
Memory and Pointers
Amrita Kaur

July 27, 2023

Contributions made from previous CS106B Instructors

Announcements

• Midterm regrade requests will be processed by Saturday

2

What’s a Priority Queue?

• A queue that sorts its elements based on their priority
• Like regular queues, you can only access the element at the front

• No indices

• Good way to model things like:
• ER waiting rooms
• Organ matches
• Vaccine availability
• Airplane boarding groups
• Social media feed
• College admissions
• Welfare allocation

3

Priority Queue Operations

• peek() - returns the element with the highest priority in the
queue without removing it

• enqueue(elem, priority) - inserts elem with given priority
• dequeue() - removes and returns the element with the highest

priority from the queue
• size() - returns the number of elements in the queue
• isEmpty() - returns true if there are no elements in the queue,

false otherwise
• clear() - empties the queue

4

Priority Queue Operations

• peek() - returns the element with the highest priority in the
queue without removing it

• enqueue(elem, priority) - inserts elem with given priority
• dequeue() - removes and returns the element with the highest

priority from the queue
• size() - returns the number of elements in the queue
• isEmpty() - returns true if there are no elements in the queue,

false otherwise
• clear() - empties the queue

5

Priority Queue Implementations

• Using a sorted array
• peek() - O(1)
• enqueue(elem, priority) - O(n)
• dequeue() - O(1)

• Using a binary heap
• peek() - O(1)
• enqueue(elem, priority) - O(log n)
• dequeue() - O(log n)

6

Priority Queue Implementations

• Using a sorted array
• peek() - O(1)
• enqueue(elem, priority) - O(n)
• dequeue() - O(1)

• Using a binary heap
• peek() - O(1)
• enqueue(elem, priority) - O(log n)
• dequeue() - O(log n)

7

What’s a Binary Heap?

• A heap is a tree-based data structure that satisfies the “heap

property”: parents have a higher priority than their children

• For now, we’ll focus on binary heaps
• Each parent has exactly two children

• Exception: last level, which we fill left to right

8

8

7 3

1

10

9

“Codenames”
1

“Spyfall”
4

“Rack-O”
2

“Clue”
7

“Boggle”
5

“Solitaire”
6

“Puzzle”
3

{“Codenames”, 1} {“Spyfall”, 4} {“Rack-O”, 2} {“Clue”, 7} {“Boggle”, 5} {“Solitaire”, 6} {“Puzzle”, 3}

0 1 2 3 4 5 6

Formula: if parent is at index i:
Left child is at 2 * i + 1
Right child is at 2 * i + 2

Formula: if child is at index i:
Parent is at (i - 1) / 2

• Return the highest priority element, without removing it

• This is O(1), we just check what’s at the first index of our array

PQ Heap - peek()
10

8

7 3

1

10

{“kale”, 1} {“cheese”, 7} {“apple”, 3} {“cocoa”, 8}

0 1 2 3

To enqueue a new element into our PQ Heap, we “bubble up”:

1. Insert element at the end of array

2. If this element has a greater priority than its parent, swap parent

and child element

3. Repeat 2 until heap property is satisfied or we reach the root!

PQ Heap - enqueue()
11

PQ Heap - enqueue()
12

8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

🎟 PQ Heap enqueue has
runtime O(log n)

To dequeue the highest priority element in our PQ Heap:

1. Remove element from the beginning (index 0) of our array

2. Move last element in array to index 0

3. Swap with higher priority child until heap property is satisfied

PQ Heap - dequeue()
13

PQ Heap - dequeue()
14

8

7 1

0

10

{“water”, 0} {“cheese”, 7} {“kale”, 1} {“cocoa”, 8} {“candy”, 10} {“apple”, 3}

0 1 2 3 4 5

3

PQ Heap dequeue has
runtime O(log n)

Worst case, we bubble
down from the top to
the bottom of the tree

PQ Heap Runtimes

• peek() - O(1)
• enqueue(elem, priority) - O(log n)
• dequeue() - O(log n)

15

Notice how implementing the same data structure with a
heap versus sorted array leads to different runtimes.

Stay tuned for Assignment 4!

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures Linked

Data
Structures

Advanced
Algorithms

16

Algorithmic
Analysis

Recursion

Object-Oriented
Programming

Memory
Management

Memory Organization

17

What is computer memory?

• The programs we write all make use of a specific component of the

computer's hardware called Random Access Memory (RAM)
• This is what we are referring to when we talk about "computer memory"

• C++ gives us a variety of fundamental ways to access computer hardware

from our code

• This is where both the stack and heap are!

18

Why is computer memory important?

• We've already seen the power and importance of being able to dynamically

allocate arrays and use these as data storage fundamentals for ADT classes

• Being able to directly work with computer memory opens up the doors to

more interesting data storage and organization techniques (beyond arrays)

• After today's lecture, we'll spend the next two weeks talking about linked data

structures (which are a powerful, alternative way to impose structure and

meaning on data that is scattered over different places in computer memory)
• In order to understand linked data structures, we first need to develop our toolbox of

working directly with computer memory in C++!

19

How is computer memory organized?

• Memory in your computer is just a giant array!
• Can think of it as a long row of boxes, with each box having a value in it

and an associated index

20

…

0 1 2 3 4 5 6 7 8 9 10 …

How is computer memory organized?

• Memory in your computer is just a giant array!
• Can think of it as a long row of boxes, with each box having a value in it

and an associated index

21

…

0 1 2 3 4 5 6 7 8 9 10 …

• How can we communicate with the computer to find exactly which

box we want to access/store information in?
• We’ll give each box an associated numerical location, called a memory

address.

Memory Addresses

string tvShow = “Veep”;

22

“Veep”tvShow:

0xfca20b00This is the memory address of tvShow.
This special numerical value acts as the
unique identifier for this variable across
the entire pool of the computer's memory.

Memory Addresses

string tvShow = “Veep”;

23

“Veep”tvShow:

0xfca20b00This is the memory address of tvShow.
This special numerical value acts as the
unique identifier for this variable across
the entire pool of the computer's memory.

The Hexadecimal Number System

• We typically represent numbers using the decimal (base-10) number system
• Each place value represents a factor of ten (ones, tens, hundreds, etc.)
• 10 possible digits for each place value

• In computer systems,it is often more convenient to express numbers using
the hexadecimal (base-16) number system.
• Each place value represents a factor of 16 (160, 161 , 162, etc.)
• 16 possible "digits" for each place value.

• 10 numerical digits (0-9) and the letters ‘a’ to ‘f’
• 0 1 2 3 4 5 6 7 8 9 a(10) b(11) c(12) d(13) e(14) f(15)

• The prefix 0x is used to communicate that a number is being expressed in
hexadecimal

24

Memory Organization Recap

• Every location in memory, and therefore every variable, has an

address.

• Every address corresponds to a unique location in memory.

• The computer generates/knows the address of every variable in

your program.

• Given a memory address, the computer can find out what value is

stored at that location.

25

Pointer

26

Pointer

• Data type that allows us to work directly with computer memory

addresses

• Just like all other data types, pointers take up space in memory and

store specific values

• Always stores a memory address, telling us where in the computer

to look for a certain value

• They quite literally "point" to another location on your computer

27

What is a pointer?

28

A memory address!!

Introduction to Pointers

29

“Veep”tvShow:

0xfca20b00

0xfca20b00showPtr:

0x35efcdf8

Introduction to Pointers

30

“Veep”tvShow:

0xfca20b00

0xfca20b00showPtr:

0x35efcdf8

Introduction to Pointers

31

“Veep”tvShow:showPtr:

What is a pointer?

32

A memory address!!

Pointer Syntax

• Pointer syntax can get really tricky!

• Our goal in this class is to give you a brief, holistic overview. To truly

become a master of pointers, take CS107 :)

• We’ll talk about 4 main components of pointer syntax

33

Pointer Syntax, Part 1

• To declare a pointer of a particular type, use the *(asterisk) symbol:

string* showPtr; // declare a pointer to a string

int* agePtr; // declare a pointer to an int

char* letterPtr; // declare a pointer to a char

• The type “pointer to T,” denoted T*, is different from the type of the
pointee itself, T
• The type for showPtr is string* and not string

34

Pointer Syntax, Part 2

• To get the address of another variable, use the & (ampersand)

operator.

• This is not the same as using a reference parameter. Same symbol,

different meanings!

35

Pointer Syntax, Part 2

string* showPtr;

36

showPtr:

0x35efcdf8

Pointer Syntax, Part 2

string* showPtr;

37

???showPtr:

0x35efcdf8

Pointer Syntax, Part 2

string* showPtr;

string tvShow = “Veep”;

38

???showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00

Pointer Syntax, Part 2

string* showPtr;

string tvShow = “Veep”;

showPtr = &tvShow;

39

???showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00

Pointer Syntax, Part 2

string* showPtr;

string tvShow = “Veep”;

showPtr = &tvShow;

40

0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00

Pointer Syntax, Part 2

string tvShow = “Veep”;

string* showPtr = &tvShow;

41

0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00

Pointer Syntax, Part 3

• Pointers are necessary to store the value generated by the new

keyword (which is just a memory address on the heap).

int* oneElem = new int;

42

Pointer Syntax, Part 3

• Pointers are necessary to store the value generated by the new

keyword (which is just a memory address on the heap).

int* oneElem = new int;

43

oneElem:

0x3840c030

Stack

Pointer Syntax, Part 3

• Pointers are necessary to store the value generated by the new

keyword (which is just a memory address on the heap).

int* oneElem = new int;

44

oneElem:

0x3840c030

???

0x94bce8e4

Stack Heap

Pointer Syntax, Part 3

• Pointers are necessary to store the value generated by the new

keyword (which is just a memory address on the heap).

int* oneElem = new int;

45

0x94bce8e4oneElem:

0x3840c030

???

0x94bce8e4

Stack Heap

Pointer Syntax, Part 4

• To read or modify the variable that a pointer points to, we use the

* (asterisk) operator (in a different way than before!)

• Known as dereferencing the pointer

• Follow the arrow to the memory location at the end of the arrow

and then read or modify the value stored there

46

Pointer Syntax, Part 4

string tvShow = “Veep”;

string* showPtr = &tvShow;

47

0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00

Pointer Syntax, Part 4

string tvShow = “Veep”;

string* showPtr = &tvShow;

cout << *showPtr << endl;

48

0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00

Pointer Syntax, Part 4

string tvShow = “Veep”;

string* showPtr = &tvShow;

cout << *showPtr << endl;

*showPtr = “The Bear”;

49

0xfca20b00showPtr:

0x35efcdf8

“Veep”tvShow:

0xfca20b00

Pointer Syntax, Part 4

string tvShow = “Veep”;

string* showPtr = &tvShow;

cout << *showPtr << endl;

*showPtr = “The Bear”;

50

0xfca20b00showPtr:

0x35efcdf8

“The Bear”tvShow:

0xfca20b00

What is a pointer?

51

A memory address!!

Pointer Tips

• Working with pointers and direct memory access can be very

tricky!

• You must always be hyper-vigilant about what is pointing where

and what pointers are valid before trying to dereference them

• Here are a couple helpful tips to keep in mind when working with

pointers

52

Pointer Tip #1

• When we declare/initialize a pointer but don’t have anything to

point it at yet, that can be dangerous and unpredictable

53

???showPtr:

0x35efcdf8

string* showPtr;

Pointer Tip #1

• When we declare/initialize a pointer but don’t have anything to

point it at yet, that can be dangerous and unpredictable

• To ensure that we can tell if a pointer has a valid address or not, set

your declared pointer to nullptr, which means "no valid address"
• nullptr is C++ is actually just 0

54

string* showPtr = nullptr;

0showPtr:

0x35efcdf8 nullptr

Pointer Tip #1

• When we declare/initialize a pointer but don’t have anything to

point it at yet, that can be dangerous and unpredictable

• To ensure that we can tell if a pointer has a valid address or not, set

your declared pointer to nullptr, which means "no valid address"
• nullptr is C++ is actually just 0

55

string* showPtr = nullptr;

showPtr:

0x35efcdf8

Pointer Tip #2

• How can we tell if a pointer is safe to use (dereference)?

• If you are unsure if your pointer holds a valid address, you should

check for nullptr!

56

void printShowName(string* showPtr) {
 if (showPtr != nullptr) {
 cout << *showPtr << endl; // prints out the value pointed to by showPtr
 // if it is not nullptr
 } else {
 cout << "showPtr is not valid!" << endl;
 }
}

Pointer Practice
Draw diagrams!

57

What is a pointer?

58

A memory address!!

Practice #1

• What type does this pointer point to?

• What should we draw?

int* numPtr = nullptr;

59

Practice #1

• Trace through this code with a diagram

• What is the output?

int* numPtr = nullptr;
int num = 16;
numPtr = #
cout << *numPtr << end;
*numPtr = 198;

60

Practice #2

• Trace through this code with a diagram

• What is the output?

string* sPtr = nullptr;
string s = "hello";
cout << *sPtr << endl;

61

62

Practice #2

• How can we fix this code?

string* sPtr = nullptr;
string s = "hello";
cout << *sPtr << endl;

63

Practice #2

• How can we fix this code?

64

string* sPtr = nullptr;
string s = "hello";
if (sPtr != nullptr) {
 cout << *sPtr << endl;
}

string* sPtr = nullptr;
string s = "hello";
sPtr = &s;
cout << *sPtr << endl;

Practice #3

• What is the output?

65

��
string* sPtr1 = nullptr;
string* sPtr2 = nullptr;
string s = "hello";
sPtr1 = &s;
cout << *sPtr1 << endl;

sPtr2 = sPtr1;
cout << *sPtr2 << endl;

*sPtr1 = "goodbye";
cout << *sPtr1 << endl;
cout << *sPtr2 << endl;

Check out the Lecture 18 Code

66

Copy Constructor
Challenge Problem

67

Binky!

68

http://www.youtube.com/watch?v=5VnDaHBi8dM

Recap

• All variables in a computer program are stored in computer

memory and can each be uniquely identified by their numerical

memory address

• Pointers are a special type of variable that store memory addresses

• Pointers are essential to store the location of dynamically allocated

memory acquired on the heap

• The dereference operator allows us to access and modify the

memory pointed to by a pointer

69

