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Announcements

• Assignment 5 is due tonight

• Assignment 6 (last assignment!) comes out this afternoon
• No late days beyond the grace period (next Thursday 11:59pm)

• YEAH hours 4-5pm

• Exam next Friday (8/18) from 3:30-6:30pm
• Final exam info is published on the website under “Assessments”

• Final review session next Tuesday in class
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Roadmap

Core 
Tools

C++

Using Abstractions Building Abstractions

Abstract Data 
Structures
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Algorithmic 
Analysis

Recursion

Memory 
Management

Object-Oriented 
Programming

Linked 
Data 

Structures

Advanced 
Algorithms



Recap: Huffman Coding
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ASCII Encoding

• ASCII uses 8 bits to represent each character

• Let’s represent  KIRK’S DIKDIK in ASCII code
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A Different Encoding

What is the mystery word represented by this 3-bit 
encoding?

010|001|110
R   I   D
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I 001
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S 100
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character code



Our New Code
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K 4 0
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R 1 01
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character frequency code

 

KIRK’S_DIKDIK 

01010101110000100010

RRRRI_KK’D’



Prefix Code

• A prefix code is an encoding system in which no 

code is a prefix of another code

• Here’s a sample prefix code for the letters in 

KIRK’S_DIKDIK 
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K 10

I 01

D 111

R 001

’ 000

S 1101

_ 1100

character code
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Coding Tree

• We can represent a prefix coding scheme using a binary tree, which 

is called a coding tree
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character code
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What is the mystery word represented by this encoding? 

110001010



Coding Trees

• A coding tree is valid if all the letters are 

stored in the leaves, with internal nodes 

only used for routing 

10

C 0 6

0

0 0

1

11

S 1

0 1



1. Build the frequency table 

Input text:   KIRK’S DIKDIK
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K 4

I 3

R 1

’ 1

S 1

_ 1

D 2

character frequency



2. Initialize an empty priority queue
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higher priority lower priority



3. Add all unique characters as leaf nodes to queue
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higher priority lower priority

K 4
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S 1
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character frequency

’ RS_ KID

1 1 1 1 2 3 4



4. Build the Huffman tree by merging nodes
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higher priority lower priority
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1 1 1 1 2 3 4
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higher priority lower priority
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Generate Table from Tree
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Transmitting the Tree

• In order to decompress the text, we have to remember what 

encoding scheme we used

• Prefix the compressed data with a header containing information 

to rebuild the tree
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Encoded Tree 1001001100001101110011101101110110…



ADT Showdown
Let’s compare the performance of different abstract data types 
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ADT Performance

When we analyze an ADT, we care about how quickly we can:

• Look up elements (contains)

• Add elements (insert/add)

• Remove elements (remove)
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Unsorted Array
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Operation Runtime

Contains

Insert

Remove

14 3 16 7 9 2 10 5



Unsorted Array
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Operation Runtime

Contains O(n)

Insert O(n)

Remove O(n)

14 3 16 7 9 2 10 5



Sorted Array
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Operation Runtime

Contains

Insert

Remove

2 3 6 7 9 10 14 16



Sorted Array
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Operation Runtime

Contains O(log n)

Insert

Remove

2 3 6 7 9 10 14 16

Binary search to 
the rescue!



Sorted Array
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Operation Runtime

Contains O(log n)

Insert O(n)

Remove O(n)

2 3 6 7 9 10 14 16



Binary Search Tree (and Set)
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Binary Search Tree (and Set)
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Operation Runtime
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Binary Search Tree (and Set)
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Operation Runtime

Contains O(log n)

Insert O(log n)

Remove O(log n)

8

12

10

4

2 7 15

As always, we ask:
Can we do better?



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 0 0 0 0 0
0 1 2 3 4 5 6 7

Add 1

increment



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 0 0 0 1 0
0 1 2 3 4 5 6 7

Add 1
Add 6

increment



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

65

0 1 0 1 0 0 1 0
0 1 2 3 4 5 6 7

Add 1
Add 6
Add 3

increment



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

66

0 1 0 1 0 0 2 0
0 1 2 3 4 5 6 7

Add 1
Add 6
Add 3
Add 6 increment



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Add 1
Add 6
Add 3
Add 6
Add 5

increment



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

69

0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Contains 3?



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Contains 3? Yes.



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Contains 3? Yes.
Contains 7?



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Contains 3? Yes.
Contains 7? No.



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 1 0 1 2 0
0 1 2 3 4 5 6 7

Remove 3

decrement



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 0 0 1 2 0
0 1 2 3 4 5 6 7

Remove 3

decrement



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 0 0 1 2 0
0 1 2 3 4 5 6 7

Remove 3
Remove 6

decrement



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7

Remove 3
Remove 6

decrement



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count
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0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7

👥 What do we like about this approach?
What don’t we like?



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!
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0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?

80

0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?

81

0 1 0 0 0 1 1 0
0 1 2 3 4 5 6 7

We need to increment at index 1732 



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?
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0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

We need to increment at index 1732 



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?
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0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

We need to increment at index 1732 



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• What about bigger numbers? How do we add 1732?
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0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

Now we have a sparse array… 
This is a waste of space!



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• Lots of wasted space if we’re storing a large range of numbers ❌
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0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732



Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• Lots of wasted space if we’re storing a large range of numbers ❌
• We can’t store negative numbers (no negative indices) ❌
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Idea 1: Count Array 

Each number gets its own index in the array, which stores a count

• contains/add/remove are all O(1) ✅
• This is because we can index into an array in constant time!

• Lots of wasted space if we’re storing a large range of numbers ❌
• We can’t store negative numbers (no negative indices) ❌
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0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 ... 1732

Let’s try again, keeping the O(1) 
runtime, but fixing these issues



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 
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0 1 2 3 4 5 6 7



Aside: Modulo Operator

Modulo is the remainder of a division operation

• 16 % 8 = 0
• 8 fits into 16 twice, with none left over

• -10 % 8 = 6
• -10 is 6 away from -16

• 39 % 8 = 7
• 8 fits into 39 four times, with 1 left over
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Aside: Modulo Operator

Modulo is the remainder of a division operation

• 16 % 8 = 0
• 8 fits into 16 twice, with none left over

• -10 % 8 = 6
• -10 is 6 away from -16

• 39 % 8 = 7
• 8 fits into 39 four times, with 1 left over

When we mod by a number X, the result will be less than X

90



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

91

0 1 2 3 4 5 6 7



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

92

0 1 2 3 4 5 6 7

Add 5



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

93

0 1 2 3 4 5 6 7

Add 5

5 % 8 = 5



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 
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5
0 1 2 3 4 5 6 7

Add 5

5 % 8 = 5 store here



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

95

5
0 1 2 3 4 5 6 7

Add 5
Add 1732



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

96

5
0 1 2 3 4 5 6 7

Add 5
Add 1732 1732 % 8 = 4



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

97

1732 5
0 1 2 3 4 5 6 7

Add 5
Add 1732 1732 % 8 = 4 store here



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

98

1732 5
0 1 2 3 4 5 6 7

Add 5
Add 1732
Add 8
Add -2

Try adding these values 
to our array!



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

99

8 1732 5
0 1 2 3 4 5 6 7

Add 5
Add 1732
Add 8
Add -2

8 % 8 = 0



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

100

8 1732 5 -2
0 1 2 3 4 5 6 7

Add 5
Add 1732
Add 8
Add -2

-2 % 8 = 6



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

101

8 1732 5 -2
0 1 2 3 4 5 6 7

num % b gives us a valid index 
within our array



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

102

8 1732 5 -2
0 1 2 3 4 5 6 7

Add 4



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 
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8 1732 5 -2
0 1 2 3 4 5 6 7

Add 4
4 % 8 = 4



Idea 2: Modulo Array

• We have an array with b “buckets” - these are just the indices!

• We store each value num in bucket num % b 

104

8 1732 5 -2
0 1 2 3 4 5 6 7

Add 4
COLLISION!4 % 8 = 4



Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

105

0 1 2 3 4 5 6 7

41732



Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

• We’d like to be able to store multiple elements in the same bucket

106

1732
4

0 1 2 3 4 5 6 7



Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

• We’d like to be able to store multiple elements in the same bucket

• One idea: each bucket stores a linked list of elements
• If we prepend new nodes to the beginning of our list, this is still O(1)

107
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Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

• We’d like to be able to store multiple elements in the same bucket

• One idea: each bucket stores a linked list of elements
• If we prepend new nodes to the beginning of our list, this is still O(1)

108
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Dealing with Collisions

• Sometimes, two elements will be assigned to the same bucket
• This is called a collision!

• We’d like to be able to store multiple elements in the same bucket

• One idea: each bucket stores a linked list of elements
• If we prepend new nodes to the beginning of our list, this is still O(1)

109

0 1 2 3 4 5 6 7
4

1732



Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b 

110

0 1 2 3 4 5 6 7



Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b 
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0 1 2 3 4 5 6 7

Add 3



Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b 

112

0 1 2 3 4 5 6 7

Add 3 3 % 8 = 3

3

🙂



Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b 

113

0 1 2 3 4 5 6 7

Add 3979

3

🙂



Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b 
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0 1 2 3 4 5 6 7

Add 3979 3979 % 8 = 3

3979

😕
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Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b 

115

0 1 2 3 4 5 6 7

Add 27

3979

😕

3



Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b 
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0 1 2 3 4 5 6 7

Add 27 27 % 8 = 3

27

😣

3979

3



Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b 

117

0 1 2 3 4 5 6 7
27

😣

3979

3

🤔 Why don’t we like this?
Hint: think of contains and remove



Idea 3: Array of Linked Lists

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket num % b 

118

0 1 2 3 4 5 6 7
27

😣

3979

3

If all n of our elements end up in the same 
bucket, contains and remove will be O(n)



Hashing
How can we evenly distribute our elements across our buckets?
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Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!
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Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!
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Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!
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Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!
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Hash Function3 Bucket 3!



Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!
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Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!
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Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

• A hash function must be deterministic: same input produces same 

output
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Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

• A hash function must be deterministic: same input produces same 

output
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Hash Function15

If we hash this 
number again…



Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

• A hash function must be deterministic: same input produces same 

output

128

Hash Function15

If we hash this 
number again…

Bucket 7!

We’ll get the same 
result as before.



Hash Functions

• A hash function is a function that assigns elements to buckets
• We’ve been using the % operator as our hash function thus far!

• A hash function must be deterministic: same input produces same 

output

• We call the output of a hash function a hash code or hash value

129

Hash Function Bucket 7!



Good Hash Functions

• A good hash function distributes elements evenly across buckets
• This way, no bucket contains too many elements
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Hash Function
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Good Hash Functions

• A good hash function distributes elements evenly across buckets
• This way, no bucket contains too many elements

• Similar inputs will not necessarily have similar hash codes

131

Hash Function

😇
“starling” Bucket 3!

“staring” Bucket 193252!



A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

132
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A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)
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A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)
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A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)
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A Great Idea: Chaining Hash Table

• We have an array of linked lists with b “buckets”

• We store each value num in the linked list of bucket hash(num)

136

0 1 2 3 4 5 6 7

Hash 
Function

22 1928 5 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73

Add 12
12 Bucket 5!

1928

🎟 If we’ve got a good hash function, and 
we’ve hashed n elements into b buckets, 

what’s our average bucket size?



Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations
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Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations

• This means we’ll have to look through O(n/b) elements for 

contains and remove… is this better than O(n)?
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Load Factor: n/b

• The average number of elements in each bucket
• If the load factor is low: lots of empty buckets, wasted space

• If the load factor is high: very full buckets, slow operations

• This means we’ll have to look through O(n/b) elements for 

contains and remove… is this better than O(n)?
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Big idea: if we choose b (# of buckets) to be a 
number close to n, then n/b will be constant.



Introducing… HashSet!
A Stanford ADT that leverages Hash Tables to store a set of unique elements
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Introducing… HashSet!
A Stanford ADT that leverages Hash Tables to store a set of unique elements

143

👥 We’ve seen two implementations of a set: one with BSTs 
and one with Hash Tables. Why would the Hash Table 
implementation be called an “unordered set” in C++?



Let’s Draw it Out!

144



HashSet
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Operation Runtime

Contains O(n/b)

Insert O(n/b)

Remove O(n/b)

0 1 2 3 4 5 6 722 1928 12 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73 1928



HashSet

146

Operation Runtime

Contains O(1)

Insert O(1)

Remove O(1)

0 1 2 3 4 5 6 722 1928 12 -99 8-7143

0 1 2 3 4 5 6 722 1928 -99 8-73 1928



Applications of Hashing
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Cryptography

• Rather than storing your password, websites will store a hash of 

your password

148

Hash FunctioniloveCS106B!
09823589
71401928
39013414



Cryptography

• We can use hash functions to verify data 

149

Hash Function
93675647
36124375
40509230

My essay
I really do love binary 
search trees. One day, I 
hope to grow big and 
strong and become one 
myself…



Cryptography

• We can use hash functions to verify data 
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Hash Function
46845926
26002846
46372833

My essay
I really do hate binary 
search trees. One day, I 
hope to grow big and 
strong and become one 
myself…



Assignment 0

• We used a hash function to assign every student a unique hash 

code that couldn’t be replicated without running the hash function

151

int nameHash(string first, string last) {
    static const int kLargePrime = 16908799;
    static const int kSmallPrime = 127;
    int hashVal = 0;

    for (char ch: first + last) {
        ch = tolower(ch);
        hashVal = (kSmallPrime * hashVal + ch) % kLargePrime;
    }

    return hashVal;
}



Recap

• ADT showdown

• Achieving O(1) contains/add/remove
• Hash functions and hash tables

• HashSet/unordered_set
• Applications of hash functions
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Thank you!
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