
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Today’s Topics

 Recursion!

› Algorithm performance analysis with Big-O

 Next time:

› More recursion! It’s Recursion Week!

› Like Shark Week, but more nerdy

 For important announcements, be sure to see the weekly announcements post on the Ed
Q&A board! https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Binary Search

A N E L E G A N T S O L U T I O N T O
T H E P R O B L E M O F T O O M U C H

D A T A

Current issue in
computer science:
we have loads of
data! Once we have
all this data, how do
we find anything?

The context:

 You have a collection of numbers

› Say product IDs for items in stock in a store

› We’re going to store our collection of numbers in a Vector

› We’re going to keep them in sorted order

 It’s important to be able to find out whether you have a particular number in
your collection or not

› A customer asks, “Do you have item 8 in stock?” (Yes.)

› A customer asks, “Do you have item 55 in stock?” (No.)

 Key question: How long does this take?

5

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

 Basic approach: Start at the front and proceed forward until you find:

› X (answer Yes)

› A number greater than X (answer No)

› End of the list (answer No)

 Key observation: each time you compare against the contents of a cell of the
Vector and it’s not X, you rule out *1* of the N cells in the Vector

Does this list of numbers contain X?

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Context: we have a collection of numbers in a Vector, in sorted order.

Does this list of numbers contain X?

Context: we have a collection of numbers in a Vector, in sorted order.

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

 Efficiency Hack: Jump to the middle of the Vector and look there to find:

› X (answer Yes)

› A number greater than X (rule out entire second half of Vector)

› A number less than X (rule out entire first half of Vector)

 Key observation: with *one* comparison, you ruled out *N/2* of the N cells in
the Vector!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Does this list of numbers contain X?

Context: we have a collection of numbers in a Vector, in sorted order.

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

 Efficiency Hack: Jump to the middle of the Vector and look there to find:

› X (answer Yes)

› A number greater than X (rule out entire second half of Vector)

› A number less than X (rule out entire first half of Vector)

 Key observation: with *one* comparison, you ruled out *N/2* of the N cells in
the Vector!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Now we could do our
Basic Approach, but in

half the time.
Thanks, Efficiency

Hack!!

…but I have an
even better idea...

Does this list of numbers contain X?

Context: we have a collection of numbers in a Vector, in sorted order.

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

 Extreme Efficiency Hack: Keep jumping to the middle!

› Let’s say our first jump to the middle found a number less than X, so we ruled
out the whole first half:

› Now jump to the middle of the remaining second half:

 Key observation: we do one piece of work, then delegate the rest. Recursion!!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Basic Recursive Function Design Pattern

Always two parts:

Base case:

• This problem is so tiny, it’s hardly a problem anymore! Just give
answer.

Recursive case:

• This problem is still a bit large, let’s (1) bite off just one piece, and
(2) delegate the remaining work to recursion.

 We’ll write the real C++ code together on Friday, but here’s the outline/pseudocode of
how it works:

bool binarySearch(Vector<int>& data, int key)
{

if (data.size() == 0) {
return false;

}
if (key == data[midpoint]) {

return true;
} else if (key < data[midpoint]) {

return binarySearch(data[first half only], key);
} else {

return binarySearch(data[second half only], key);
}

}

Binary Search pseudocode

 We’ll write the real C++ code together on Friday, but here’s the outline/pseudocode of
how it works:

bool binarySearch(Vector<int>& data, int key)
{

if (data.size() == 0) {
return false;

}
if (key == data[midpoint]) {

return true;
} else if (key < data[midpoint]) {

return binarySearch(data[first half only], key);
} else {

return binarySearch(data[second half only], key);
}

}

Binary Search pseudocode

Base case: we shrank the search
problem so tiny it no longer exists!

Do one piece of work
(comparison)

Delegate the rest
of the work

Recursive case:

Big-O Performance
Analysis

A W A Y T O C O M P A R E T H E
N U M B E R O F S T E P S T O R U N

T H E S E F U N C T I O N S

Big-O analysis in computer science

Big-O analysis in computer science

Formal definition of big-O

We say a function 𝑓 𝑛 is “big-O” of another function 𝑔 𝑛
(written 𝑓 𝑛 = O(𝑔 𝑛))

if and only if

there exist positive constants 𝑐 and 𝑛0 such that

𝑓 𝑛 ≤ 𝑐 ∙ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0.

c says “we don’t care
about constant

coefficients”

n0 says “we only care
about performance on

big data sets”

Before we start, let’s get introduced

17

Before we start, let’s get introduced

Lets say I want to meet each of you today with a handshake and you tell me
your name…

How many introductions need to happen?

There are N people in the room including me

But do I need to shake hands with myself, or tell myself my name?

N-1 introductions

18

😊 😊 😊 😊 😊 😊 😊 😊 Me

Me

Putting this in Big-O terms

Big-O is a way of categorizing amount of work to be done in
general terms, with a focus on:

 Rate of growth as a function of the problem size N

 What that rate looks like on the horizon (i.e., for large N)

Therefore, we don’t really care about an insignificant ±1

19

😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊
M
e

Putting this in Big-O terms

For the first handshake problem, the rate N is important and the -1 constant
is not, so N – 1 introductions becomes:

O(N)  O(N)

Similarly, if we said that each introduction takes 3 seconds, the amount of
time is 3(N – 1) = 3N – 3, but we disregard the constant 3s:

O(N)  O(N)

20

-1

- 33

Before we start, let’s get introduced

What if I not only want you to be introduced to me, but to each other? (Note: I
don’t need to tell anyone my name, and nobody needs to tell themselves
their own name, so subtract those out.)

Now how many introductions?

21

😊 😊 😊 😊 😊 😊 😊 😊 Me

😊

😊

😊

😊

😊

😊

😊

😊

Me

N2

N

What if I not only want you to be introduced to me, but to each other? (Note: I
don’t need to tell anyone my name, and nobody needs to tell themselves
their own name, so subtract those out.)

Now how many introductions?

Before we start, let’s get introduced

22

N2(N - 1)2 = N2 - 2N + 1

N

Putting this in Big-O terms

For the second handshake problem, the introductions was N2 - N:

O(N2)  O(N2)

But wait, didn’t we just say that a term of +/- N was important?

For Big-O, we only care about the largest term of the polynomial

23

- 2N + 1

Big-O and Binary Search

S P O I L E R : F A S T ! !

Binary search

Jump right to the middle of the region to search, then repeat
this process of roughly cutting the array in half again and
again until we either find the item or (worst case) cut it
down to nothing.

Worst case cost is number of times we can divide length in half:

𝑂(log2𝑁)

2 7 8 13 25 29 33 51 89 90 95

Putting it all together

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64

7 128

8 256

9 512

10 1,024

30 2,700,000,000

Binary search Handshake #1 Handshake #2

Naïve
Recursive
Fibonacci
(O(1.6n))

MANY important
optimization and
other problems

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64

7 128

8 256

9 512

10 1,024

30 2,700,000,000

2.4s

Easy!

Traveling Salesperson Problem:
We have a bunch of cities to visit. In what order should
we visit them to minimize total travel distance?

Traveling Salesperson Problem:
We have a bunch of cities to visit. In what order should
we visit them to minimize total travel distance?

Exhaustively try all orderings: O(n!)
Use current best known algorithm: O(n22n)
Maybe we could invent an algorithm that fits in our
rightmost column: O(2n)

So let’s say we come up with a way to solve
Traveling Salesperson Problem in O(2n).

It would take 4 days to solve Traveling
Salesperson Problem on 50 state capitals.

Two tiny little updates

Imagine we approve statehood for US
territory Puerto Rico

 Add San Juan, the capital city

Also add Washington, DC

Now 52 capital cities instead of 50

This work has been released into the public domain by its author, Madden.
This applies worldwide.

http://en.wikipedia.org/wiki/en:public_domain
http://commons.wikimedia.org/wiki/User:Madden

For 50 state capitals: ~4 days
With the O(2n) algorithm we invented, it
would take ~__?__ days to solve Traveling
Salesperson problem on 50 state capitals + 2
(DC and San Juan)

A. 6 days
B. 8 days
C. 10 days
D. > 10 days

pollev.com/cs106b

With the O(2n) algorithm we invented, it would
take ~16 days to solve Traveling Salesperson
problem on 50 state capitals + 2 (DC and San Juan)

Sacramento is not exactly the most interesting or
important city in California (sorry, Sacramento).

What if we add the 12 biggest non-capital cities
in the United States to our map?

With the O(2n) algorithm we invented,
It would take 194 YEARS to solve Traveling
Salesman problem on 64 cities (state capitals +
DC + San Juan + 12 biggest non-capital cities)

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128

8 256

9 512

10 1,024

30 2,700,000,000

194 YEARS

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256

9 512

10 1,024

30 2,700,000,000

3.59E+21 YEARS

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256

9 512

10 1,024

30 2,700,000,000

3,590,000,000,000,000,000,000
YEARS

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512

10 1,024

30 2,700,000,000

For comparison: there are
about 10E+80 atoms in the
universe. No big deal.

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024

30 2,700,000,000

1.42E+137 YEARS

LOL

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)
1,048,576

(.0003s)
1.80 x 10308

30 2,700,000,000
84,591,843,105

(28s)
7,290,000,000,000,000,

000 (77 years)

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)
1,048,576

(.0003s)
1.80 x 10308

31 2,700,000,000
84,591,843,105

(28s)
7,290,000,000,000,000,

000 (77 years)
1.962227 x
10812,780,998

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)
1,048,576

(.0003s)
1.80 x 10308

30 2,700,000,000
84,591,843,105

(28s)
7,290,000,000,000,000,

000 (77 years)
1.962227 x
10812,780,998

2n is clearly infeasible, but look at
log2n—only a tiny fraction of a second!

In Conclusion

 NOT worth doing: Optimization of your code that just trims a bit

› Like that +/-1 handshake—we don’t need to worry ourselves about it!

› Just write clean, easy-to-read code!!!!!

 COULD BE worth doing: Optimization of your code that changes Big-O

› If performance of a particular function is important, focus on this!

› (but if performance of the function is not very important, for example it will
only run on small inputs, just focus on writing clean, easy-to-read code!!)

 (Also remember that efficiency is not necessarily a virtue—first and foremost
focus on correctness, both technical correctness and ethical/moral
correctness)

