
Sequence
Containers

Cristian Cibils
(ccibils@stanford.edu)

The Design of C++

Atomic Types

Streams

Containers

Templates

Iterators

Classes & Inheritance

Algorithms

Structs

● A struct is an easy way to bundle multiple
variables together

● We will cover them more in depth later but
you may find them useful for the first
assignment

Structs

struct point {

int x;

int y;

};

point p;

p.x = 4;

p.y = 3;

Administrivia

● Assignment one is officially out today!
● Due date Tuesday, October 13th at 11:59

pm

Administrivia

● LaIR help available:
○ TBA (will email)

● Email help available
○ ccibils@stanford.edu

STL

STL

● Stands for Standard Template Library
● In it we can find all the nifty tools C++ puts at

our command
● (Most of the stuff in the design of C++ is

extremely influenced by the existence of the
STL)

Review: Sequence Containers

● A container class allows you to store any
number of (any type of) things

● A sequence container is a container whose
elements can be accessed sequentially.

● Sequence containers include vectors,
stacks, queues, lists, and priority queues
(and many more!).

What I Want To Show You

● Why the Stanford library exists
● How to use STL sequence containers

instead of the Stanford Library
○ We'll look at the differences between STL/Stanford

using stack and vector, and we'll also examine a
new STL class, deque

● Performance of different containers, and why
you might choose one over another

Why the Stanford Library Exists

Students often ask:

“Why do we need to use the Stanford libraries
in CS106B/X?”

Why the Stanford Library Exists

● The Stanford libraries include things not
found in the STL (Grid, getInteger and
friends, graphics).

● Many parts of the Stanford library give up
performance for simplicity

● Debugging Stanford library code can be
much easier than debugging STL code

Container #1: Stack

First, let's talk about how
to use the STL stack.

STL <stack>: What's Similar

What you want to do Stanford Stack<int> STL stack<int>

Create a stack Stack<int> x; stack<int> x;

Get the size of a stack int size = x.size(); int size = x.size();

Check if a stack is empty if (x.isEmpty()) ... if (x.empty()) ...

Push a value on the stack x.push(42); x.push(42);

Peek at the top element without
popping it

int top = x.peek(); int top = x.top();

Pop off the top element
and ignore its value

x.pop(); x.pop();

STL <stack>: What's Different

What you want to do Stanford Stack<int> STL stack<int>

Clear the stack x.clear(); while(!x.empty())
 x.pop();

Convert the stack to a string string s = x.
toString();

string s;
while(!x.empty() {
 s += x.top();
 s += " ";
 x.pop();
}

Pop and save the value int top = x.pop(); int top = x.top();
x.pop();

STL <stack>: Usage

Let's look at a quick demo in STLStack.pro

STL <stack>: Why the differences?

Looking at the differences between the STL
and the Stanford libraries can help you

understand the the reason each of these
libraries were designed.

“Thus, the standard library will serve as
both a tool and as a teacher”

- Bjarne Stroustrup

STL <stack>: Why the differences?

Why is there no .clear() function for stacks?

STL <stack>: Why the differences?

Why is there no .clear() function for stacks?
● Conceptually, clearing isn't part of the

interface to a stack
● It's very easy to write your own clear

function:
// stack<int> s = ...;

while (!s.empty()) {

 s.pop();

}

STL <stack>: Why the differences?

Why doesn't pop return the value it removed?

STL <stack>: Why the differences?

Why doesn't pop return the value it removed?
● The caller might not need the value, in which

case returning the value would be wasteful.
● It's easy to write code which pops and saves

the value.

// stack<int> s = ...;

int value = s.top();

s.pop();

STL <stack>: Why the differences?

Why isn't there a toString function?

STL <stack>: Why the differences?

Why isn't there a toString function?
● Implementing toString would require that the

type stored in the stack could be converted
to a string
○ For example, you can convert a stack<int> to a

string because you can convert an int to a
string.

● It's tough to say what the "proper" way to
convert a stack to a string is

Container #2: Vector

First, let's talk about how vectors are
represented in the STL.

STL <vector>: What's Similar
What you want to do Stanford Vector<int> STL vector<int>

Create an empty vector Vector<int> v; vector<int> v;

Create a vector with n
copies of zero

Vector<int> v(n); vector<int> v(n);

Create a vector with n
copies of a value k

Vector<int> v(n, k); vector<int> v(n, k);

Add a value k to the end of
the vector

v.add(k); v.push_back(k);

Clear a vector v.clear(); v.clear();

Get the element at index i
(verify that i is in bounds)

int k = v.get(i);
int k = v[i];

int k = v.at(i);

Check if the vector is empty if (v.isEmpty()) ... if (v.empty()) ...

Replace the element at
index i (verify that i is in
bounds)

v.get(i) = k;
v[i] = k;

v.at(i) = k;

STL <vector>: What's Different

Get the element at index i
without bounds checking

// Impossible! int a = x[i];

Change the element at
index i without bounds
checking

// Impossible! x[i] = v;

Apply a function to each
element in x

x.mapAll(fn) // We'll talk about
this in another
lecture...

Concatenate vectors v1 and
v2

v1 += v2; // We'll talk about
this in another
lecture...

Add an element to the
beginning of a vector

// Impossible! (or at
least slow)

// Impossible! (or at
least slow)

STL <vector>: Usage

Let's look at a quick demo in STLVector.pro

STL <vector>: Why the differences?

Why doesn't vector have bounds checking?

STL <vector>: Why the differences?

Why doesn't vector have bounds checking?
● If you write your program correctly, bounds

checking will do nothing but make your code
run slower

STL <vector>: Why the differences?

Why is there no push_front method?

STL <vector>: Why the differences?

Why is there no push_front method?
● This is a bit more complicated

The Mystery of push_front

Pushing an element to the front of the vector
requires shifting all other elements in the vector
down by one, which can be very slow

To demonstrate this, let's say we had this nice
little vector:

6 7 5 3 0 9

The Mystery of push_front

Now, let's say that push_front existed, and
that you wanted to insert an 8 at the beginning
of this vector.

8

6 7 5 3 0 9

v.push_front(8).

The Mystery of push_front

First, we may have to expand the capacity of
the vector

8

6 7 5 3 0 9

v.push_front(8).

The Mystery of push_front

Then, we'll need to shift every single element
down one position

8

6 7 5 3 0 9

v.push_front(8).

The Mystery of push_front

Finally, we can actually insert the element we
wanted to insert.

8 6 7 5 3 0 9

v.push_front(8).

Just how bad is push_front?

// Adding to the back

for (int i = 0; i < N; i++)

v.push_back(i);

// Or: Adding to the front

for (int i = 0; i < N; i++)

v.insert(v.begin(), i);

// How big can the difference be?

Just how bad is push_front?

push_front push_back

N = 1000 0.01 0

N = 10000 0.89 0.01

N = 100000 117.98 0.04

N = 1000000 Hours 0.31

N = 10000000 Years 3.16

You can see the difference between an O(n2) algorithm and an O(n) algorithm!

STL <deque>: What's a deque?

● A deque (pronounced "deck") is a double
ended queue

● Unlike a vector, it's possible (and fast) to
push_front

● The implementation of a deque isn't as
straightforward as a vector though

STL <deque>: Usage

Let's look at a quick demo in STLDeque.cpp

STL <deque>: Implementation

There's no single specification for representing
a deque, but it might be laid out something like
this

NULL

STL <deque>: Implementation

You could support efficient insertion by keeping
some reserved space in front of the vector
representing the first elements of the deque

6 7

5 3 0

9

NULL

STL <deque>: Implementation

You could support efficient insertion by keeping
some reserved space in front of the vector
representing the first elements of the deque

6 7

5 3 0

98

NULL

STL <deque>: Performance

● We can now use the push_front function,
and it will run much faster than if we had
used a vector.

● Let's see how this looks in real world
performance numbers

push_front: vector and deque

// Vector test code

vector<int> v;

// Insert at the start of the vector

for (int i = 0; i < N; i++)

v.insert(v.begin(), i);

// Clear by using pop_front (erase)

for (int i = 0; i < N; i++)

v.erase(v.begin());

push_front: vector and deque

// Deque test code

deque<int> d;

// Insert elements using push_front

for (int i = 0; i < N; i++)

d.push_front(i);

// Clear by using pop_front

for (int i = 0; i < N; i++)

d.pop_front();

push_front: vector and deque

<vector> <deque>

N = 1000 0.02 0

N = 10000 2.12 0.01

N = 100000 264.9 0.04

N = 1000000 Years 0.44

N = 10000000 Millenia 5.54

Why use a vector?

If a deque can do everything a vector can plus
add to the beginning, why not always user
deques?

Why use a vector?

If a deque can do everything a vector can plus
add to the beginning, why not always user
deques?
● For other common operations like access

and adding to the end, a vector outperforms
a deque

Element Access: vector and deque

vector<int> v(N);

deque<int> d(N);

for (int i = 0; i < N; i++)

v[i] = i;

for (int i = 0; i < N; i++)

d[i] = i;

Access: vector and deque

<vector> <deque>

N = 1000 0.02 0.14

N = 10000 0.28 1.32

N = 100000 3.02 13.22

N = 1000000 30.84 133.30

push_back: vector and deque

// Vector test code

vector<int> v;

// Insert elements using push_back

for (int i = 0; i < N; i++)

v.push_back(i);

// Clear by using pop_back

for (int i = 0; i < N; i++)

v.pop_back();

push_back: vector and deque

// Deque test code

deque<int> d;

// Insert elements using push_back

for (int i = 0; i < N; i++)

d.push_back(i);

// Clear by using pop_back

for (int i = 0; i < N; i++)

d.pop_back();

push_back: vector and deque

<vector> <deque>

N = 1000 0.02 0.02

N = 10000 0.20 0.20

N = 100000 1.98 1.92

N = 1000000 19.9 20.78

Other Sequence Containers

The STL also includes priority queue, queue,
and linked list classes, but those aren't too
important to us right now.

Next Time

● Associative Containers
● Maps, Sets, and More!

