Chapter 0: What is C++?

C++ is a general purpose programming language with a bias towards systems programming that
* isa better C.
* supports data abstraction.
* supports object-oriented programming.
* supports generic programming

- Bjarne Stroustrup, inventor of C++ [Str09.2]

Every programming language has its own distinct flavor influenced by its history and design. Before seri-
ously studying a programming language, it's important to learn why the language exists and what its ob-
jectives are. This chapter covers a quick history of C++, along with some of its design principles.

An Abbreviated History of C++

The story of C++ begins with Bjarne Stroustrup, a Danish computer scientist working toward his PhD at
Cambridge University. Stroustrup's research focus was distributed systems, software systems split across
several computers that communicated over a network to solve a problem. At one point during his re-
search, Stroustrup came up with a particularly clever idea for a distributed system. Because designing dis-
tributed systems is an enormously complicated endeavor, Stroustrup decided to test out his idea by writ-
ing a simulation program, which is a significantly simpler task. Stroustrup chose to write this simulation
program in a language called Simula, one of the earliest object-oriented programming languages. As
Stroustrup recalled, initially, Simula seemed like the perfect tool for the job:

It was a pleasure to write that simulator. The features of Simula were almost ideal for the pur-
pose, and I was particularly impressed by the way the concepts of the language helped me
think about the problems in my application. The class concept allowed me to map my applica-
tion concepts into the language constructs in a direct way that made my code more readable
than I had seen in any other language...

[had used Simula before... but was very pleasantly surprised by the way the mechanisms of the
Simula language became increasingly helpful as the size of the program increased. [Str94]

In Simula, it was possible to model a physical computer using a computer object and a physical network us-
ing a network object, and the way that physical computers sent packets over physical networks correspon-
ded to the way computer objects sent and received messages from network objects. But while Simula
made it easier for Stroustrup to develop the simulator, the resulting program was so slow that it failed to
produce any meaningful results. This was not the fault of Stroustrup's implementation, but of the lan-
guage Simula itself. Simula was bloated and language features Stroustrup didn't use in his program were
crippling the simulator's efficiency. For example, Stroustrup found that eighty percent of his program time
was being spent on garbage collection despite the fact that the simulation didn't create any garbage.
[Str94] In other words, while Simula had decreased the time required to build the simulator, it dramatic-
ally increased the time required for the simulator to execute.

Stroustrup realized that his Simula-based simulator was going nowhere. To continue his research, Strous-
trup scrapped his Simula implementation and rewrote the program in a language he knew ran quickly and
efficiently: BCPL. BCPL has since gone the way of the dodo, but at the time was a widely used, low-level

* This section is based on information from The Design and Evolution of C++ by Bjarne Stroustrup.

-6- Chapter 0: What is C++?

systems programming language. Stroustrup later recalled that writing the simulator in BCPL was “hor-
rible.” [Str94] As a low-level language, BCPL lacked objects and to represent computers and networks
Stroustrup had to manually lay out and manipulate the proper bits and bytes. However, BCPL programs
were far more efficient than their Simula counterparts, and Stroustrup's updated simulator worked mar-
velously.

Stroustrup's experiences with the distributed systems simulator impressed upon him the need for a more
suitable tool for constructing large software systems. Stroustrup sought a hybridization of the best fea-
tures of Simula and BCPL - a language with both high-level constructs and low-level runtime efficiency.
After receiving his PhD, Stroustrup accepted a position at Bell Laboratories and began to create such a lan-
guage. Settling on C as a base language, Stroustrup incorporated high-level constructs in the style of Sim-
ula while still maintaining C's underlying efficiency. After several revisions, C with Classes, as his language
was known, accumulated other high-level features and was officially renamed C++. C++ was an overnight
success and spread rapidly into the programming community; for many years the number of C++ pro-
grammers was doubling every seven months. By 2007, there were over three million C++ programmers
worldwide, and despite competition from other languages like Java and Python the number of C++ pro-
grammers is still increasing. [Str09] What began as Stroustrup's project at Bell Laboratories became an
[SO-standardized programming language found in a variety of applications.

C++ as a Language

When confronted with a new idea or concept, it's often enlightening to do a quick Wikipedia search to see
what others have to say on the subject. If you look up C++ this way, one of the first sentences you'll read (at
least, at the time of this writing) will tell you that C++ is a general-purpose, compiled, statically-typed,
multiparadigm, mid-level programming language. If you are just learning C++, this description may seem
utterly mystifying. However, this sentence very aptly captures much of the spirit of C++, and so before con-
tinuing our descent into the realm of C++ let's take a few minutes to go over exactly what this definition
entails.

C++ is a General-Purpose Programming Language

Programming languages can be broadly categorized into two classes - domain-specific programming lan-
guages and general-purpose programming languages. A language is domain-specific if it is designed to
solve a certain class of problems in a particular field. For example, the MATLAB programming language is a
domain-specific language designed for numerical and mathematical computing, and so has concise and el-
egant support for matrix and vector operations. Domain-specific languages tend to be extremely easy to
use, particularly because these languages let programmers express common operations concisely and el-
egantly because the language has been designed with them in mind. As an example, in MATLAB it is pos-
sible to solve a linear system of equations using the simple syntax x = A\b. The equivalent C++ or Java
code would be significantly more complex. However, because domain-specific languages are optimized on
a particular class of problems, it can be difficult if not impossible to adapt those languages into other prob-
lem domains. This has to do with the fact that domain-specific languages are custom-tailored to the prob-
lems they solve, and consequently lack the vocabulary or syntactic richness to express structures beyond
their narrow scope. This is best illustrated by analogy - an extraordinary mathematician with years of
training would probably have great difficulty holding a technical discussion on winemaking with the
world's expert oenologist simply because the vocabularies of mathematics and winemaking are entirely
different. It might be possible to explain viticulture to the mathematician using terms from differential to -
pology or matrix theory, but this would clearly be a misguided effort.

Contrasting with domain-specific languages are general-purpose languages which, as their name suggests,
are designed to tackle all categories of problems, not just one particular class. This means that gener-
al-purpose languages are more readily adapted to different scenarios and situations, but may have a
harder time describing some of the fundamental concepts of those domains than a language crafted spe-

Chapter 0: What is C++? -7-

cifically for that purpose. For example, an American learning German as a second language may be fluent
enough in that language to converse with strangers and to handle day-to-day life, but might have quite an
experience trying to hold a technical conversation with industry specialists. This is not to say, of course,
that the American would not be able to comprehend the ideas that the specialist was putting forth, but
rather that any discussion the two would have would require the specialist to define her terms as the con-
versation unfolded, rather than taking their definitions for granted at the start.

C++ is a general-purpose programming language, which means that it is robust enough to adapt to handle
all sorts of problems without providing special tools that simplify tasks in any one area. This is a trade-off,
of course. Because C++ is general-purpose, it will not magically provide you a means for solving a particu-
lar problem; you will have to think through a design for your programs in order for them to work correctly.
But because C++ is general-purpose, you will be hard-pressed to find a challenge for which C++ is a poor
choice for the solution. Moreover, because C++ is a general-purpose language, once you have learned the
structures and techniques of C++, you can apply your knowledge to any problem domain without having to
learn new syntax or structures designed for that domain.

C++ is a Compiled Language

The programs that actually execute on a computer are written in machine language, an extremely low-
level and hardware-specific language that encodes individual instructions for the computer's CPU. Ma-
chine languages are indecipherable even to most working programmers because these languages are de-
signed to be read by computer hardware rather than humans. Consequently, programmers write programs
in programming languages, which are designed to be read by humans. In order to execute a program writ-
ten in a programming language, that program must somehow be converted from its source code repres-
entation into equivalent machine code for execution. How this transformation is performed is not set in
stone, and in general there are two major approaches to converting source code to machine code. The first
of these is to interpret the program. In interpreted languages,a special program called the interpreter takes
in the program's source code and translates the program as it is being executed. Whenever the program
needs to execute a new piece of code, the interpreter reads in the next bit of the source code, converts it
into equivalent machine code, then executes the result. This means that if the same interpreted program is
run several times, the interpreter will translate the program anew every time. The other option is to com-
pile the program. In a compiled language, before running the program, the programmer executes a special
program called the compiler on the source code which translates the entire program into machine code.
This means that no matter how many times the resulting program is run, the compiler is only invoked
once. In general, interpreted languages tend to run more slowly than compiled languages because the in-
terpreter must translate the program as it is being executed, whereas the translation work has already
been done in the case of compiled languages. Because C++ places a premium on efficiency, C++ is a com-
piled language. While C++ interpreters do exist, they are almost exclusively for research purposes and
rarely (if at all) used in professional settings.

What does all of this mean for you as a C++ programmer? That is, why does it matter whether C++ is com -
piled or interpreted? A great deal, it turns out; this will be elaborated upon in the next segment on static
type checking. However, one way that you will notice immediately is that you will have to compile your
programs every time you make a change to the source code that you want to test out. When working on
very large software projects (on the order of millions to hundreds of millions of lines of code), it is not un-
common for a recompilation to take hours to complete, meaning that it is difficult to test out lots of minor
changes to a C++ program. After all, if every change takes three minutes to test, then the number of pos-
sible changes you can make to a program in hopes of eliminating a bug or extending functionality can be
greatly limited. On the other hand, though, because C++ is compiled, once you have your resulting program
it will tend to run much, much faster than programs written in other languages. Moreover, you don't need
to distribute an interpreter for your program in addition to the source — because C++ programs compile
down directly to the machine code, you can just ship an executable file to whoever wants to run your pro-
gram and they should be able to run it without any hassle.

-8- Chapter 0: What is C++?

C++ is a Statically-Typed Language

One of the single most important aspects of C++ is that it is a statically-typed language. If you want to ma -
nipulate data in a C++ program, you must specify in advance what the type of that data is (for example,
whether it's an integer, a real number, English text, a jet engine, etc.). Moreover, this type is set in stone and
cannot change elsewhere in the source code. This means that if you say that an object is a coffee mug, you
cannot treat it as a stapler someplace else.

At first this might seem silly - of course you shouldn't be able to convert a coffee mug into a stapler or a
ball of twine into a jet engine; those are entirely different entities! You are completely correct about this.
Any program that tries to treat a coffee mug as though it is a stapler is bound to run into trouble because a
coffee mug isn't a stapler. The reason that static typing is important is that these sorts of errors are caught
at compile-time instead of at runtime. This means that if you write a program that tries to make this sort of
mistake, the program won't compile and you won't even have an executable containing a mistake to run. If
you write a C++ program that tries to treat a coffee mug like a stapler, the compiler will give you an error
and you will need to fix the problem before you can test out the program. This is an extremely powerful
feature of compiled languages and will dramatically reduce the number of runtime errors that your pro-
grams encounter. As you will see later in this book, this also enables you to have the compiler verify that
complex relationships hold in your code and can conclude that if the program compiles, your code does
not contain certain classes of mistakes.

C++ is a Multi-Paradigm Language

C++ began as a hybrid of high- and low-level languages but has since evolved into a distinctive language
with its own idioms and constructs. Many programmers treat C++ as little more than an object-oriented C,
but this view obscures much of the magic of C++. C++ is a multiparadigm programming language, meaning
that it supports several different programming styles. C++ supports imperative programming in the style
of C, meaning that you can treat C++ as an upgraded C. C++ supports object-oriented programming, so you
can construct elaborate class hierarchies that hide complexity behind simple interfaces. C++ supports gen-
eric programming, allowing you to write code reusable in a large number of contexts. Finally, C++ supports
a limited form of higher-order programming, allowing you to write functions that construct and manipu-
late other functions at runtime.

C++ being a multiparadigm language is both a blessing and a curse. It is a blessing in that C++ will let you
write code in the style that you feel is most appropriate for a given problem, rather than rigidly locking
you into a particular framework. It is also a blessing in that you can mix and match styles to create pro-
grams that are precisely suited for the task at hand. It is a curse, however, in that multiparadigm languages
are necessarily more complex than single-paradigm languages and consequently C++ is more difficult to
pick up than other languages. Moreover, the interplay among all of these paradigms is complex, and you
will need to learn the subtle but important interactions that occur at the interface between these
paradigms.

This book is organized so that it covers a mixture of all of the aforementioned paradigms one after anoth-
er, and ideally you will be comfortable working in each by the time you've finished reading.

C++ is a Mid-Level Language

Computer programs ultimately must execute on computers. Although computers are capable of executing
programs which perform complex abstract reasoning, the computers themselves understand only the
small set of commands necessary to manipulate bits and bytes and to perform simple arithmetic. Low-
level languages are languages like C and assembly language that provide minimal structure over the actual
machine and expose many details about the inner workings of the computer. To contrast, high-level lan-
guages are languages that abstract away from the particulars of the machine and let you write programs

Chapter 0: What is C++? -9.-

independently of the computer's idiosyncrasies. As mentioned earlier, low-level languages make it hard to
represent complex program structure, while high-level languages often are too abstract to operate effi-
ciently on a computer.

C++ is a rare language in that it combines the low-level efficiency and machine access of C with high-level
constructs like those found in Java. This means that it is possible to write C++ programs with the strengths
of both approaches. It is not uncommon to find C++ programs that model complex systems using ob-
ject-oriented techniques (high level) while taking advantage of specific hardware to accelerate that simula-
tion (low-level). One way to think about the power afforded by C++ is to recognize that C++ is a language
that provides a set of abstractions that let you intuitively design large software systems, but which lets you
break those abstractions when the need to optimize becomes important. We will see some ways to accom-
plish this later in this book.

Design Philosophy

C++ is a comparatively old language; its first release was in 1985. Since then numerous other program-
ming languages have sprung up - Java, Python, C#, and Javascript, to name a few. How exactly has C++ sur-
vived so long when others have failed? C++ may be useful and versatile, but so were BCPL and Simula,
neither of which are in widespread use today.

One of the main reasons that C++ is still in use (and evolving) today has been its core guiding principles.
Stroustrup has maintained an active interest in C++ since its inception and has steadfastly adhered to a
particular design philosophy. Here is a sampling of the design points, as articulated in Stroustrup's The
Design and Evolution of C++.

* C++'s evolution must be driven by real problems. When existing programming styles prove in-
sufficient for modern challenges, C++ adapts. For example, the introduction of exception handling
provided a much-needed system for error recovery, and abstract classes allowed programmers to
define interfaces more naturally.

* Don't try to force people. C++ supports multiple programming styles. You can write code similar
to that found in pure C, design class hierarchies as you would in Java, or develop software some-
where in between the two. C++ respects and trusts you as a programmer, allowing you to write the
style of code you find most suitable to the task at hand rather than rigidly locking you into a single
pattern.

* Always provide a transition path. C++ is designed such that the programming principles and
techniques developed at any point in its history are still applicable. With few exceptions, C++ code
written ten or twenty years ago should still compile and run on modern C++ compilers. Moreover,
C++ is designed to be mostly backwards-compatible with C, meaning that veteran C coders can
quickly get up to speed with C++.

The Goal of C++
There is one quote from Stroustrup ([Str94]) I believe best sums up C++:
C++ makes programming more enjoyable for serious programmers.
What exactly does this mean? Let's begin with what constitutes a serious programmer. Rigidly defining

“serious programmer” is difficult, so instead I'll list some of the programs and projects written in C++ and
leave it as an exercise to the reader to infer a proper definition. For example, you'll find C++ in:

-10 - Chapter 0: What is C++?

Mozilla Firefox. The core infrastructure underlying all Mozilla
projects is written predominantly in C++. While much of the code
for Firefox is written in Javascript and XUL, these languages are
executed by interpreters written in C++.

The WebKit layout engine used by Safari and Google Chrome is
also written in C++. Although it's closed-source, I suspect that In-
ternet Explorer is also written in C++. If you're browsing the
web, you're seeing C++ in action.

Java HotSpot. The widespread success of Java is in part due to
HotSpot, Sun's implementation of the Java Virtual Machine. Hot-
Spot supports just-in-time compilation and optimization and is a
beautifully engineered piece of software. It's also written in C++.
The next time that someone engages you in a debate about the re-
lative merits of C++ and Java, you can mention that if not for a
well-architected C++ program Java would not be a competitive
language.

NASA / JPL. The rovers currently exploring the surface of Mars
have their autonomous driving systems written in C++. C++ison
Mars!

C++ makes programming more enjoyable for serious programmers. Not only does C++ power all of the
above applications, it powers them in style. You can program with high-level constructs yet enjoy the
runtime efficiency of a low-level language like C. You can choose the programming style that's right for
you and work in a language that trusts and respects your expertise. You can write code once that you will
reuse time and time again. This is what C++ is all about, and the purpose of this book is to get you up to
speed on the mechanics, style, and just plain excitement of C++.

With that said, let's dive into C++. Our journey begins!

	Chapter 0: What is C++?

