Programming Abstractions
CS106B

Cynthia Bailey
Chris Gregg

Stanford University

pollev.com/cs106b

Today’s Topics

Recursion!
> Code up the Binary Search algorithm from last time
* New decomposition concept: recursive helper function
> Rewrite our Fibonacci code
* New algorithm concept: memo-ization to improve efficiency
> Use recursion to enumerate all possible sequences
* Assignment 3 hints!
= Next week:
> More advanced recursion
» “Backtracking” recursion for solving tricky problems like mazes

= Forimportant announcements, be sure to see the weekly announcements post on the Ed Q&A
board! https://edstem.org

= Also on Ed: live lecture Q&A with Chris & Jonathan

Stanford University

https://edstem.org/

Binary Search Refresher

(RECALL FROM WEDNESDAY’S
LECTURE)

Stanford University

Does this list of numbers contain X?

Context: we have a collection of numbersin a Vector, in sorted order.
0 1 (2 3 |4 86 |7 |8 |9 |10
2 7 8 13 25 29 33 51 89 90 95
= Efficiency Hack: Jump to the middle of the Vector and look there to find:
> X (answer Yes)
> Anumber greater than X rule out entire second half of Vector)

> Anumber less than X (rule out entire first half of Vector)

= Key observation: with *one* comparison, you ruled out *N/2* of the N cells in
the Vector! Stanford University

Does this list of numbers contain X?

Context: we have a collection of numbersin a Vector, in sorted order.
0 |1 |2 |3 |4 86 |7 |8 |9 |10
2 7 8 13 25 29 33 51 89 90 95

= Extreme Efficiency Hack: Keep jumping to the middle!

> Let’s say our first jump to the middle found a number less than X, so we ruled
out the whole first half:

0 11]2 13 Ja |5 J6 |7 18]9 J10|

2 7 8 13 25 29 33 51 89 90 95
>~ Now jump to the middle of the remaining second half:

0 11 |2 |3 Ja |5 J6 |7 J8NNo9 [10 |

2 7 8 13 25 33 51 90 95

29 89

= Key observation: we do one piece of work, then delegate the rest. Recursion!!

Stanford University

Binary Search
Implementation

NOW WE UNDERSTAND THE
APPROACH.

WHAT DOES THE CODE LOOK
LIKE?

Stanford University

From
previous

Binary Search pseudocode

lecture

bool binarySearch(Vector<int>& data, int key)

{
if (data.size() == 0) {
return false;

- | Base cases

}
if (key == data[midpoint]) {
return true; — —
} else if (key < data[midpoint]) {
return binarySearch(data[first half only], key);
} else {
return binarySearch(data[second halfonly], key);

} —

.. | Recursive case

Stanford University

Binary Search pseudocode

Issue: copying half the
data into a new, smaller
Vector each time would

bool binarySearch(Vector<int>& data, int key) be very inefficient, and

{

defeat the purpose of

if (data.size() == 0) { pass-by-reference.

return false;

}
if (key == data[midpoint]) {
return true;
} else if (key < data[midpoint]) {
return binarySearch(data[first half only], y);
} else {
return binarySearch(data[second halfonly], key);

}

Stanford University

Binary Search pseudocode

bool binarySearch(Vector<int>& data, int key, int start, int end)

{ \

if (data.size() == 0) {

, return false; Idea: pass the whole

if (key == data[midpoint]) { Vector by reference, but
return true; add parameters that

} else if (key < data[midpoint]) { indicate the bounds on
return binarySearch(data[firsthalfonly], key| the portion of the

} else { Vector currently in use.

return binarySearch(data[second halfonly], k-

}

Stanford University

Design Tip: Recursive Helper Function

= Sometimes managing data within a recursive function requires extra
parameters.

= We don’t want to clutter up the parameter list that the outside world sees,
so what should we do??

v Make the primary function basically just a quick pass-through to a
recursive helper function that does the hard work (and takes some extra
parameters to help it do that work).

v' Inthis class, unless otherwise stated, when you are asked to implement a
function with a certain function signature, it’s ok to add a recursive helper
function behind the scenes.

Stanford University

// this is the primary binary search function
bool binarySearch(const Vector<int>& data, int key) {
return binarySearch(data, key, 0, data.size() - 1);

// this is a recursive helper function
bool binarySearch(Vector<int>& data, int key, int start, int end)
{
if (start > end) {
return false;
}
int mid = (start + end) / 2;
if (key == data[mid]) {
return true;
} else if (key < data[mid]) {
return binarySearch(data, key, start, mid - 1);
} else {
return binarySearch(data, key, mid + 1, end);

Stanford University

Rewriting Fibonacci

USING MEMOIZATION
TO MAKE IT MUCH MORE
EFFICIENT

Stanford University

Rewriting Fibonacci

= Recall that the naive recursive

implementation involved a lot of
wasteful duplicative work.

> Once we calculate N=2 case
the first time, let’s just
remember the answer is 1.

> Now we don’t have to do it
again.

Stanford University

Rewriting Fibonacci

» Recall that the naive recursive
implementation involved a lot of
wasteful duplicative work.

> Once we calculate N=2 case
the first time, let’s just
remember the answer is 1.

> Now we don’t have to do it
again.

> Once we calculate N=3 case
the first time, let’s just
remember the answer is 3.

> Now we don’t have to do it
again.

Stanford University

Rewriting Fibonacci

= Before

= After

Stanford University

Memoization implementation

// this is the primary function
int fasterFibonacci(int n)

{
// this will hold our results as {n, Fib(n)}, starting with our base cases
Map<int, int> memos = { {0, 0}, {1, 1} };
return fasterFibonacci(n, memos); Another example of

} needing to make a

// this is a recursive helper function recqrsnnahelper
int fasterFibonacci(int n, Map<int, int>& memos) function that takes
{ extra parameters.
// if we already know the answer, just return it
if (memos.containsKey(n)) {
return memos[n];
} else {
// calculate new answer and save it for later
int result = fasterFibonacci(n - 1, memos) + fasterFibonacci(n - 2, memos);
memos[n] = result;
return result;

} Stanford University

Heads or Tails?

GENERATING SEQUENCES

Stanford University

Heads or Tails?

* Youflip acoin5times \ B
= What are all the possible heads/tails |5

sequences you could observe? i
> TTTTT
> HHHHH
> THTHT
> HHHHT

> etc...

= We want to write a program to print each
of the possible sequences.

Stanford University

Generating all possible coin flip sequences

void generateAllSequences(int length)

{
string sequence;
generateAllSequences(length, sequence);
}
void generateAllSequences(int length, string sequence)
{
// base case: no more flips to perform
if (length <= 0) {
cout << sequence << endl;
return;
}
// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");
}

Stanford University

Your Turn: coin flip sequences

void generateAllSequences(int length)

{ Q: Of these sequences (all of
string sequence; which should be printed),
generateAllSequences(length, sequence); which sequence will be

} printed first? And which last?

void generateAllSequences(int length, string sequence) > TTTTT, HHHHH,

{ THTHT, HHHHT

// base case: no more flips to perform
if (length <= 0) {
cout << sequence << endl;

return;
}
// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H"); pollev.com/cs106b

generateAllSequences(length - 1, sequence + "T");

Stanford University

Helpful mental models for recursion: the call stack, and the call tree

Remember we used this to help us Remember we used this to help us
understand Factorial recursion: understand Fibonacci recursion:

main

() NeS
myfunction()x: | 4
xfac: | o N=3
factorial() n:| 4
factorial() n:| 3 N=2 N=1
=0
N=1 N=0

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, string sequence)

{
// base case: no more flips to perform

- if (length <= 0) {

cout << sequence << endl;
return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, string sequence)

{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;

return;

}

// recursive cases: add H or T and continue

‘ generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap }

Stanford University

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, string sequence)

{
// base case: no more flips to perform

‘ if (length <= 0) {

cout << sequence << endl;
return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, string sequence)

{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;

return;

}

// recursive cases: add H or T and continue

‘ generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

}

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mi

void generateAllSequences(int length, string sequence)

{
// base case: no more flips to perform

‘ if (length <= 0) {

cout << sequence << endl;
return;

3 llHll

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mi

void generateAllSequences(int length, string sequence)

3 "H"
{

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;

return;

}

// recursive cases: add H or T and continue

- generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

}

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mi

void generateAllSequences(int length, string sequence)

{
// base case: no more flips to perform

2 IIHHII
‘ if (length <= 0) {

cout << sequence << endl;
return;

3 llHll

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mmn

3 e void generateAllSequences(int length, string sequence)
{

2 "HH" // base case: no more flips to perform

if (length <= 0) {
cout << sequence << endl;
return;

}

// recursive cases: add H or T and continue

- generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

}

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mi

Finally hit base
case! Print HHHH)
and return.

void generateAllSequences(int lengt

3 "H"
{

// base case: no more flips to |

‘ if (length <= @) {

cout << sequence << endl;
return;

"HHHH"

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap

Stanford University

Call stack for our Heads/Tails code

4 mi

Text, Heap

Most recent stack Recursive code
frame “popped” off

ES AT ERR A LllSequences (int length, string sequence)
returned.

ase: no more flips to perform
if (length <= 0) {
cout << sequence << endl;
return;

We come back to

} this next line so it’s

// recursive cases: add H or T a timetoaddaT.

generateAllSequences(length - 1, Pence + "H");

‘generateAllSequences(length - 1,%sequence + "T");
}

Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mi

void generateAllSequences(int lengt{ NS N ENX< -0
{ again, we print

// base case: no more flips to [EEEIEIEy oIt}
- if (length <= @) {

cout << sequence << endl;
"HHHT" return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

3 llHll

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mmn

3 e void generateAllSequences(int length, string sequence)
{

2 "HH" // base case: no more flips to perform

if (length <= 0) {
cout << sequence << endl;
return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap

This function call has reached the

end (did both recursive calls), so it
is done and it returns. Stanford University

Call stack for our Heads/Tails code

h ™ Recursive code

3 e void generateAllSequences(int length, string sequence)

{

// base case: no more flips to perform
if (length <= 0) {
cout << sequence << endl;
return;

We come back to
this next line so it’s

}

// recursive cases: add H or T a timetoaddaT.

generateAllSequences(length - 1,

‘generateAllSequences(1ength - 1, sequence + "T");
}

Text, Heap

Stanford University

Call stack for our Heads/Tails code

h ™ Recursive code

Nl (S sm I ateAllSequences (int length, string sequence)

// base case: no more flips to perform
‘ if (length <= 0) {

cout << sequence << endl;

return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap

Stanford University

Call stack for our Heads/Tails code

4 mi
3 llHll
2 IIHHII

Text, Heap

Recursive code

void generateAllSequences(int length, string sequence)

{

// base case: no more flips to perform
if (length <= 0) {
cout << sequence << endl;
return;

Add an H after

} theT
// recursive cases: add H or T and continu€

‘ generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

}

Stanford University

Call stack for our Heads/Tails code

— Recursive code
4 At the base case

void generateAllSequences(int leng again, we print HHTH

{ , and return.
// base case: no more flips tol-

if (length <= 0) {

cout << sequence << endl;
"HHTH" return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

3 llHll

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mmn

3 e void generateAllSequences(int length, string sequence)
{

2 "HH" // base case: no more flips to perform

if (length <= 0) {
cout << sequence << endl;
return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
- generateAllSequences(length - 1, sequence + "T");
}

Text, Heap Came back here, time
to do the second

recursive call.

Stanford University

Call stack for our Heads/Tails code

- Recursive cod EARGIENENRLNEL-LI N
kS we print HHTT as the

void generateAllSequences(int 1len fourth completed

{
. sequence, and return.
// base case: no more flips te=s 9 -

if (length <= 0) {

cout << sequence << endl;
"HHTT" return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

3 llHll

Text, Heap

Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mmn
3 e void generateAllSequences(int length, string sequence)
{
2 "HH" // base case: no more flips to perform
if (length <= 0) {
cout << sequence << endl;

return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap

This function call has reached the

end (did both recursive calls), so it
is done and it returns. Stanford University

Call stack for our Heads/Tails code

Recursive code

4 mi

{

|> void generateAllSequences(int length, string sequence)

// base case: no more flips to perform
if (length <= 0) {

cout << sequence << endl;

return;

}

// recursive cases: add H or T and continue
generateAllSequences(length - 1, sequence + "H");
generateAllSequences(length - 1, sequence + "T");

Text, Heap

This function call has also reached

the end (did both recursive calls),
so itis also done and returns. Stanford University

Call stack for our Heads/Tails code

Recursive code

void generateAllSequences(int length, string sequence)

{

// base case: no more flips tq This function still
needs to do its second

if (length <= 0) {
cout << sequence << endl;

recursive call with T,
return;

} but we’ll end our
// recursive cases: add H or animation here. ©
generateAllSequences(length - equence + "H");
‘generateAllSequences(length - 1, sequence + "T");
}

Text, Heap

Stanford University

Call tree for Heads/Tails code

Labels are based on the value of the sequence parameter at the time of the
function call (without add/erase/add edits we make inside the function).

IIHHH n

n HHT "

"HHHH"

"HHHT"

"HHTH"

Stanford University

