
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Today’s Topics

 Recursion!
› Code up the Binary Search algorithm from last time

• New decomposition concept: recursive helper function
› Rewrite our Fibonacci code

• New algorithm concept: memo-ization to improve efficiency
› Use recursion to enumerate all possible sequences

• Assignment 3 hints!
 Next week:

› More advanced recursion
› “Backtracking” recursion for solving tricky problems like mazes

 For important announcements, be sure to see the weekly announcements post on the Ed Q&A
board! https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Binary Search Refresher

(R E C A L L F R O M W E D N E S D A Y ’ S
L E C T U R E)

Does this list of numbers contain X?

Context: we have a collection of numbers in a Vector, in sorted order.

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

 Efficiency Hack: Jump to the middle of the Vector and look there to find:

› X (answer Yes)

› A number greater than X (rule out entire second half of Vector)

› A number less than X (rule out entire first half of Vector)

 Key observation: with *one* comparison, you ruled out *N/2* of the N cells in
the Vector!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Does this list of numbers contain X?

Context: we have a collection of numbers in a Vector, in sorted order.

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

 Extreme Efficiency Hack: Keep jumping to the middle!

› Let’s say our first jump to the middle found a number less than X, so we ruled
out the whole first half:

› Now jump to the middle of the remaining second half:

 Key observation: we do one piece of work, then delegate the rest. Recursion!!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Binary Search
Implementation

N O W W E U N D E R S T A N D T H E
A P P R O A C H .

W H A T D O E S T H E C O D E L O O K
L I K E ?

bool binarySearch(Vector<int>& data, int key)
{

if (data.size() == 0) {
return false;

}
if (key == data[midpoint]) {

return true;
} else if (key < data[midpoint]) {

return binarySearch(data[first half only], key);
} else {

return binarySearch(data[second half only], key);
}

}

Binary Search pseudocode

Base cases

Recursive case

From
previous
lecture

bool binarySearch(Vector<int>& data, int key)
{

if (data.size() == 0) {
return false;

}
if (key == data[midpoint]) {

return true;
} else if (key < data[midpoint]) {

return binarySearch(data[first half only], key);
} else {

return binarySearch(data[second half only], key);
}

}

Binary Search pseudocode
Issue: copying half the
data into a new, smaller
Vector each time would
be very inefficient, and
defeat the purpose of
pass-by-reference.

bool binarySearch(Vector<int>& data, int key, int start, int end)
{

if (data.size() == 0) {
return false;

}
if (key == data[midpoint]) {

return true;
} else if (key < data[midpoint]) {

return binarySearch(data[first half only], key);
} else {

return binarySearch(data[second half only], key);
}

}

Binary Search pseudocode

Idea: pass the whole
Vector by reference, but
add parameters that
indicate the bounds on
the portion of the
Vector currently in use.

Design Tip: Recursive Helper Function

 Sometimes managing data within a recursive function requires extra
parameters.

 We don’t want to clutter up the parameter list that the outside world sees,
so what should we do??

 Make the primary function basically just a quick pass-through to a
recursive helper function that does the hard work (and takes some extra
parameters to help it do that work).

 In this class, unless otherwise stated, when you are asked to implement a
function with a certain function signature, it’s ok to add a recursive helper
function behind the scenes.

// this is the primary binary search function

bool binarySearch(const Vector<int>& data, int key) {

return binarySearch(data, key, 0, data.size() - 1);

}

// this is a recursive helper function

bool binarySearch(Vector<int>& data, int key, int start, int end)

{

if (start > end) {

return false;

}

int mid = (start + end) / 2;

if (key == data[mid]) {

return true;

} else if (key < data[mid]) {

return binarySearch(data, key, start, mid - 1);

} else {

return binarySearch(data, key, mid + 1, end);

}

}

Rewriting Fibonacci

U S I N G M E M O I Z A T I O N
T O M A K E I T M U C H M O R E

E F F I C I E N T

Rewriting Fibonacci

 Recall that the naïve recursive
implementation involved a lot of
wasteful duplicative work.

› Once we calculate N=2 case
the first time, let’s just
remember the answer is 1.

› Now we don’t have to do it
again.

N=5

N=4 N=3

N=2

N=1 N=0

N=1
N=3

N=2

N=1 N=0

N=1

N=2

N=1 N=0

Rewriting Fibonacci

 Recall that the naïve recursive
implementation involved a lot of
wasteful duplicative work.

› Once we calculate N=2 case
the first time, let’s just
remember the answer is 1.

› Now we don’t have to do it
again.

› Once we calculate N=3 case
the first time, let’s just
remember the answer is 3.

› Now we don’t have to do it
again.

N=5

N=4 N=3

N=2

N=1 N=0

N=1
N=3

N=2

N=1 N=0

N=1

N=2

N=1 N=0

Rewriting Fibonacci

 Before

 After

N=5

N=4 N=3

N=2

N=1 N=0

N=1
N=3

N=2

N=1 N=0

N=1

N=2

N=1 N=0

N=5

N=4 N=3

N=3

N=2

N=1 N=0

N=1

N=2

Memoization implementation
// this is the primary function
int fasterFibonacci(int n)
{

// this will hold our results as {n, Fib(n)}, starting with our base cases
Map<int, int> memos = { {0, 0}, {1, 1} };
return fasterFibonacci(n, memos);

}

// this is a recursive helper function
int fasterFibonacci(int n, Map<int, int>& memos)
{

// if we already know the answer, just return it
if (memos.containsKey(n)) {

return memos[n];
} else {

// calculate new answer and save it for later
int result = fasterFibonacci(n - 1, memos) + fasterFibonacci(n - 2, memos);
memos[n] = result;
return result;

}
}

Another example of
needing to make a

recursive helper
function that takes
extra parameters.

Heads or Tails?

G E N E R A T I N G S E Q U E N C E S

Heads or Tails?

 You flip a coin 5 times

 What are all the possible heads/tails
sequences you could observe?

› TTTTT

› HHHHH

› THTHT

› HHHHT

› etc…

 We want to write a program to print each
of the possible sequences.

void generateAllSequences(int length)
{

string sequence;
generateAllSequences(length, sequence);

}

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

}

Generating all possible coin flip sequences

Your Turn: coin flip sequences

Q: Of these sequences (all of
which should be printed),
which sequence will be
printed first? And which last?

› TTTTT, HHHHH,
THTHT, HHHHT

void generateAllSequences(int length)
{

string sequence;
generateAllSequences(length, sequence);

}

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

}

pollev.com/cs106b

Helpful mental models for recursion: the call stack, and the call tree

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

Remember we used this to help us
understand Factorial recursion:

Remember we used this to help us
understand Fibonacci recursion:

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""4

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""4

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

4

3

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

4

3

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

4

3

2

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

4

3

2

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

"HHH"

4

3

2

1

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

"HHH"

4

3

2

1

Call stack for our Heads/Tails code

Recursive code

Text, Heap

""

"H"

"HH"

"HHH"

"HHHH"

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

4

3

2

1

0

Finally hit base
case! Print HHHH

and return.

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

Call stack for our Heads/Tails code

Recursive code

Text, Heap

We come back to
this next line so it’s

time to add a T.

""

"H"

"HH"

"HHH"

4

3

2

1

Most recent stack
frame “popped” off
the stack when we

returned.

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

"HHH"

"HHHT"

4

3

2

1

0

At the base case
again, we print

HHHT and return.

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

"HHH"

4

3

2

1

This function call has reached the
end (did both recursive calls), so it

is done and it returns.

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

4

3

2

We come back to
this next line so it’s

time to add a T.

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

"HHT"

4

3

2

1

Now ends in T.

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

"HHT"

4

3

2

1

Add an H after
the T

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

"HHT"

"HHTH"

4

3

2

1

0

At the base case
again, we print HHTH

and return.

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

"HHT"

4

3

2

1

Came back here, time
to do the second

recursive call.

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

""

"H"

"HH"

"HHT"

"HHTT"

4

3

2

1

0

At the base case again,
we print HHTT as the

fourth completed
sequence, and return.

Call stack for our Heads/Tails code

Recursive code

Text, Heap

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

This function call has reached the
end (did both recursive calls), so it

is done and it returns.

""

"H"

"HH"

"HHT"

4

3

2

1

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

Call stack for our Heads/Tails code

Recursive code

Text, Heap
This function call has also reached
the end (did both recursive calls),

so it is also done and returns.

""

"H"

"HH"

4

3

2

void generateAllSequences(int length, string sequence)
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;
return;

}
// recursive cases: add H or T and continue

generateAllSequences(length - 1, sequence + "H");

generateAllSequences(length - 1, sequence + "T");
}

Call stack for our Heads/Tails code

Recursive code

Text, Heap

This function still
needs to do its second
recursive call with T,

but we’ll end our
animation here. 

""

"H"

4

3

Call tree for Heads/Tails code

Labels are based on the value of the sequence parameter at the time of the
function call (without add/erase/add edits we make inside the function).

47

""

"H" "T"

"HH"

"HHH"

"HHHH"

"HHT"

"HT"

"HTH" "HTT"

"HHHT" "HHTH" "HHTT"

… …

… …

