
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Today’s Topics

Introducing C++

 Hamilton example

› In QT Creator (the IDE for our class)

› Function prototypes

› cout

› C++ characters and strings

› Next time: Testing our code

 For important announcements, be sure to see the weekly announcements
post on the Ed Q&A board! https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Welcome to C++

L E T ’ S S T A R T C O D I N G ! !

C++ variables and types (1.5-1.8)

 The C++ compiler is rather picky about
types when it comes to variables.

 Types exist in languages like Python (see
the two code examples at right), but you
don’t need to say much about them in the
code. They just happen.

 The first time you introduce a variable in
C++, you need to announce its type to the
compiler (what kind of data it will hold).
› After that, just use the variable name

(don’t repeat the type).
› You won’t be able to change the type of

data later! C++ variables can only hold
one kind of thing.

int x = 42 + 7 * -5;
double pi = 3.14159;
char letter = 'Q';
bool done = true;

C++

Python

x = 42 + 7 * -5
pi = 3.14159
letter = 'Q'
done = True

x = x – 3;

x = x - 3

Some C++ logistical details (2.2)

#include <libraryname> // standard C++ library

#include "libraryname.h" // local project library

 Attaches a library for use in your program

 Note the differences (common bugs):

› <> vs " "

› .h vs no .h

C++ math functions (2.1)

#include <cmath>

Function name Description (returns)

abs(value) absolute value

ceil(value) rounds up

floor(value) rounds down

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

pow(base, exp) base to the exp power

round(value) nearest whole number

sqrt(value) square root

sin(value)
cos(value)
tan(value)

sine/cosine/tangent of
an angle in radians

Live coding in Qt

H A M I L T O N K I N G G E O R G E
E X A M P L E

Hamilton Code Demo:
What essential skills did we just see?

 You must use function prototypes for your helper functions (if you want to
keep main at the top, which is good style)

 You can write input/output with:

› cout (<iostream>)

 cout uses the << operator

› Remember: the arrows point in the way the data is “flowing”

› These aren’t like HTML tags or C++ parentheses () or curly
braces { } in that they don’t need to “match”

 Good style: const int to make int constants

› (in demo, not previous slides)

› No “magic numbers”!

› Works for other types too (const double)

Live Coding
concept review

F U N C T I O N P R O T O T Y P E S

A simple C++
program
(ERROR)

simple.cpp #include <iostream>
#include "console.h"
using namespace std;

int main() {
myFunction(); // compiler is unhappy with this line
return 0;

}

void myFunction() {
cout << "myFunction!!" << endl;

}

A simple C++
program
(Fix option 1)

simple.cpp #include <iostream>
#include "console.h"
using namespace std;

void myFunction() {
cout << "myFunction!!" << endl;

}

int main() {
myFunction(); // compiler is happy with this line now
return 0;

}

A simple C++
program
(Fix option 2)

simple.cpp #include <iostream>
#include "console.h"
using namespace std;

void myFunction(); // this is called a function prototype

int main() {
myFunction(); // compiler is happy with this line now
return 0;

}

void myFunction() {
cout << "myFunction!!" << endl;

}

A simple C++
program
(Fix option 2)

simple.cpp #include <iostream>
#include "console.h"
using namespace std;

void myFunction(); // this is called a function prototype

int main() {
myFunction(); // compiler initially ok with this line…
return 0;

}

// …but sad when it realizes it was tricked and you
// never gave a definition of myFunction!!

Live Coding
concept review

S T R I N G S A N D
C H A R A C T E R S I N C + +

Using cout and strings

int main(){

string s = "ab";

s = s + "cd";

cout << s << endl;

return 0;

}

15

• This prints “abcd”

• The + operator
concatenates strings in
the way you’d expect.

• But…SURPRISE!…this one
doesn’t work.

int main(){

string s = "ab" + "cd";

cout << s << endl;

return 0;

}

String literals vs. C++ string objects

 In this class, we will interact with two types of strings:

› String literals are just hard-coded string values:

• "hello!" "1234" "#nailedit"

– They are old C (pre-C++) style, but we still need to use them

• They have no methods that do things for us

– Object-oriented programming didn’t exist back in the day of C!

› String objects are objects with lots of helpful methods and operators:

• string s;

• string piece = s.substr(0,3);

• s.append(t); //or, equivalently: s += t;

C++ standard string class member functions (3.2)

#include <string>

string name = "Donald Knuth";
if (name.find("Knu") != string::npos) {

name.erase(5, 6);
}

Member function name Description

s.append(str) add text to the end of a string

s.compare(str) return -1, 0, or 1 depending on relative ordering

s.erase(index, length) delete text from a string starting at given index

s.find(str)

s.rfind(str)

first or last index where the start of str appears in
this string (returns string::npos if not found)

s.insert(index, str) add text into a string at a given index

s.length() or s.size() number of characters in this string

s.replace(index, len, str) replaces len chars at given index with new text

s.substr(start, length) or
s.substr(start)

the next length characters beginning at start
(inclusive); if length omitted, grabs till end of string

Exercise:

Write a line of code that pulls out all but the first and last character of a string str.
(it’s ok to assume string length is at least 3)

string middlePart = ___;

s.substr(start, length) or
s.substr(start)

the next length characters beginning at start
(inclusive); if length omitted, grabs till end of string

pollev.com/cs106b

Stanford library helpful string processing (read 3.7)
#include "strlib.h"

 Unlike the previous ones, these take the string as a parameter.

› C++ string class example: firstName.substr(0, 10);

› Stanford string library example: trim(firstName);

 That’s because we here at Stanford wrote these functions, and they are not
official C++ string class methods.

Function name Description

endsWith(str, suffix)
startsWith(str, prefix)

returns true if the given string begins or ends with the
given prefix/suffix text

integerToString(int)
realToString(double)
stringToInteger(str)
stringToReal(str)

returns a conversion between numbers and strings

equalsIgnoreCase(s1, s2) true if s1 and s2 have same chars, ignoring casing

toLowerCase(str)
toUpperCase(str)

returns an upper/lowercase version of a string

trim(str) returns string with surrounding whitespace removed

Live Coding concept
review

S T Y L E A N D T E S T I N G

Code Quality in CS106B

 More details about our expectations
on the website 

 Take-home messages:

› Testing is an essential part of software development.

• “If you haven’t tested it, it doesn’t work.”

› Just as important as writing code that works is writing it well, and making
it readable by other humans.

Hamilton Code Style Notes

 Descriptive function and variable names
› Even someone who doesn’t know code would have a pretty good idea what a

function called “generate lyrics” does!
 Proper indentation

› Even though C++ relies on the {} and not indentation (!)
› Pro tip: in Qt Creator, select all then do CTRL-I (PC) or Cmd-I (Mac)

 One space between operators and variables
› Write i < 3, not i<3
› Coders were social distancing before it was cool
› Again, we do this even though C++ doesn’t rely on it for parsing

 Define constants at the top of your file for any special values
› Example: const int DAT_FREQ = 3;
› Helps the reader understand what the value means or where it comes from
› If you use the value in several places, only need to change it in one place

Next time: Testing our
Code

C S 1 0 6 B T E S T I N G F R A M E W O R K

