
Hashing
Elyse Cornwall

August 9, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 5 is due tonight

• Assignment 6 (last assignment!) comes out this afternoon
• No late days beyond the grace period (next Thursday 11:59pm)

• YEAH hours 4-5pm

• Exam next Friday (8/18) from 3:30-6:30pm
• Final exam info is published on the website under “Assessments”

• Final review session next Tuesday in class

2

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

3

Algorithmic
Analysis

Recursion

Memory
Management

Object-Oriented
Programming

Linked
Data

Structures

Advanced
Algorithms

Recap: Huffman Coding

4

ASCII Encoding

• ASCII uses 8 bits to represent each character

• Let’s represent KIRK’S DIKDIK in ASCII code

5

0100
1011

0100
1001

0101
0010

0100
1011

0010
0111

0101
0011

0010
0000

0100
0100

0100
1001

0100
1011

0100
0100

0100
1001

0100
1011

K I R K ’ S _ D I K D I K

K 01001011

I 01001001

R 01010010

’ 00100111

S 01010011

_ 00100000

D 01000100

character ASCII code

A Different Encoding

What is the mystery word represented by this 3-bit
encoding?

010|001|110
R I D

6

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

Our New Code

7

K 4 0

I 3 1

D 2 00

R 1 01

’ 1 10

S 1 11

_ 1 100

character frequency code

KIRK’S_DIKDIK

01010101110000100010

RRRRI_KK’D’

Prefix Code

• A prefix code is an encoding system in which no

code is a prefix of another code

• Here’s a sample prefix code for the letters in

KIRK’S_DIKDIK

8

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

10 01 001 10 000 1101 1100 111 01 10 111 01 10

K I R K ’ S _ D I K D I K

Coding Tree

• We can represent a prefix coding scheme using a binary tree, which

is called a coding tree

9

K 000

I 001

R 010

’ 011

S 100

_ 101

D 110

character code

K I R ’ S _ D

0

0

0 0 0 0

1

0 1

1

1

11

What is the mystery word represented by this encoding?

110001010

Coding Trees

• A coding tree is valid if all the letters are

stored in the leaves, with internal nodes

only used for routing

10

C 0 6

0

0 0

1

11

S 1

0 1

1. Build the frequency table

Input text: KIRK’S DIKDIK

11

K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency

2. Initialize an empty priority queue

12

higher priority lower priority

3. Add all unique characters as leaf nodes to queue

13

higher priority lower priority

K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency

’ RS_ KID

1 1 1 1 2 3 4

4. Build the Huffman tree by merging nodes

14

higher priority lower priority

’ RS_ KID

1 1 1 1 2 3 4

15
higher priority lower priority

’ RS_ KID

1 1 1 1 2 3 4

16
higher priority lower priority

’ RS KID

1 1 1 2 3 4

_

1

17
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

18
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

19
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

2

20
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

2

21
higher priority lower priority

’ R KID

1 1 2 3 4

_

1

S

1

0 1

2

22
higher priority lower priority

R KID

1 2 3 4

_

1

S

1

0 1

2

’

1

23
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

24
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

25
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

2

26
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

2

27
higher priority lower priority

KID

2 3 4

_

1

S

1

0 1

2

’

1

R

1

0 1

2

28
higher priority lower priority

KID

2 3 4

’

1

R

1

0 1

2

_

1

S

1

0 1
2

29
higher priority lower priority

KI

3 4

’

1

R

1

0 1

2

D

2
_

1

S

1

0 1
2

30
higher priority lower priority

KI

3 4

’

1

R

1

0 1

2

D

2
_

1

S

1

0 1
2

0 1

31
higher priority lower priority

KI

3 4

’

1

R

1

0 1

2

D

2
_

1

S

1

0 1
2

0 1

4

32
higher priority lower priority

KI

D

2

3 4

_

1

S

1

0 1

’

1

R

1

0 1

2

2

0 1

4

33
higher priority lower priority

KI

D

2

3 4

_

1

S

1

0 1
’

1

R

1

0 1

2

2

0 1

4

34
higher priority lower priority

KI

D

2

3 4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

35
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

36
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

0 1

37
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

0 1

5

38
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1

4

I

3

0 1

5

39
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
22

0 1

4

I

3

0 1

5

40
higher priority lower priority

K

4

’

1

R

1

0 1
2

I

3

0 1

5

D

2
_

1

S

1

0 1
2

0 1

4

41
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

42
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

43
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

8

44
higher priority lower priority

K

D

2

4

_

1

S

1

0 1

’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

8

45
higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1

5

0 1

8

46
higher priority lower priority

’

1

R

1

0 1
2

I

3

0 1
5

K

D

2

4

_

1

S

1

0 1
2

0 1
4

0 1

8

47
higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

48
higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

0 1

49
higher priority lower priority

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

0 1

13

Generate Table from Tree

50

K

D

2

4

_

1

S

1

0 1
’

1

R

1

0 1
2

2

0 1
4

I

3

0 1
5

0 1
8

0 1

13

K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code

Transmitting the Tree

• In order to decompress the text, we have to remember what

encoding scheme we used

• Prefix the compressed data with a header containing information

to rebuild the tree

51

Encoded Tree 1001001100001101110011101101110110…

ADT Showdown
Let’s compare the performance of different abstract data types

52

ADT Performance

When we analyze an ADT, we care about how quickly we can:

• Look up elements (contains)

• Add elements (insert/add)

• Remove elements (remove)

53

Unsorted Array

54

Operation Runtime

Contains

Insert

Remove

14 3 16 7 9 2 10 5

Unsorted Array

55

Operation Runtime

Contains O(n)

Insert O(n)

Remove O(n)

14 3 16 7 9 2 10 5

Sorted Array

56

Operation Runtime

Contains

Insert

Remove

2 3 6 7 9 10 14 16

Sorted Array

57

Operation Runtime

Contains O(log n)

Insert

Remove

2 3 6 7 9 10 14 16

Binary search to
the rescue!

Sorted Array

58

Operation Runtime

Contains O(log n)

Insert O(n)

Remove O(n)

2 3 6 7 9 10 14 16

Binary Search Tree (and Set)

59

Operation Runtime

Contains

Insert

Remove

8

12

10

4

2 7 15

Binary Search Tree (and Set)

60

Operation Runtime

Contains O(log n)

Insert O(log n)

Remove O(log n)

8

12

10

4

2 7 15

Binary Search Tree (and Set)

61

Operation Runtime

Contains O(log n)

Insert O(log n)

Remove O(log n)

8

12

10

4

2 7 15

As always, we ask:
Can we do better?

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

62

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

63

0 1 0 0 0 0 0 0
0 1 2 3 4 5 6 7

Add 1

increment

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

64

0 1 0 0 0 0 1 0
0 1 2 3 4 5 6 7

Add 1
Add 6

increment

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

65

0 1 0 1 0 0 1 0
0 1 2 3 4 5 6 7

Add 1
Add 6
Add 3

increment

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

66

0 1 0 1 0 0 2 0
0 1 2 3 4 5 6 7

Add 1
Add 6
Add 3
Add 6 increment

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

67

0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Add 1
Add 6
Add 3
Add 6
Add 5

increment

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

68

0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

69

0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Contains 3?

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

70

0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Contains 3? Yes.

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

71

0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Contains 3? Yes.
Contains 7?

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

72

0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Contains 3? Yes.
Contains 7? No.

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

73

0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

74

0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Remove 3

decrement

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

75

0 1 0 0 0 1 2 0
0 1 2 3 4 5 6 7

Remove 3

decrement

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

76

0 1 0 0 0 1 2 0
0 1 2 3 4 5 6 7

Remove 3
Remove 6

decrement

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

77

0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7

Remove 3
Remove 6

decrement

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

78

0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7

👥 What do we like about this approach?
What don’t we like?

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

79

0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?

80

0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?

81

0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7

We need to increment at index 1732

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?

82

0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

We need to increment at index 1732

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?

83

0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

We need to increment at index 1732

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?

84

0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

Now we have a sparse array…
This is a waste of space!

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• Lots of wasted space if we’re storing a large range of numbers ❌

85

0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• Lots of wasted space if we’re storing a large range of numbers ❌
• We can’t store negative numbers (no negative indices) ❌

86

0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

Idea 1: Count Array

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• Lots of wasted space if we’re storing a large range of numbers ❌
• We can’t store negative numbers (no negative indices) ❌

87

0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

Let’s try again, keeping the O(1)
runtime, but fixing these issues

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

88

0 1 2 3 4 5 6 7

Aside: Modulo Operator

Modulo is the remainder of a division operation

• 16 % 8 = 0
• 8 fits into 16 twice, with none left over

• -10 % 8 = 6
• -10 is 6 away from -16

• 39 % 8 = 7
• 8 fits into 39 four times, with 1 left over

89

Aside: Modulo Operator

Modulo is the remainder of a division operation

• 16 % 8 = 0
• 8 fits into 16 twice, with none left over

• -10 % 8 = 6
• -10 is 6 away from -16

• 39 % 8 = 7
• 8 fits into 39 four times, with 1 left over

When we mod by a number X, the result will be less than X

90

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

91

0 1 2 3 4 5 6 7

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

92

0 1 2 3 4 5 6 7

Add 5

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

93

0 1 2 3 4 5 6 7

Add 5

5 % 8 = 5

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

94

5
0 1 2 3 4 5 6 7

Add 5

5 % 8 = 5 store here

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

95

5
0 1 2 3 4 5 6 7

Add 5
Add 1732

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

96

5
0 1 2 3 4 5 6 7

Add 5
Add 1732 1732 % 8 = 4

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

97

1732 5
0 1 2 3 4 5 6 7

Add 5
Add 1732 1732 % 8 = 4 store here

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

98

1732 5
0 1 2 3 4 5 6 7

Add 5
Add 1732
Add 8
Add -2

Try adding these values
to our array!

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

99

8 1732 5
0 1 2 3 4 5 6 7

Add 5
Add 1732
Add 8
Add -2

8 % 8 = 0

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

100

8 1732 5 -2
0 1 2 3 4 5 6 7

Add 5
Add 1732
Add 8
Add -2

-2 % 8 = 6

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

101

8 1732 5 -2
0 1 2 3 4 5 6 7

num % b gives us a valid index
within our array

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

102

8 1732 5 -2
0 1 2 3 4 5 6 7

Add 4

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

103

8 1732 5 -2
0 1 2 3 4 5 6 7

Add 4
4 % 8 = 4

Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b

104

8 1732 5 -2
0 1 2 3 4 5 6 7

Add 4
COLLISION!4 % 8 = 4

Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

105

0 1 2 3 4 5 6 7

41732

Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

• We’d like to be able to store multiple elements in the same bucket

106

1732
4

0 1 2 3 4 5 6 7

Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

• We’d like to be able to store multiple elements in the same bucket

• One idea: each bucket stores a linked list of elements
• If we prepend new nodes to the beginning of our list, this is still O(1)

107

0 1 2 3 4 5 6 7

Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

• We’d like to be able to store multiple elements in the same bucket

• One idea: each bucket stores a linked list of elements
• If we prepend new nodes to the beginning of our list, this is still O(1)

108

0 1 2 3 4 5 6 7
1732

Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

• We’d like to be able to store multiple elements in the same bucket

• One idea: each bucket stores a linked list of elements
• If we prepend new nodes to the beginning of our list, this is still O(1)

109

0 1 2 3 4 5 6 7
4

1732

Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b

110

0 1 2 3 4 5 6 7

Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b

111

0 1 2 3 4 5 6 7

Add 3

Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b

112

0 1 2 3 4 5 6 7

Add 3 3 % 8 = 3

3

🙂

Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b

113

0 1 2 3 4 5 6 7

Add 3979

3

🙂

Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b

114

0 1 2 3 4 5 6 7

Add 3979 3979 % 8 = 3

3979

😕

3

Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b

115

0 1 2 3 4 5 6 7

Add 27

3979

😕

3

Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b

116

0 1 2 3 4 5 6 7

Add 27 27 % 8 = 3

27

😣

3979

3

Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b

117

0 1 2 3 4 5 6 7
27

😣

3979

3

🤔 Why don’t we like this?
Hint: think of contains and remove

Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b

118

0 1 2 3 4 5 6 7
27

😣

3979

3

If all n of our elements end up in the same
bucket, contains and remove will be O(n)

Hashing
How can we evenly distribute our elements across our buckets?

119

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

120

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

121

Hash Function

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

122

Hash Function3

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

123

Hash Function3 Bucket 3!

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

124

Hash Function15

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

125

Hash Function15 Bucket 7!

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

• A hash function must be deterministic: same input produces same

output

126

Hash Function

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

• A hash function must be deterministic: same input produces same

output

127

Hash Function15

If we hash this
number again…

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

• A hash function must be deterministic: same input produces same

output

128

Hash Function15

If we hash this
number again…

Bucket 7!

We’ll get the same
result as before.

Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

• A hash function must be deterministic: same input produces same

output

• We call the output of a hash function a hash code or hash value

129

Hash Function Bucket 7!

Good Hash Functions

• A good hash function distributes elements evenly across buckets
• This way, no bucket contains too many elements

130

Hash Function

😇

Good Hash Functions

• A good hash function distributes elements evenly across buckets
• This way, no bucket contains too many elements

• Similar inputs will not necessarily have similar hash codes

131

Hash Function

😇
“starling” Bucket 3!

“staring” Bucket 193252!

A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

132

0 1 2 3 4 5 6 7

Hash
Function

22 1928 92 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73

A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

133

0 1 2 3 4 5 6 7

Hash
Function

22 1928 92 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73

Add 12

A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

134

0 1 2 3 4 5 6 7

Hash
Function

22 1928 92 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73

Add 12
12 Bucket 5!

A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

135

0 1 2 3 4 5 6 7

Hash
Function

22 1928 12 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73

Add 12
12 Bucket 5!

1928

A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

136

0 1 2 3 4 5 6 7

Hash
Function

22 1928 5 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73

Add 12
12 Bucket 5!

1928

🎟 If we’ve got a good hash function, and
we’ve hashed n elements into b buckets,

what’s our average bucket size?

Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations

137

Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations

• This means we’ll have to look through O(n/b) elements for

contains and remove… is this better than O(n)?

138

Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations

• This means we’ll have to look through O(n/b) elements for

contains and remove… is this better than O(n)?

139

Big idea: if we choose b (# of buckets) to be a
number close to n, then n/b will be constant.

Introducing… HashSet!
A Stanford ADT that leverages Hash Tables to store a set of unique elements

140

Introducing… HashSet!
A Stanford ADT that leverages Hash Tables to store a set of unique elements

141

Introducing… HashSet!
A Stanford ADT that leverages Hash Tables to store a set of unique elements

142

Introducing… HashSet!
A Stanford ADT that leverages Hash Tables to store a set of unique elements

143

👥 We’ve seen two implementations of a set: one with BSTs
and one with Hash Tables. Why would the Hash Table
implementation be called an “unordered set” in C++?

Let’s Draw it Out!

144

HashSet

145

Operation Runtime

Contains O(n/b)

Insert O(n/b)

Remove O(n/b)

0 1 2 3 4 5 6 722 1928 12 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73 1928

HashSet

146

Operation Runtime

Contains O(1)

Insert O(1)

Remove O(1)

0 1 2 3 4 5 6 722 1928 12 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73 1928

Applications of Hashing

147

Cryptography

• Rather than storing your password, websites will store a hash of

your password

148

Hash FunctioniloveCS106B!
09823589
71401928
39013414

Cryptography

• We can use hash functions to verify data

149

Hash Function
93675647
36124375
40509230

My essay
I really do love binary
search trees. One day, I
hope to grow big and
strong and become one
myself…

Cryptography

• We can use hash functions to verify data

150

Hash Function
46845926
26002846
46372833

My essay
I really do hate binary
search trees. One day, I
hope to grow big and
strong and become one
myself…

Assignment 0

• We used a hash function to assign every student a unique hash

code that couldn’t be replicated without running the hash function

151

int nameHash(string first, string last) {
 static const int kLargePrime = 16908799;
 static const int kSmallPrime = 127;
 int hashVal = 0;

 for (char ch: first + last) {
 ch = tolower(ch);
 hashVal = (kSmallPrime * hashVal + ch) % kLargePrime;
 }

 return hashVal;
}

Recap

• ADT showdown

• Achieving O(1) contains/add/remove
• Hash functions and hash tables

• HashSet/unordered_set
• Applications of hash functions

152

Thank you!

153

