Dijkstra’s Algorithm

An lllustration

Slides by Sean Szumlanski for CS106B, Programming Abstractions
Winter 2024

Dijkstra’s Algorithm

Goal:

Assumptions:

Motivation:

Find the lowest-cost path from some start vertex
(source) to every other vertex in the graph.

Edges all have non-negative weights.

Sending a message to every other node in a network
as fast as possible.

Shipping from a central distribution center, taking the
shortest path to all destinations.

Modeling the spread of infectious diseases through
social networks.

Evaluating degrees of separation between humans
based on social network activity.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

Let's trace through the algorithm to see how it works.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

1: |Initialize a value at each vertex to infinity («). Call these values dist[i].

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

1: |Initialize a value at each vertex to infinity («). Call these values dist[i].

Note: These ~ values represent the cost of reaching each vertex from our source,
using only intermediary vertices whose shortest paths we have already found.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

2: Initialize the value at our source vertex to zero and mark the source
vertex as visited.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

2: Initialize the value at our source vertex to zero and mark the source
vertex as visited.

Note: Clearly we can get from vertex A to vertex A at a cost of zero...

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

3: Update the cost of getting from the source vertex to every other vertex:

MIN{weight[source, i], dist[i]}

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

3: Update the cost of getting from the source vertex to every other vertex:
MIN{weight[source, i], dist[i]}

Note: These dist[i] values now represent the lowest-cost path from A using no
intermediate vertices. (Unless we had negative edge weights...)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.

Note: Clearly we have found a shortest path from vertex A to vertex |, since any
other path must go through edges of greater (or equal) weight.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:

MIN{dist[i]+ weight[i, j], dist[j]}

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
MIN{dist[i]+ weight[i, j], dist[j]}

Note: The dist[i] values now indicate the lowest cost path from vertex A if we allow
vertex | to be used as an intermediary vertex along the path.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)

MIN{dist[i]+ weight[i, j], dist[j]}

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)

MIN{dist[i]+ weight[i, j], dist[j]}

Note: The dist[i] values now indicate the lowest cost path from vertex A if we allow
vertices | and E to be used as intermediary vertices along the path.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)

MIN{dist[i]+ weight[i, j], dist[j]}

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)

MIN{dist[i]+ weight[i, j], dist[j]}

Note: The dist[i] values now indicate the lowest cost path from vertex A if we allow
vertices 1, E, and G to be used as intermediary vertices along the path.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)

MIN{dist[i]+ weight[i, j], dist[j]}

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)

MIN{dist[i]+ weight[i, j], dist[j]}

Note: The dist[i] values now indicate the lowest cost path from vertex A if we allow
vertices 1, E, G, and B to be used as intermediary vertices along the path.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)
MIN{dist[i]+ weight[i, j], dist[j]}

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)
MIN{dist[i]+ weight[i, j], dist[j]}

Note: The dist[i] values now indicate the lowest cost path from vertex A if we allow
vertices I, E, G, B, and F to be used as intermediary vertices along the path.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)
MIN{dist[i]+ weight[i, j], dist[j]}

Note: The dist[i] values now indicate the lowest cost path from vertex A if we allow
vertices I, E, G, B, F, and H to be used as intermediary vertices along the path.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)
MIN{dist[i]+ weight[i, j], dist[j]}

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

5: From that vertex, i, update the dist[j] values for all adjacent vertices, j:
(again)
MIN{dist[i]+ weight[i, j], dist[j]}

Note: The dist[i] values now indicate the lowest cost path from vertex A if we allow
vertices I, E, G, B, F, H, and C to be used as intermediary vertices along the path.

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

4: Choose the unvisited vertex with the smallest dist[i] value and visit it.
(again)

Dijkstra’s Algorithm

(calculating the cheapest path from a source vertex to all other vertices)

6: All vertices are visited, so terminate.

We now know the lowest cost to get from vertex A to each other vertex
in the graph!

An idea for path recovery

(with Dijkstra’s Algorithm)

Idea: Keep track of the vertex we take every time we update a dist[i] value.

An idea for path recovery

(with Dijkstra’s Algorithm)
5, A

5 G

Idea: Keep track of the vertex we take every time we update a dist[i] value.

Now follow the vertices backward to the source to reconstruct the path.

For example, the pathtoDisD«— C «— 1 — A(akaA —>1— C — D)

The Algorithm

(with Dijkstra’s Algorithm)

Initialize dist[i] to .
Initialize dist[source] to O.

while there are unvisited vertices:

Find the unvisited vertex with minimum dist[i] value
Visit that vertex.
Update dist[i] for its unvisited neighbors.

We might want to halt if the minimum dist[i] value is «.

What is the runtime?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

