
{}
{“T”}
{“E”}
{“E”, “T”}

Stanford University

main() 168

int main () { friends:

Set<string> friends = {‘A’, ‘E’, ‘T’}; {«“E”, «T”}

listSubsets(friends);

return 0;
}

{}

{“T”}

{“E”}

Stanford University

{“E”’ “T”}

main() 169

int main () { friends:

Set<string> friends = {‘A’, ‘E’, ‘T’}; {«E?, «T»}

listSubsets(friends);

return 0;
}

{}

{“T”}

{“E”}

Stanford University

{“E”’ “T”}

170

{}

{“T”}

{“ E”}
{“E”, “T”}

Stanford University

171

Choose / explore / unchoose

* Implicit “unchoose” step
e Pass by value; usually when memory constraints aren’t an issue
* Works because you’re making edits to a copy
e E.g. Building up a string over time

* Explicit “unchoose” step
* Uses pass by reference; usually with large data structures
* “Undoing” prior modifications to structure
* E.g. Generating subsets (one set passed around by reference to track
* subsets)

Stanford University

172

Mazes (Revisited)

Stanford University

173

Solving Recursive Backtracking

* Which of our three use cases does our problem fall into? (generate/count all
solutions, find one solution/prove its existence, or pick one best solution)
 What’s the provided function prototype and requirements? Do we need a helper

function?

* What are we returning as our solution?

* Do we care about returning or keeping track of the path we took to get to our solution?
If yes, what parameters are we already given and what others might be useful?

 What are our base and recursive cases?

* What does the decision tree look like? (decisions, options, what to keep track of)

* In addition to what we’re building up, are there any additional constraints on our
solutions?

* Does it make sense to use an implicit or explicit unchoose step for the recursion?

Stanford University

174

Solving Recursive Backtracking

* Which of our three use cases does our problem fall into? (generate/count all
solutions, find one solution/prove its existence, or pick one best solution)
* What’s the provided function prototype and requirements? Do we need a
helper function?
* What are we returning as our solution?

* Do we care about returning or keeping track of the path we took to get to our solution?
If yes, what parameters are we already given and what others might be useful?

 What are our base and recursive cases?
* What does the decision tree look like? (decisions, options, what to keep track of)

* In addition to what we’re building up, are there any additional constraints on our
solutions?

* Does it make sense to use an implicit or explicit unchoose step for the recursion?

Stanford University

175

Do we need a helper function?

* Recall our function prototype:

Vector<GridLocation> solveMazeDFS(Grid<bool>& maze);

Stanford University

176

Do we need a helper function?

* Recall our function prototype:

Vector<GridLocation> solveMazeDFS(Grid<bool>& maze);

 We need a helper function to keep track of our path through the

maze!
e Our helper function will have as parameters: the maze itself and the path
we’re building up.
* We also want the helper to be able to tell us whether or not the maze is
solvable —let’s have it return a boolean.

Stanford University

177

Do we need a helper function?

* Recall our function prototype:

Vector<GridLocation> solveMazeDFS(Grid<bool>& maze);

 We need a helper function to keep track of our path through the

maze!
e Our helper function will have as parameters: the maze itself and the path

we’re building up.
* We also want the helper to be able to tell us whether or not the maze is
solvable —let’s have it return a boolean.

bool solveMazeHelper (Grid<bool>& maze,
Stack<GridLocation>& path)

Stanford University

178

Solving Recursive Backtracking

* Which of our three use cases does our problem fall into? (generate/count all
solutions, find one solution/prove its existence, or pick one best solution)
 What’s the provided function prototype and requirements? Do we need a helper

function?

* What are we returning as our solution?

* Do we care about returning or keeping track of the path we took to get to our solution?
If yes, what parameters are we already given and what others might be useful?

* What are our base and recursive cases?

* What does the decision tree look like? (decisions, options, what to keep track of)

* In addition to what we’re building up, are there any additional constraints on our
solutions?

* Does it make sense to use an implicit or explicit unchoose step for the recursion?

Stanford University

179

Recursive Algorithm

e Start at the entrance
* Take one step North, South, East, West
* Repeat until we're at the end of the maze

Stanford University

180

Recursive Algorithm

e Start at the entrance

. finish

Stanford University

181

Recursive Algorithm

e Start at the entrance
* Take one step North, South, East, or West

. finish

Stanford University

182

Recursive Algorithm

e Start at the entrance
* Take one step Nerth, South, East, or West

. finish

Stanford University

183

Recursive Algorithm

e Start at the entrance
* Take one step North, South, East, or West
* Repeat until we're at the end of the maze

. finish

Stanford University

184

Recursive Algorithm

e Start at the entrance
* Take one step Nerth, South, East, or West

. finish

Stanford University

185

Recursive Algorithm

e Start at the entrance
* Take one step North, South, East, or West
* Repeat until we're at the end of the maze

. finish

Stanford University

186

Recursive Algorithm

e Start at the entrance
* Take one step Nerth-SouthFastor-West

. finish

Dead end!

Stanford University

187

Recursive Algorithm

e Start at the entrance
* Take one step Nerth-SouthFastor-West

. finish

We have to go
back one step

Stanford University

188

Recursive Algorithm

e Start at the entrance
* Take one step Nerth, South, East, or West

. finish

Stanford University

189

Recursive Algorithm

e Start at the entrance
* Take one step Nerth, Seuth, East, or West

. finish

Stanford University

190

Recursive Algorithm

e Start at the entrance
* Take one step Nerth, Seuth, East, or West
* Repeat until we're at the end of the maze

. finish

Stanford University

191

Recursive Algorithm

e Start at the entrance
* Take one step Nerth, Seuth, East, or West

. finish

Stanford University

192

Recursive Algorithm

e Start at the entrance
* Take one step North, South, East, or West
* Repeat until we're at the end of the maze

- finish

Stanford University

193

Recursive Algorithm

e Start at the entrance
* Take one step North, South, East, or West
* Repeat until we’re at the end of the maze

. finish

Stanford University

194

Recursive Algorithm

e Start at the entrance
* Take one step Nerth-SouthFastor-West

- finish

Dead end!

Stanford University

195

Recursive Algorithm

e Start at the entrance
* Take one step Nerth-SouthFastor-West

. finish

We have to go
back one step

Stanford University

196

Recursive Algorithm

e Start at the entrance
* Take one step North, South, East, or West

- finish

Stanford University

197

Recursive Algorithm

e Start at the entrance
* Take one step Nerth, South, East, or West

- finish

Stanford University

198

Recursive Algorithm

e Start at the entrance
* Take one step North, South, East, or West
* Repeat until we’re at the end of the maze

. finish

Stanford University

199

Recursive Algorithm

e Base case:
e Recursive case:

. finish

Stanford University

200

Recursive Algorithm

* Base case: If we're at the end of the maze, stop
* Recursive case: Explore North, South, East, then West

. finish

Stanford University

201

Making a Decision Tree

* Decision at each step (each level of the tree)
* Which valid move will we take?
e Options at each decision (branches from each node)
e All valid moves (in bounds, not a wall, not previously visited) that are
either North, South, East, or West of the current location
* Information you need to store along the way

* The path we’ve taken so far (a Vector we’re building up)
* Where we’ve already visited
* Our current location

Stanford University

202

Do we need a helper function?

* Recall our function prototype:

Vector<GridLocation> solveMazeDFS(Grid<bool>& maze);

 We need a helper function to keep track of our path through the

maze!
e Our helper function will have as parameters: the maze itself and the path
we’re building up.
* We also want the helper to be able to tell us whether or not the maze is
solvable —let’s have it return a boolean.

bool solveMazeHelper (Grid<bool>& maze,
Stack<GridLocation>& path,

GridLocation cur)
Stanford University

203

Pseudocode

* Our helper function will have as parameters: the maze itself, the path

we’re building up, and the current location.
* |dea: Use the boolean Grid (the maze itself) to store information about whether or
not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) — This works with our existing generateValidMoves() function

Stanford University

204
Pseudocode

* Our helper function will have as parameters: the maze itself, the path

we’re building up, and the current location.
* |dea: Use the boolean Grid (the maze itself) to store information about whether or
not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) — This works with our existing generateValidMoves() function

* Recursive case: Iterate over valid moves from generateValidMoves() and

try adding them to our path
* If any recursive call returns true, we have a solution
e |f all fail, return false

Stanford University

205

Pseudocode

* Our helper function will have as parameters: the maze itself, the path

we’re building up, and the current location.
* |dea: Use the boolean Grid (the maze itself) to store information about whether or
not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) — This works with our existing generateValidMoves() function

* Recursive case: Iterate over valid moves from generateValidMoves() and

try adding them to our path
* If any recursive call returns true, we have a solution
e |f all fail, return false

e Base case: We can stop exploring when we’ve reached the exit — return

true if the current location is the exit
Stanford University

206

Let’s Code It Up!

Stanford University

207

Takeaways

Recursive maze-solving uses explicit “unchoose” because we have
to set cells back to true after trying them.

Our helper function may have a different return type from our
initial function prototype, and our wrapper function (not the
helper) may be more complex than just a call to our helper
function.

It may be helpful to revisit and adjust our initial answers to our
planning questions as we determine more about the algorithm we
want to use (e.g. adding a parameter to our helper function).

Stanford University

Roadmap

Abstract Data
Structures

Core

++
Tools €

Object-Oriented
Programming

Algorithmic
Analysis

Memory
Management

Linked
Data
Structures

208

Advanced
Algorithms

Stanford University

Roadmap

Abstract Data
Structures

C++

Algorithmic
Analysis

209

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion

Stanford University

210

Const References

Stanford University

211

Let’s Compare

Pass by value Pass by reference
Callee gets a copy of a - Callee gets a reference to a
variable from the caller variable from the caller
function function
Changes to that variable that - Now, the callee can directly
occur in callee do not persist modify the original variable
in caller

=

Stanford University

212

Pass by Reference

* Pros:

 Don’t have to make an expensive copy
 E.g. Don’t have to handwrite a copy of our essay

* Cons:
* Callee can directly modify my copy
* E.g. Friend can edit your copy of the essay

Stanford University

213

Pass by Const Reference

* If you want to look at, but not modify, a function parameter, pass it

by const reference

 The “by reference” part avoids a copy.
* The “const” (constant) part means that the function can’t change

that argument.

Stanford University

Start!

|

214

Do you need to change W Yes! Pass by
the argument? reference!
Nope!
Number . Object
| What kind of argument? |

int string
Pass by boo'l Vector<int> Pass by const
value! double Stack<char> reference!

char Queue<int>

Stanford University

215

Structs

Stanford University

216

Struct

 Way to bundle different types of information
* Package data into one place

* Like creating a custom data structure or variable

Stanford University

217

GridLocation struct

struct GridLocation {
int row;
int col;

}s

Stanford University

218

GridLocation struct

struct GridLocation {

int row;
. » struct definition
int col;

}s

Stanford University

219

GridLocation struct

struct GridLocation {
int row;

. struct members
int col;

}s

Stanford University

220

GridLocation struct

* To declare a struct, you can either assign each of its members
separately or assign it when it’s created:

Stanford University

221

GridLocation struct

* To declare a struct, you can either assign each of its members
separately or assign it when it’s created:

GridLocation origin = {0, 0};

Stanford University

222

GridLocation struct

* To declare a struct, you can either assign each of its members
separately or assign it when it’s created:

GridLocation origin = {0, 0};

GridLocation origin;
origin.row = 0;

origin.col = 0;

Stanford University

223

Examples of structs

e Store information about dates, but C++ does not have a Date type
struct Date {
int year;
int month;

int day;
s

Stanford University

Examples of structs

e Store information about what is in my Lunchable
struct Lunchable {
string dessert;
int numCrackers;

bool hasCheese;

}s

224

Stanford University

225

Examples of structs

* Store information about albums | like
struct Album {
string title;

int year;

string artist_name;
int artist_age;
string artist_favorite_food;
int artist_height;
s

Stanford University

226

Examples of structs

* Store information about albums | like
struct Album {
string title;

int year;

string artist_name;
int artist_age;
string artist_favorite_food;
int artist_height;
35

Stanford University

227

Examples of structs

struct Album { void func() {
string title; Album lemonade = {'"Lemonade", 2016,
int year; "Beyonce", 41, "Red Lobster", 169};
Album four = {"4", 2011,
string artist_name; "Beyonce", 41, "Red Lobster", 169};
int artist_age; }

string artist_favorite_food;
int artist_height;
s

Stanford University

Examples of structs

struct Album {

I

string title;

int year;

string artist_name;
int artist_age;
string artist_favorite_food;

int artist_height;

228

void func() {

Album lemonade = {'"Lemonade", 2016,
"Beyonce", 41, "Red Lobster", 169};

Album four = {"4", 2011,
"Beyonce", 41, "Red Lobster", 169};

Stanford University

Examples of structs

struct Album {
string title;
int year;
Artist artist
s

struct Artist {
string name;
int age;
string favorite_food;
int height;

229

void func() {

Album lemonade = {'"Lemonade", 2016,
"Beyonce", 41, "Red Lobster", 169};

Album four = {"4", 2011,
"Beyonce", 41, "Red Lobster", 169};

Stanford University

Examples of structs

struct Album {
string title;
int year;
Artist artist
s

struct Artist {
string name;
int age;
string favorite_food;
int height;
s

230

void func() {

Artist beyonce = {"Beyonce", 41,
"Red Lobster", 169};

Album lemonade = {'"Lemonade", 2016,
beyonce};

Album four = {"4", 2011,
beyonce};

Stanford University

231

Revisiting Abstractions

Stanford University

232

ab-strac-tion
)]

freedom from
representational
qualities in art

Source: Google

Stanford University

/

f”« \\\\\\\@«@\\(\\@«((«\

‘ ‘
\\\\\\

/ \\\\‘
T g \\\\“

v

//- f//

. ¢

—1/
B /

e

-

abstraction

Design that hides the details of how
something works while still allowing the user to access
complex functionality

N

/

239

Stanford University

240

Classes

Stanford University

241

Class

* Defines a new data type for our program to use

* Help us create types of objects
* Which is why we call this object-oriented programming!

Stanford University

Classes

242

< C' @& web.stanford.edu/dept/cs_edu/resources/cslib_docs/ h ¥ O (f‘a 2 » 0O ° :

& The Stanford 1ibcs106 library, Fall Quarter 2022

Collection classes

Several of the classes represent collections of other objects.These collections work in much the same way as the similar classes in the Standard Template Library (STL).

Each of these collections is documented in its own page, along with sample code. This documentation has been updated for Fall Quarter 2022.

Vector<ValueType>
Grid<ValueType>
GridLocation
GridLocationRange
Stack<ValueType>
Queue<ValueType>

Set<ValueType>
HashSet<ValueType>
Lexicon

A Vector is an indexed sequence of values similar to an array.

A Grid is an indexed, two-dimensional array.

A GridLocation struct is a row/col pair.

A GridLocationRange is a two-dimensional range of grid locations.

A Stack is a linear structure in which values are added and removed only from one end, LIFO.
A Queue is a linear structure in which values are added at one end and removed from the other, FIFO.
A PriorityQueue is a specialized queue in which values are processed in order of priority.

A Map maintains an ordered association between keys and values.

A HashMap is a highly efficient and unordered implementation of the Map abstraction.

A Set is an ordered collection of distinct values.

A HashSet is a highly efficient and unordered implementation of the Set abstraction.

A Lexicon is a highly efficient implementation of a word list.

Stanford University

243

Class

* Defines a new data type for our program to use

* Help us create types of objects
* Which is why we call this object-oriented programming!

Struct

* Way to bundle different types of information
* Package data into one place

* Like creating a custom data structure or variable

Stanford University

244

GridLocationvs. Grid

struct GridLocation { class Grid<ValueType>
int row;
int col;

s

Stanford University

GridLocationvs. Grid

struct GridLocation {
int row;
int col;

I

GridLocation chosen = {2, 2};
cout << chosen.row << endl;

cout << chosen.col << endl;

class Grid<ValueType>

Grid<int> board(3, 3);
cout << board.numRows() << endl;

cout << board.numCols() << endl;

245

Stanford University

GridLocationvs. Grid

struct GridLocation {
int row;
int col;

I

GridLocation chosen = {2, 2};
cout << chosen.row << endl;

cout << chosen.col << endl;

chosen.row 33

chosen.col

I
N

class Grid<ValueType>

Grid<int> board(3, 3);
cout << board.numRows() << endl;

cout << board.numCols() << endl;

board.numRows

1
Ul

board.numCols

I
N

246

Stanford University

247

GridLocationvs. Grid

struct GridLocation {
int row;
int col;

I

GridLocation chosen = {2, 2};
cout << chosen.row << endl;

cout << chosen.col << endl;

chosen.row 33

chosen.col

I
N

class Grid<ValueType>

Grid<int> board(3, 3);
cout << board.numRows() << endl;

cout << board.numCols() << endl;

board.resize(5, 4);

Stanford University

248

GridLocationvs. Grid

struct GridLocation { class Grid<ValueType>
int row;
int cd/f) ‘\\
. encapsulation
J

process of grouping related information
and relevant functions into one unit

and defining where that information is accessible
cout << ch8\> J/Qndl;

GridLocati

cout << chosen.col << endl; cout << board.numCols() << endl;

chosen.row

Il
w

board.resize(5, 4);
chosen.col

I
N

— .
S = 4

Stanford University

249

What is a class?

 The only difference between structs and classes are the

encapsulation defaults
» Struct defaults to public members (accessible outside the struct itself).
* Class defaults to private members (accessible only inside the class
* implementation).

Stanford University

250

What is a class?

 The only difference between structs and classes are the

encapsulation defaults
» Struct defaults to public members (accessible outside the struct itself).
* Class defaults to private members (accessible only inside the class
* implementation).
* Every class has two parts:

e aninterface specifying what operations can be performed on instances of
the class
* an implementation specifying how those operations are to be performed

Stanford University

251

Another way to think about classes...

* A blueprint for a new type of C++ object!

Stanford University

252

Another way to think about classes...

* A blueprint for a new type of C++ object!
* The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

Stanford University

253

Another way to think about classes...

* A blueprint for a new type of C++ object!
* The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

4 N

instance

When we create an object that is our new type,
we call this creating an instance of our class.

o)

Stanford University

254

Another way to think about classes...

* A blueprint for a new type of C++ object!
* The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

Vector<int> vec;

Stanford University

255

Another way to think about classes...

* A blueprint for a new type of C++ object!
* The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

Vector<int> vec;

Creates an instance of the Vector class
(i.e. an object of the type Vector)

Stanford University

256

Designing C++ Classes

Stanford University

257

Three Main Parts

e Member variables
* These are the variables stored within the class
e Usually not accessible outside the class implementation

Stanford University

258

Three Main Parts

e Member variables
* These are the variables stored within the class
e Usually not accessible outside the class implementation

* Member functions (methods)
* Functions you can call on the object
« Eg.vec.add(),vec.size(),vec.remove(), etc.

Stanford University

259

Three Main Parts

* Member variables

e These are the variables stored within the class

e Usually not accessible outside the class implementation
* Member functions (methods)

* Functions you can call on the object

« Eg.vec.add(),vec.size(),vec.remove(), etc.
* Constructor

* Gets called when you create the object

* Sets the initial state of each new object
« E.g.Vector<int> vec;

Stanford University

260

How do we designh a class?

We must specify the three parts:

* Member variables
* What subvariables make up this new variable type?
* Member functions
* What functions can you call on a variable of this type?

* Constructor
* What happens when you make a new instance of this type?

Stanford University

261

How would you design a class for...

1) A bank account that enables
transferring funds between
accounts

2) A Spotify (or other music
platform) playlist

Stanford University

262

How would you design a class for...

1) A bank account that enables We must specify the three parts:

transferring funds between * Member variables: What
subvariables make up this new

accounts variable type?
« Member functions: What functions
_ . can you call on a variable of this
2) A Spotify (or other music type?
platform) playlist]

Constructor: What happens when
you make a new instance of this

type?

Stanford University

263

Random Bags

Let’s write our first class!

Stanford University

264

Random Bag

* Arandom bag is a data structure similar to a stack or queue

Stanford University

265

Random Bag

* Arandom bag is a data structure similar to a stack or queue

* It supports two operations:
e add, which puts an element into the random bag, and
* remove random, which returns and removes a random element from the
bag

Stanford University

266

Random Bag

* Arandom bag is a data structure similar to a stack or queue

* It supports two operations:
e add, which puts an element into the random bag, and
* remove random, which returns and removes a random element from the
bag
« Random bags have a number of applications:

e Simpler: Shuffling a deck of cards.
* More advanced: Generating artwork, designing mazes, and training
self-driving cars to park and change lanes!

Stanford University

267

Random Bag

* Arandom bag is a data structure similar to a stack or queue

* It supports two operations:
e add, which puts an element into the random bag, and
* remove random, which returns and removes a random element from the
bag
« Random bags have a number of applications:

e Simpler: Shuffling a deck of cards.
* More advanced: Generating artwork, designing mazes, and training
self-driving cars to park and change lanes!

Stanford University

268

Creating C++ Class

* Defining a class in C++ (typically) requires two steps:

Stanford University

269

Creating C++ Class

* Defining a class in C++ (typically) requires two steps:

* Create a header file (typically suffixed with . h) describing what
operations the class can perform and what internal state it needs.

Stanford University

270

Creating C++ Class

* Defining a class in C++ (typically) requires two steps:
* Create a header file (typically suffixed with . h) describing what
operations the class can perform and what internal state it needs.
* Create an implementation file (typically suffixed with . cpp) that
contains the implementation of the class.

Stanford University

271
"% Recursion

@ Recursion.pro
“h Headers
7 demo
» backtracking.h
» hanoigui.h
n prototypes.h
n recursion.h
= Sources
7 demo
. backtrackingwarmup.cpp
« boggle.cpp
« fundamentalwarmup.cpp
« hanoigui.cpp
c Main.cpp
. merge.cpp
. predict.cpp

c. sierpinski.cpp
Stanford University

272

Creating C++ Class

* Defining a class in C++ (typically) requires two steps:
* Create a header file (typically suffixed with . h) describing what
operations the class can perform and what internal state it needs.
* Create an implementation file (typically suffixed with . cpp) that
contains the implementation of the class.

e Clients of the class can then include (using the #include directive)
the header file to use the class.

Stanford University

273

Creating C++ Class

* Defining a class in C++ (typically) requires two steps:
* Create a header file (typically suffixed with . h) describing what
operations the class can perform and what internal state it needs.
* Create an implementation file (typically suffixed with . cpp) that
contains the implementation of the class.

e Clients of the class can then include (using the #include directive)

the header file to use the class.
 Eg. #include ‘map.h’, #include vector.h’, etc.

Stanford University

274

Header Files

RandomBag.h

Stanford University

275

What is in a header file?

Stanford University

nat is in a header file?

276

#pragma once

This code is called a
preprocessor directive.
It’s used to make sure
weird things don’t happen
if you include the same
header twice.

Stanford University

277

What is in a header file?

#pragma once

This is a class definition. We're
creating a new class called
RandomBag. Like a struct,
this defines the name of a new
type that we can use in our
programs.

class RandomBag {

When naming classes, use
UpperCamelCase.

33

Stanford University

278

What is in a header file?

#pragma once

class RandomBag {

Don’t forget to add the
semicolon!

You'll run into some scary
compiler errors if you leave it out!

i

Stanford University

279

What is in a header file?

Interface
#pragma once (What it looks like)
class RandomBag {
public:
private:
. Implementation
} ’ (How it works)

Stanford University

280

What is in a header file?

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

#pragma once

class RandomBag { Think things like the Vector
.add () function or the string’s

public: A :
.find().

private: }.

s

Stanford University

nat is in a header file?

#pragma once

class RandomBag {
public:

private:

s

\

The public interface specifies what
functions you can call on objects of
this type. (i.e. its methods)

Think things like the Vector

.add () function or the string’s
.find().

}/

The private implementation
contains information that objects
of this class type will need in order
to do their job properly. This is
invisible to people using the class.

281

Stanford University

nat is in a header file?

282

#pragma once

class RandomBag {
public:
void add(int value);
int removeRandom()

private:

s

These are member functions of
the RandomBag class. They're
functions you can call on
objects of type RandomBag.

All member functions must be
defined in the class definition.
We'll implement these
functions in the C++ file.

Stanford University

283

What is in a header file?

#pragma once
#include "vector.h"
class RandomBag {

This is a member variable of
the class. This tells us how the

public: class is implemented. Internally,
void add(int value); we're going to store a

elements. The only code that
can access or touch this
Vector is the RandomBag
private: implementation
Vector<int> elems}

s

Stanford University

284

What is in a header file?

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;

private:
Vector<int> elems;

s

Stanford University

285

Implementation Files

RandomBag.cpp

Stanford University

#include "RandomBag.h"

If we're going to implement the
RandomBag type, the . cpp file
needs to have the class definition
available. All implementation files
need to include the relevant
headers.

286

Stanford Unjiversity

287

#include "RandomBag.h"

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

njiversity

288

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

The syntax RandomBag: : add means “the
add function defined inside of RandomBag."
The : : operator is called the scope
resolution operator in C++ and is used to
say where to look for things.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

289

njiversity

290

#include "RandomBag.h"

void RandemBagttadd(int value){

elems.add(value);

}

If we had written something like this
instead, then the compiler would think we
were just making a free function named add
that has nothing to do with RandomBag’s
version of add. That’s an easy mistake to
make!

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

We don't need to specify where elems is. The
compiler knows that we're inside RandomBag,
and so it knows that this means "the current
RandomBag's collection of elements."

Using the scope resolution operator is like
passing in an invisible parameter to the function
to indicate what the current instance is.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

291

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!")
}
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];
elems.remove(index);
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

}s

292

njiversity

293

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size()3
bool disEmpty()3
private:
Vector<int> elems;

}s

njiversity

294

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {
return elems.size()}

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size();
bool disEmpty();
private:
Vector<int> elems;

}s

njiversity

295

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {
return elems.size();

bool RandomBag::isEmpty() {
return size() == 03

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;
int size();
bool disEmpty();
private:
Vector<int> elems;

}s

njiversity

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!");

}

int index = randomInteger (0, elems.size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

This code calls our own
size () function. The
class implementation can
use the public interface.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size();
bool disEmpty();
private:
Vector<int> elems;

}s

296

njiversity

297

#include "RandomBag.h"

void RandomBag::add(int value){

elems.add(value);

int RandomBag: :removeRandom() {

if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {

}

return elems.size();

bool RandomBag::isEmpty() {

return size() == 0;

Let’s use it another
place too!

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;
int size();
bool disEmpty();
private:
Vector<int> elems;

}s

njiversity

298

#include "RandomBag.h"

void RandomBag::add(int value){

elems.add(value);

int RandomBag: :removeRandom() {

if (elems.isEmpty()) {
error ("Aaaaahhh!");
ks
int index = randomInteger (0, size() - 1);
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag::size() {

}

return elems.size();

bool RandomBag::isEmpty() {

return size() == 0;

This use of the const keyword
means "l promise that this
function doesn't change the
state of the object.”

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size() const;
bool isEmpty() const;
private:
Vector<int> elems;

}s

njiversity

299

#include "RandomBag.h"

void RandomBag::add(int value){

elems.add(value);

int RandomBag: :removeRandom() {

if (elems.isEmpty())

{

error ("Aaaaahhh!");

}

int index = randomInteger (0, size() - 1);

int result = elems[i
elems.remove (index) ;
return result;

| |

We have to remember to add it
to the implementation as well!

int RandomBag::size() const {

}

return elems.size();

bool RandomBag::isEmpty() const {

return size() == 0;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom();
int size() const;
bool isEmpty() const;
private:
Vector<int> elems;

}s

njiversity

300

#include "RandomBag.h"

void RandomBag::add(int value){ Note: There are some

elems.add(value); additional #includes that
’ we’ll need. (We'll see them
int RandomBag::removeRandom() { in the actual . cpp file.)

if (elems.isEmpty()) {
error ("Aaaaahhh!");

ks

int index = randomInteger (0, size() - 1);

int result = elems[index];

elems.remove (index) ;

return result;

#pragma once
#include "vector.h"
class RandomBag {
public:

void add(int value);

int RandomBag::size() const {
int removeRandom();

return elems.size();

} int size() const;
bool isEmpty() const;
bool RandomBag::isEmpty() const { private:
return size() == 0; Vector<int> elems;
} s

njiversity

301

Using a Custom Class - Code

Stanford University

302

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file.

Stanford University

303

Takeaways

e Public member variables declared in the header file are automatically

accessible in the . cpp file.
* As a best practice, member variables should be private, and you can

create public member functions to allow users to edit them

Stanford University

304
Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file.

* As a best practice, member variables should be private, and you can
create public member functions to allow users to edit them

 Member functions have an implicit parameter that allows them to know
what instance of the class (i.e. which object) they’re operating on

Stanford University

305
Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file.

* As a best practice, member variables should be private, and you can
create public member functions to allow users to edit them

 Member functions have an implicit parameter that allows them to know
what instance of the class (i.e. which object) they’re operating on

* When you don’t have a constructor, there’s a default, zero-argument
constructor that instantiates all private member variables

* (We’ll see an explicit constructor next week!)

Stanford University

306

Structs vs. Classes

Stanford University

307

Recap

* We can create our own abstractions for defining data types using
classes. Classes allow us to encapsulate information in a structured
way.

* C(Classes have three main parts to keep in mind when designing

them:
e Member variables — these are always private
 Member functions (methods) — these can be private or public
e Constructor — this is created by default if you don’t define one

* Writing classes requires the creation of a header (.h) file for the
interface and an implementation (.cpp) file.

Stanford University

