
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Today’s Topics

 First advanced data structure implementation!
› More practice with classes + dynamic memory

› Good skills to practice for A5 homework that goes out tomorrow!

 Apply to be a section leader! Applications due Saturday Nov 2.
› Next quarter too busy to start? Fun fact: you can apply now and interview, and if

accepted, defer to Spring!

 For important announcements, be sure to see the weekly announcements post on the Ed
Q&A board! https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Today’s Agenda:

 Priority Queue ADT

 Two “starter” implementations that build on our array skills

› Sorted array

› Unsorted array

› Performance analysis

 Binary heap data structure implementation

› What are binary heaps?

› How do we do enqueue in a heap?

Previously:
 Stack implementation using dynamically-allocated array

› Pointers, new and delete

› Array doubling when capacity is exceeded

› Inserting and deleting elements from an array

 Big-O analysis

_elems:

_size: 10
_capacity: 13

Recall what we saw with Vector insert()

 Because memory is contiguous, all elements must scoot over to make
room for an inserted element

› For example, insert 10

0 1 2 3 4 5 6 7 8 9 10 11 12

2 7 8 13 25 29 33 51 89 90

 Because memory is contiguous, all elements must scoot over to make
room for an inserted element

› For example, insert 10

Recall what we saw with Vector insert()

_elems:

_size: 10
_capacity: 13

0 1 2 3 4 5 6 7 8 9 10 11 12

2 7 8

10

90895133292513

 Because memory is contiguous, all elements must scoot over to make
room for an inserted element

› For example, insert 10

Recall what we saw with Vector insert()

_elems:

_size: 11
_capacity: 13

0 1 2 3 4 5 6 7 8 9 10 11 12

2 7 8 10 13 25 29 33 51 89 90

Priority Queue ADT

 Purpose: we need to access items in order of priority

 Requirements

› The next item to access or remove is the highest-priority item

› New items may be added at any time

 Common use case or analogy: Hospital Emergency Department

› Patients are served in order of urgency of their condition, not first-come
first serve

Low priority High priority

Longer wait Next to be
served

Today’s Agenda:
 Priority Queue ADT

 Two “starter” implementations that build on our array skills

› Sorted array

› Unsorted array

› Performance analysis

 Binary heap data structure implementation

› What are binary heaps?

› How do we do enqueue in a heap?

› Homework: dequeue in a heap

Contents of one element of a Priority Queue

 Individual elements of our priority queue will have two pieces to them:

› An integer indicating the priority of this element

• We will use smaller number means higher priority, but could be done
either way

› A “payload” of whatever the actual element data is

• Varies based on application, but we’ll use a string for the patient name

0

6 "SooMin"

0

13 "Diego"

0

22 "Sasha"

0

15 "Muhammad"

Priority Payload

Two priority queue implementation options

Unsorted array

 Enqueue: add new element at the end of the array

 Dequeue: search for highest-priority item, then remove it

Sorted array

 Enqueue: add new element where it goes in priority-sorted order

 Dequeue: take the last element of the array

0 1 2 3 4

22 "Sasha" 6 "SooMin" 15 "Muhammad" 13 "Diego"

0 1 2 3 4

22 "Sasha" 15 "Muhammad" 13 "Diego" 6 "SooMin"

Unsorted array

Enqueue

Add new element

at the end of the array

Sorted array

Dequeue

Search for highest-priority
item, then remove it

Enqueue

Add new element where it
goes in priority-sorted order

Dequeue

Take the last element of the
array

12

Unsorted array

Enqueue

Add new element

at the end of the array

Sorted array

Dequeue

Search for highest-priority
item, then remove it

Enqueue

Add new element where it
goes in priority-sorted order

Dequeue

Take the last element of the
array

O(1)

O(1)
O(N)—items
may have to
scoot over

O(N)—search
whole array, and
items may have

to scoot over

Unsorted array

Enqueue

Add new element

at the end of the array

Sorted array

Dequeue

Search for highest-priority
item, then remove it

Enqueue

Add new element where it
goes in priority-sorted order

Dequeue

Take the last element of the
array

O(1)

O(1)
O(N)—items
may have to
scoot over

O(N)—search
whole array, and
items may have

to scoot over

Entirely unsorted is too chaotic, but entirely sorted is
too difficult to maintain

Is there a
“just-right”

compromise
with the

best of both?

O(1)

O(1)

Is there a
“just-right”

compromise
with the

best of both?

O(log2N)

O(log2N)

Entirely unsorted is too chaotic, but entirely sorted is
too difficult to maintain

O(1)

O(N)

(A)

(B)

(C)

(D)

(E)

The top line is O(N).
The bottom line is O(1).

Which of the 5 middle
lines is O(log2N)?

Aside: what does O(log2N) look like?

18

Today’s Agenda:
 Priority Queue ADT

 Two “starter” implementations that build on our array skills

› Sorted array

› Unsorted array

› Performance analysis

 Binary heap data structure implementation

› What are binary heaps?

› How do we do enqueue in a heap?

› Homework: dequeue in a heap

6 "SooMin"

Binary heap for our priority queue

 Binary heaps store things partially-sorted.

 The partial sorting will still be stored in an array, but it’s best to imagine it
as what we call a binary “tree”

› One root node at the top

› Each node has at most 2 children, “left” and “right”

 Here’s what it might look like:

13 "Diego"

15 "Muhammad"

22 "Sasha"

Root
node

Root’s
right
child

Root’s
left

child

Binary Heaps

Binary heaps have a few special restrictions, in addition to being a binary tree:

 Must be complete

› No “gaps”—nodes are filled in left-to-right on each level (row) of the tree

 Ordering of priorities must obey heap property

› A parent’s priority is always ≤ both its children’s priority (min-heap)

How many of these are valid binary heaps?
 Must be a valid binary tree

 Must be complete

 Ordering of priorities must
obey heap property

For the next few slides, we’ll focus on the priority, so for simplicity we’ll leave
the payload off the diagrams.

5

8

3

3

8

2

64

2

46

3

8

5

106

1422 11

2719

21

24

Implementing binary heap in an array

 Because of the special constraint that they must be complete, binary
heaps fit nicely into an array

 We fill the array by reading out the tree nodes
top to bottom, left to right

5

106

1419 11

2722

21
_size = 9
_capacity = 15
_elements =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 6 10 19 14 11 21 22 27 ? ? ? ? ? ?

Implementing binary heap in an array

 Because of the special constraint that they must be complete, binary
heaps fit nicely into an array

 We fill the array by reading out the tree nodes
top to bottom, left to right

5

106

1419 11

2722

21
_size = 9
_capacity = 15
_elements =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 6 10 19 14 11 21 22 27 ? ? ? ? ? ?

Let’s hop into the
code now!

Navigating in the heap array

 The parent of the node found in array index i is found where?

A. In array index i / 2

B. In array index i – 2

C. In array index (i – 1) / 2

D. In array index 2i

E. Somewhere else

› For now, assume that the node in array index i has a parent, i.e., i > 0

› Extra time? Think about a formula for the index of the left
and right child of index i

5

106

1419 11

2722

21
0 1 2 3 4 5 6 7 8

5 6 10 19 14 11 21 22 27

Fact summary: Binary heap in an array

 For tree of height h, required array length is 2^h - 1
 For a node in array index i:

› Parent is at array index: (i – 1)/2
› Left child is at array index: 2i + 1
› Right child is at array index: 2i + 2
› These all assume the parent/child exists

Take a
photo of this

slide for
reference!

5

106

1419 11

2722

21

0 1 2 3 4 5 6 7 8

5 6 10 19 14 11 21 22 27

_size = 8, _capacity = 15

0 1 2 3 4 5 6 7 8 … 14

5 7 10 18 14 11 21 27 ? … ?

Binary heap enqueue algorithm (append + “bubble up”)
_size = 9, _capacity = 15

0 1 2 3 4 5 6 7 8 … 14

5 7 10 18 14 11 21 27 6 … ?

We can tell by looking at this
tree visualization that the 6

doesn’t go here—but
remember in the code all you
have is the array. How do we

tell there?

Parent of index 8
is (8-1)/2 = 3.

Binary heap enqueue algorithm (append + “bubble up”)
_size = 9, _capacity = 15

0 1 2 3 4 5 6 7 8 … 14

5 7 10 18 14 11 21 27 6 … ?

_size = 9, _capacity = 15

0 1 2 3 4 5 6 7 8 … 14

5 7 10 6 14 11 21 27 18 … ?

_size = 9, _capacity = 15

0 1 2 3 4 5 6 7 8 … 14

5 6 10 7 14 11 21 27 18 … ?

Binary heap enqueue algorithm (append + “bubble up”)
_size = 9, _capacity = 15

0 1 2 3 4 5 6 7 8 … 14

5 7 10 18 14 11 21 27 6 … ?

_size = 9, _capacity = 15

0 1 2 3 4 5 6 7 8 … 14

5 7 10 6 14 11 21 27 18 … ?

_size = 9, _capacity = 15

0 1 2 3 4 5 6 7 8 … 14

5 6 10 7 14 11 21 27 18 … ?Let’s hop into the
code now!

1

32

45 10

68

9

Checking our test case

_size = 10, _capacity = 10

0 1 2 3 4 5 6 7 8 9

1 2 3 5 4 10 9 8 6 7

7

Inserted values: {5, 8, 9, 7, 1, 10, 3, 4, 6, 2}

 Remove the highest-priority item

 Move the “last” element (array-index-wise) into its place

 “Bubble down” swaps until it is correctly placed

› Important: of the two children, swap with the higher priority
(smaller number) child

Dequeue algorithm
5

106

1419 11

2722

21

Is there a
“just-right”

compromise
with the

best of both?

O(log2N)

O(log2N)

Entirely unsorted is too chaotic, but entirely sorted is
too difficult to maintain

Dequeue and “trickle-down” algorithm summary

1. Remove the min element (the one in the root node—index 0) and that’s the
value you’re going to return

 There’s now a “gap”—so the heap no longer follows the structural requirement
that it be “complete”

2. Promote the last element into the root node (index 0) position

 We have now immediately restored the “complete” property, but…

 …we have likely broken the “heap ordering” property!

3. “Trickle down” the new root element until the heap ordering property is
restored

 Pick the smaller value of the left and right children of this element, and swap
downward with that smaller one (i.e., you might trickle-down left, and you
might trickle-down right, depending on which is smaller!)

 Repeat step 3 as needed (until it is smaller than both left and right children)

Binary heap dequeue (delete min + “trickle down”)
Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

18 6 10 7 14 11 21 27 18 ? … ?

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

6 18 10 7 14 11 21 27 18 ? … ?

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

6 7 10 18 14 11 21 27 18 ? … ?

