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Announcements

• Midterm regrade requests will be processed by Saturday
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What’s a Priority Queue?

• A queue that sorts its elements based on their priority
• Like regular queues, you can only access the element at the front

• No indices

• Good way to model things like:
• ER waiting rooms
• Organ matches
• Vaccine availability
• Airplane boarding groups
• Social media feed
• College admissions
• Welfare allocation

3



Priority Queue Operations

• peek() - returns the element with the highest priority in the 
queue without removing it

• enqueue(elem, priority) - inserts elem with given priority
• dequeue() - removes and returns the element with the highest 

priority from the queue
• size() - returns the number of elements in the queue
• isEmpty() - returns true if there are no elements in the queue, 

false otherwise
• clear() - empties the queue
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Priority Queue Implementations

• Using a sorted array
• peek() - O(1)
• enqueue(elem, priority) - O(n)
• dequeue() - O(1)

• Using a binary heap
• peek() - O(1)
• enqueue(elem, priority) - O(log n)
• dequeue() - O(log n)
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What’s a Binary Heap?

• A heap is a tree-based data structure that satisfies the “heap 

property”: parents have a higher priority than their children

• For now, we’ll focus on binary heaps
• Each parent has exactly two children

• Exception: last level, which we fill left to right
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“Codenames”
1

“Spyfall”
4

“Rack-O”
2

“Clue”
7

“Boggle”
5

“Solitaire”
6

“Puzzle”
3

{“Codenames”, 1} {“Spyfall”, 4} {“Rack-O”, 2} {“Clue”, 7} {“Boggle”, 5} {“Solitaire”, 6} {“Puzzle”, 3}

0  1  2 3     4 5 6

Formula: if parent is at index i:
Left child is at 2 * i + 1
Right child is at 2 * i + 2 

Formula: if child is at index i:
Parent is at (i - 1) / 2



• Return the highest priority element, without removing it

• This is O(1), we just check what’s at the first index of our array

PQ Heap  - peek()
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8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8}

0 1 2 3



To enqueue a new element into our PQ Heap, we “bubble up”:

1. Insert element at the end of array

2. If this element has a greater priority than its parent, swap parent 

and child element

3. Repeat 2 until heap property is satisfied or we reach the root!

PQ Heap  - enqueue()
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PQ Heap  - enqueue()
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8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

🎟 PQ Heap enqueue has 
runtime O(log n)



To dequeue the highest priority element in our PQ Heap:

1. Remove element from the beginning (index 0) of our array

2. Move last element in array to index 0

3. Swap with higher priority child until heap property is satisfied

PQ Heap  - dequeue()
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PQ Heap  - dequeue()
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8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

PQ Heap dequeue has 
runtime O(log n)

Worst case, we bubble 
down from the top to 
the bottom of the tree



PQ Heap Runtimes

• peek() - O(1)
• enqueue(elem, priority) - O(log n)
• dequeue() - O(log n)
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Notice how implementing the same data structure with a 
heap versus sorted array leads to different runtimes.

Stay tuned for Assignment 4!



Roadmap

Core 
Tools

C++

Using Abstractions Building Abstractions

Abstract Data 
Structures Linked 

Data 
Structures

Advanced 
Algorithms
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Algorithmic 
Analysis

Recursion

Object-Oriented 
Programming

Memory 
Management



Memory Organization
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What is computer memory?

• The programs we write all make use of a specific component of the 

computer's hardware called Random Access Memory (RAM)
• This is what we are referring to when we talk about "computer memory"

• C++ gives us a variety of fundamental ways to access computer hardware 

from our code

• This is where both the stack and heap are!
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Why is computer memory important?

• We've already seen the power and importance of being able to dynamically 

allocate arrays and use these as data storage fundamentals for ADT classes

• Being able to directly work with computer memory opens up the doors to 

more interesting data storage and organization techniques (beyond arrays)

• After today's lecture, we'll spend the next two weeks talking about linked data 

structures (which are a powerful, alternative way to impose structure and 

meaning on data that is scattered over different places in computer memory)
• In order to understand linked data structures, we first need to develop our toolbox of 

working directly with computer memory in C++!
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How is computer memory organized?

• Memory in your computer is just a giant array!
• Can think of it as a long row of boxes, with each box having a value in it 

and an associated index
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0 1 2 3 4 5 6 7 8 9 10 …
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…

0 1 2 3 4 5 6 7 8 9 10 …

• How can we communicate with the computer to find exactly which 

box we want to access/store information in?
• We’ll give each box an associated numerical location, called a memory 

address.



Memory Addresses

string tvShow = “Veep”;
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“Veep”tvShow:

0xfca20b00This is the memory address of tvShow. 
This special numerical value acts as the 
unique identifier for this variable across 
the entire pool of the computer's memory.
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The Hexadecimal Number System

• We typically represent numbers using the decimal (base-10) number system
• Each place value represents a factor of ten (ones, tens, hundreds, etc.)
• 10 possible digits for each place value

• In computer systems,it is often more convenient to express numbers using 
the hexadecimal (base-16) number system.
• Each place value represents a factor of 16 (160, 161 , 162, etc.)
• 16 possible "digits" for each place value.

• 10 numerical digits (0-9) and the letters ‘a’ to ‘f’
• 0 1 2 3 4 5 6 7 8 9 a(10) b(11) c(12) d(13) e(14) f(15)

• The prefix 0x is used to communicate that a number is being expressed in 
hexadecimal
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Memory Organization Recap

• Every location in memory, and therefore every variable, has an 

address.

• Every address corresponds to a unique location in memory.

• The computer generates/knows the address of every variable in 

your program.

• Given a memory address, the computer can find out what value is 

stored at that location.
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Pointer
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Pointer

• Data type that allows us to work directly with computer memory 

addresses

• Just like all other data types, pointers take up space in memory and 

store specific values

• Always stores a memory address, telling us where in the computer 

to look for a certain value

• They quite literally "point" to another location on your computer
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What is a pointer?
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A memory address!!



Introduction to Pointers
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“Veep”tvShow:

0xfca20b00

0xfca20b00showPtr:

0x35efcdf8



Introduction to Pointers
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Introduction to Pointers
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“Veep”tvShow:showPtr:



What is a pointer?
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A memory address!!



Pointer Syntax

• Pointer syntax can get really tricky! 

• Our goal in this class is to give you a brief, holistic overview. To truly 

become a master of pointers, take CS107 :)

• We’ll talk about 4 main components of pointer syntax

33



Pointer Syntax, Part 1

• To declare a pointer of a particular type, use the *(asterisk) symbol: 

string* showPtr; // declare a pointer to a string 

int* agePtr;        // declare a pointer to an int 

char* letterPtr;    // declare a pointer to a char

• The type “pointer to T,” denoted T*, is different from the type of the 
pointee itself, T
• The type for showPtr is string* and not string
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Pointer Syntax, Part 2

• To get the address of another variable, use the & (ampersand) 

operator. 

• This is not the same as using a reference parameter. Same symbol, 

different meanings!
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Pointer Syntax, Part 2

string* showPtr;
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showPtr:

0x35efcdf8



Pointer Syntax, Part 2

string* showPtr;

37

???showPtr:

0x35efcdf8



Pointer Syntax, Part 2

string* showPtr;

string tvShow = “Veep”;
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???showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00



Pointer Syntax, Part 2

string* showPtr;

string tvShow = “Veep”;

showPtr = &tvShow;
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???showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00



Pointer Syntax, Part 2

string* showPtr;

string tvShow = “Veep”;

showPtr = &tvShow;
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0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00



Pointer Syntax, Part 2

string tvShow = “Veep”;

string* showPtr = &tvShow;
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0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00



Pointer Syntax, Part 3

• Pointers are necessary to store the value generated by the new 

keyword (which is just a memory address on the heap).

int* oneElem = new int;
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oneElem:

0x3840c030

Stack
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oneElem:

0x3840c030

???

0x94bce8e4

Stack Heap



Pointer Syntax, Part 3
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0x94bce8e4oneElem:

0x3840c030

???

0x94bce8e4

Stack Heap



Pointer Syntax, Part 4

• To read or modify the variable that a pointer points to, we use the 

* (asterisk) operator (in a different way than before!)

• Known as dereferencing the pointer

• Follow the arrow to the memory location at the end of the arrow 

and then read or modify the value stored there
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Pointer Syntax, Part 4

string tvShow = “Veep”;

string* showPtr = &tvShow;
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0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00



Pointer Syntax, Part 4

string tvShow = “Veep”;

string* showPtr = &tvShow;

cout << *showPtr << endl;
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0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00



Pointer Syntax, Part 4

string tvShow = “Veep”;

string* showPtr = &tvShow;

cout << *showPtr << endl;

*showPtr = “The Bear”;
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0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00



Pointer Syntax, Part 4

string tvShow = “Veep”;

string* showPtr = &tvShow;

cout << *showPtr << endl;

*showPtr = “The Bear”;
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0xfca20b00showPtr:

0x35efcdf8

“The Bear”tvShow:

0xfca20b00



What is a pointer?
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A memory address!!



Pointer Tips

• Working with pointers and direct memory access can be very 

tricky!

• You must always be hyper-vigilant about what is pointing where 

and what pointers are valid before trying to dereference them

• Here are a couple helpful tips to keep in mind when working with 

pointers
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Pointer Tip #1

• When we declare/initialize a pointer but don’t have anything to 

point it at yet, that can be dangerous and unpredictable
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???showPtr:

0x35efcdf8

string* showPtr;



Pointer Tip #1

• When we declare/initialize a pointer but don’t have anything to 

point it at yet, that can be dangerous and unpredictable

• To ensure that we can tell if a pointer has a valid address or not, set 

your declared pointer to nullptr, which means "no valid address"
• nullptr is C++ is actually just 0
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string* showPtr = nullptr;

0showPtr:

0x35efcdf8 nullptr
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string* showPtr = nullptr;

showPtr:

0x35efcdf8



Pointer Tip #2

• How can we tell if a pointer is safe to use (dereference)?

• If you are unsure if your pointer holds a valid address, you should 

check for nullptr!
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void printShowName(string* showPtr) {
    if (showPtr != nullptr) {
        cout << *showPtr << endl; // prints out the value pointed to by showPtr
                                 // if it is not nullptr
    } else {
        cout << "showPtr is not valid!" << endl;
    }
}



Pointer Practice
Draw diagrams!
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What is a pointer?
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A memory address!!



Practice #1

• What type does this pointer point to?

• What should we draw?

int* numPtr = nullptr;
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Practice #1

• Trace through this code with a diagram

• What is the output?

int* numPtr = nullptr;
int num = 16;
numPtr = &num;
cout << *numPtr << end; 
*numPtr = 198;
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Practice #2

• Trace through this code with a diagram

• What is the output?

string* sPtr = nullptr;
string s = "hello";
cout << *sPtr << endl;
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Practice #2

• How can we fix this code?

string* sPtr = nullptr;
string s = "hello";
cout << *sPtr << endl;

63



Practice #2

• How can we fix this code?
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string* sPtr = nullptr;
string s = "hello";
if (sPtr != nullptr) {
  cout << *sPtr << endl;
}

string* sPtr = nullptr;
string s = "hello";
sPtr = &s;
cout << *sPtr << endl;



Practice #3

• What is the output?
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�� 
string* sPtr1 = nullptr;
string* sPtr2 = nullptr;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;
  
sPtr2 = sPtr1;
cout << *sPtr2 << endl;

*sPtr1 = "goodbye";
cout << *sPtr1 << endl;
cout << *sPtr2 << endl; 



Check out the Lecture 18 Code
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Copy Constructor
Challenge Problem
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Binky!
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http://www.youtube.com/watch?v=5VnDaHBi8dM


Recap

• All variables in a computer program are stored in computer 

memory and can each be uniquely identified by their numerical 

memory address

• Pointers are a special type of variable that store memory addresses

• Pointers are essential to store the location of dynamically allocated 

memory acquired on the heap

• The dereference operator allows us to access and modify the 

memory pointed to by a pointer
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