
Programming Abstractions

Cynthia Bailey

Chris Gregg

C S 1 0 6 B

Today’s Topics

Today:
 Graphs

› Terminology
› Basics
› A couple samples of classic Graph Theory problems

(Hamiltonian Path and the Good Will Hunting movie problem)

Next time:
 Another classic graph problem: shortest paths

› BFS
› Dijkstra’s algorithm

 For important announcements, be sure to see the weekly announcements post on the Ed Q&A board!
https://edstem.org

 Also on Ed: live lecture Q&A with Chris & Jonathan

pollev.com/cs106b

https://edstem.org/

Graphs
What are graphs? What are they good for?

Graph

This file is licensed under the Creative Commons Attribution 3.0 Unported license. Jfd34 http://commons.wikimedia.org/wiki/File:Ryan_ten_Doeschate_ODI_batting_graph.svg

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:Jfd34&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Ryan_ten_Doeschate_ODI_batting_graph.svg

Graphs in Computer Science

Slide by Keith Schwarz

A graph is a mathematical
structure for representing
relationships

 A set V of nodes (or vertices)

 A set E of edges (or arcs) connecting
a pair of vertices

A Social Network

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gifSlide by Keith Schwarz

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg Slide by Keith Schwarz

Internet
9

This file is licensed under the Creative Commons Attribution 2.5 Generic license. The Opte Project http://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/2.5/deed.en
http://commons.wikimedia.org/w/index.php?title=Barrett_Lyon&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg

You’ve seen Graphs already

The linked-list Labyrinth assignment is a graph!

Graph Terminology

Graphs: basic types

 Directedness:

› A graph may be directed—an edge from A to B only allow
you to go from A to B, not B to A,

› or undirected—an edge between A and B allows travel in
both directions, and/or “direction” doesn’t really apply.

 Weights:

› A graph may be weighted—an edge from A to B has a
number representing a length, cost, bandwidth, or
strength of that connection)

› or unweighted—all edges are equal.

3

Diagrams each show a graph with four
vertices: Apple, Banana, Pear, Plum. Each
answer choice has different edge sets.

A: no edges
B: Apple to Plum directed, Apple to banana
undirected
C: Apple and Banana point to each other. Two
edges point from Plum to Pear

Graphs

All of the following are valid graphs:

A graph could be a
single node

An example of a
directed graph
with 4 nodes

Graphs don’t have to
be connected (notice
this one has two
separated parts)

Graph terminology: Paths

path: A path from vertex a to b is a sequence of edges that can be followed
starting from a to reach b.

neighbor or adjacent: Two vertices connected directly by an edge.

reachable: Vertex a is reachable from b if a path exists from a to b.

connected: A graph is connected if every vertex is reachable from every other.

cycle: A path that begins and ends at the same node.

Representing Graphs

W A Y S W E C O U L D I M P L E M E N T A
G R A P H C L A S S

Adjacency Matrix

0 1 1 0 0 0

0 0 0 1 1 0

1 1 0 1 0 0

0 1 0 0 0 0

0 0 0 1 0 1

0 0 1 1 0 0

Representing Graphs: Adjacency matrix

We can represent a graph as a

Grid<bool> (unweighted)

0 1 1 0 0 0

0 0 0 1 1 0

1 1 0 1 0 0

0 1 0 0 0 0

0 0 0 1 0 1

0 0 1 1 0 0

Representing Graphs: Adjacency matrix

We can represent a graph as a

Grid<bool> (unweighted)

Your Turn:
what aspect of

the picture
does this

0/false
correspond to?

Your Turn: which edge in the picture
does this 1/true correspond to?

0 5 1 0 0 0

0 0 0 2 5 0

4 1 0 3 0 0

0 2 0 0 0 0

0 0 0 2 0 7

0 0 1 6 0 0

Representing Graphs: Adjacency matrix

We can represent a graph as a

Grid<int> (weighted)

5

7

2

6

1

3

1

4

5 2

1

Adjacency List

Representing Graphs: Adjacency list

Node Connected To

Map<Node*, Set<Node*>> We can represent a graph

as a map from nodes to the

set of nodes each node is

connected to.

Slide by Keith Schwarz

Representing Graphs: Adjacency list

Node Connected To

Map<Node*, Set<Edge*>> We can represent a graph

as a map from nodes to the

set of nodes each node is

connected to.

Slide by Keith Schwarz

5

7

2

6

1

3

1

4

5 2

52

45

72

61

14

2

3

Graph representations

We just saw:

 Adjacency matrix

 Bool: unweighted

 Int: weighted

 Adjacency list

 Without a weight field: unweighted

 With a weight field: weighted

 These aren’t the only options

 You saw with Labyrinth homework assignment that linked nodes also
work!

23

Your Turn: choosing an implementation

 Which implementation would you choose for the following circumstances:

› Nodes = Facebook accounts (about 3 billion of them)

› Edges = the two accounts are “Friends” with each other

 Answer each of the following:

› Should your graph be weighted or unweighted?

› Should your graph be directed or undirected?

› Should you use Adjacency Matrix or Adjacency List? (or something else)

› And explain (to your neighbors) why 

 Now repeat the exercise for Instagram

› Nodes again represent accounts, and edges capture “following”

24

Graph representation efficiency considerations

 Adjacency matrix implemented as an NxN Grid<bool> takes up how much
space in memory?

› O(N2)

 Approximately what percentage of all N2 entries in the Grid are 0/false?

› Pretty close to 100%!

 This is a common phenomenon called a “sparse matrix”—there’s no specific
numeric cutoff to count as one, it just means generally a matrix with few
entries that are actually “used” in a useful way

 As an engineer, it helps to know when designing your setup whether a given
NxN matrix is expected to be sparse or not, and if so, you can make design
decisions to reduce waste!

Quick Sampling of Classic
Graph Theory Problems

Hamiltonian Cycle

S A D L Y , H A S N O T H I N G T O D O
W I T H T H E M U S I C A L H A M I L T O N .

N A M E D A F T E R S I R W I L L I A M
R O W A N H A M I L T O N .

Hamiltonian Cycle

 A Hamiltonian Cycle is a path that starts and ends at the same node, and
visits every node exactly once (except that start/end node, which is of course
visited twice).

There are several different ways
to do a Hamiltonian Cycle in this

graph. (ex: A, B, D, E, C, A)

It’s not possible to do a
Hamiltonian Cycle

in this graph.

✅

Hamiltonian Cycle

 A Hamiltonian Cycle is a path that starts and ends at the same node, and
visits every node exactly once (except that start/end node, which is of course
visited twice).

 The concept of a Hamiltonian Cycle is pretty simple!

 And yet, there is no known algorithm for detecting if a graph contains a
Hamiltonian Cycle that is faster than O(2N) 

› Using CS106B skills, it’s not very hard to write a recursive depth-first
search / backtracking function to find a Hamiltonian Path in a graph. But
the function unfortunately will be very slow.

Problem from
“Good Will Hunting”

Movie

O R , H O W H O L L Y W O O D T H I N K S
Y O U P R O V E Y O U A R E A M A T H

S A V A N T

“Draw all the homeomorphically irreducible trees with n=10.”

 “n = 10” means it has 10 nodes

 “trees” means an undirected graph with no “loops” (no way to go from
a node and get back to itself without reusing edges), and there aren’t
any parts of the graph that are totally disconnected from the rest

 “homeomorphically irreducible” means that for this problem, nodes
that lie between exactly 2 other nodes are useless in terms of branching
structure—they in effect just act as a blip on a longer edge—and are
therefore banned. Also we ignore superficial changes in the drawing.

“Draw all the homeomorphically irreducible trees with n=10.”

Yes:
(for n=4)

No: No:

Yes:
(for n=4)

No:
Legal, but same underlying
structure as the first, so it

doesn’t count as a new one

No:

 “n = 10” means it has 10 nodes

 “trees” means an undirected graph with no “loops” (no way to go from
a node and get back to itself without reusing edges), and there aren’t
any parts of the graph that are totally disconnected from the rest

 “homeomorphically irreducible” means that for this problem, nodes
that lie between exactly 2 other nodes are useless in terms of tree
structure—they in effect just act as a blip on a longer edge—and are
therefore banned. Also we ignore superficial changes in the drawing.

“Draw all the homeomorphically irreducible trees with n=10.”

Yes:
(for n=4)

No: No:

Yes:
(for n=4)

No:
Legal, but same underlying
structure as the first, so it

doesn’t count as a new one

No:

How many
can you

find?

Extra challenge:
can we predict the

number of such
trees for arbitrary n?

Breadth-First Search

W E ’ V E S E E N B F S B E F O R E T H I S
Q U A R T E R !

BFS in this class so far
Assignments

35

A

B C

D E F

Trees

Slime Mold

Generic BFS algorithm pseudocode

1. Make an empty queue to store places we want to visit in the future

2. Enqueue the starting location

3. While the queue is not empty (and/or until you reach a desired
destination):

› Dequeue a location

› Mark that location as visited

› Enqueue all the neighbors of that location

Breadth-First Search in a
Graph

G R A P H A L G O R I T H M S

Breadth-First Search
A B

E F

C D

G H

I J

L

K

BFS is useful for finding the
shortest path between two
nodes (in an unweighted, or

equally-weighted graph).

Breadth-First Search
A B

E F

C D

G H

I J

L

K

Example: What is the shortest
way to go from F to G?

One way (not the shortest):
F E I  G 3 edges

BFS is useful for finding the
shortest path between two
nodes (in an unweighted, or

equally-weighted graph).

Breadth-First Search
A B

E F

C D

G H

I J

L

K

Example: What is the shortest
way to go from F to G?

One way (not the shortest):
F E I  G 3 edges

Shortest way:
F K G 2 edges

BFS is useful for finding the
shortest path between two
nodes (in an unweighted, or

equally-weighted graph).

BFS is useful for finding the
shortest path between two

nodes.

Map Example:
What is the shortest way to
go from Yosemite to Palo

Alto?

A B

E F

C D

G H

I J

L

K

A B

E F

C D

G H

I J

L

K

A BFS algorithm for graphs with a special property…

TO START:
(1)Color all nodes GREY to

mean UNVISITED
(2)Queue is empty

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

F

TO START:
(1)Color all nodes GREY to

mean UNVISITED
(2)Queue is empty

(3)Enqueue the desired start
node, change its color to

mark it VISITED

A BFS algorithm for graphs with a special property…

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

F
LOOP PROCEDURE:
(1)Dequeue a node

(2)Set current node’s
UNVISITED neighbors’

parent pointers to current
node, then enqueue them

(and mark them visited
when we enqueue)

A BFS algorithm for graphs with a special property…

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

A B D E K

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

C H

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H

E

I

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G

I

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

L
J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

Done!

Now we know that to go from
Yoesmite (F) to Palo Alto (J),
we should go:

F->E->I->L->J
(4 edges)

(note we follow the parent
pointers backwards)

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:
(1) We used a queue
(2) What’s left is a kind of

subset of the edges, in the
form of ‘parent’ pointers

(3) If you follow the parent
pointers from the desired
end point, you will get
back to the start point,
and it will be the shortest
way to do that

Quick question about efficiency…

Let’s say that you have an extended family with somebody living in
every major city in the western U.S.

Quick question about efficiency…

You’re all in Yosemite for a family reunion, and you’ve been tasked with
making custom Yosemite-to-home-city driving directions for everyone.

Quick question about efficiency…

 You’ve already run the BFS algorithm and calculated the shortest path
for yourself to return home from the reunion (Yosemite to Palo Alto)

 The Big-O cost of doing that for yourself works out to O(E log2V)

› Where V is the number of nodes/cities, and E is the number of
edges/road segments

You’re all in Yosemite for a family reunion, and you’ve been tasked with
making custom Yosemite-to-home-city driving directions for everyone.

Quick question about efficiency…

 You’ve already run the BFS algorithm and calculated the shortest path
for yourself to return home from the reunion (Yosemite to Palo Alto)

 O(E log2V) was the Big-O cost of doing that for yourself

› Where V is the number of nodes/cities, and E is the number of
edges/road segments

You’re all in Yosemite for a family reunion, and you’ve been tasked with
making custom Yosemite-to-home-city driving directions for everyone.

Your Turn: How long will it take you, in total, to calculate
the shortest paths for you and all of your relatives?

A. O(VE log2V)
B. O(E log2V2)
C. O(V log2E)
D. O(E log2V)
E. Something else

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:
(1) We used a queue
(2) What’s left is a kind of

subset of the edges, in the
form of ‘parent’ pointers

(3) If you follow the parent
pointers from the desired
end point, you will get
back to the start point,
and it will be the shortest
way to do that

And you have that info
not only for the node you
were interested in, but as

a side effect also for
every node in the graph!

Quick question about efficiency…

 You’ve already run the BFS algorithm and calculated the shortest path
for yourself to return home from the reunion (Yosemite to Palo Alto)

 O(E log2V) was the Big-O cost of doing that for yourself

› Where V is the number of nodes/cities, and E is the number of
edges/road segments

You’re all in Yosemite for a family reunion, and you’ve been tasked with
making custom Yosemite-to-home-city driving directions for everyone.

Your Turn: How long will it take you, in total, to use BFS to
calculate the shortest paths for you and all of your relatives?

A. O(VE log2V)
B. O(E log2V2)
C. O(V log2E)
D. O(E log2V)
E. Something else

No additional work for BFS
to determine the shortest

paths for all your relatives,
vs just for yourself!

Dijkstra’s Shortest Paths

(L I K E B R E A D T H - F I R S T
S E A R C H , B U T T A K E S I N T O

A C C O U N T W E I G H T / D I S T A N C E
B E T W E E N N O D E S)

Edsger Dijkstra

This file is licensed under the Creative Commons Attribution-Share Alike 3.0
Unported license. http://en.wikipedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg

1930-2002

 THE multiprogramming system (operating
system)

 Layers of abstraction!!

 Complier for a language that can do recursion

 Dining Philosopher’s Problem (resource
contention and deadlock)

 Dijkstra’s algorithm

 “Goto considered harmful” (title given to his
letter)

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://en.wikipedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm

