
Functions

Ali Malik
malikali@stanford.edu

mailto:malikali@stanford.edu
mailto:malikali@stanford.edu

Game Plan

Recap

Operator Overloading

Functions

Lambdas

Announcements

Recap

C++ doesn’t know how to use operators on types defined
by us:

● We can tell it how to via operator overloading.

Classes - Issues

C++ doesn’t know how to use operators on types defined
by us:

● We can tell it how to via operator overloading.

An algorithm needed a function that could capture a local
variable

Classes - Issues

Operator Overloading

Allows you to define functionality for operators on any
types.

Operator Overloading

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= *= /= %= ^=

&= |= <<= >>= [] ()

-> ->* new new [] delete delete []

Use only when overloading has an intuitive meaning:

set<int> numSet;
numSet += 2;
numSet += 3;
// numSet is now {2, 3}

Operator Overloading

Good overload of
+= operator!

Use only when overloading has an intuitive meaning:

set<int> numSet;
numSet += 2;
numSet += 3;
// numSet is now {2, 3}

Operator Overloading

Use only when overloading has an intuitive meaning:

set<int> numSet;
numSet += 2;
numSet += 3;
numSet, 4, 5;
// numSet is now {2, 3}

Operator Overloading

Use only when overloading has an intuitive meaning:

set<int> numSet;
numSet += 2;
numSet += 3;
numSet, 4, 5;
// numSet is now ???

Operator Overloading

No intuitive
understanding of
what this does.

struct Point {
int x, y;
bool operator==(const Point& rhs) {

return x == rhs.x && y == rhs.y;
}

};

Operator Overloading

struct Point {
int x, y;
bool operator==(const Point& rhs) {

return x == rhs.x && y == rhs.y;
}

};

Operator Overloading

Class member function. LHS
is implicit this object

struct Point {
int x, y;
bool operator==(const Point& rhs) {

return x == rhs.x && y == rhs.y;
}

};

Operator Overloading

struct Point {
int x, y;

};

bool operator==(const Point& rhs) {
return x == rhs.x && y == rhs.y;

}

Operator Overloading

struct Point {
int x, y;

};

bool operator==(const Point& lhs, const Point& rhs) {
return lhs.x == rhs.x && lhs.y == rhs.y;

}

Operator Overloading

struct Point {
int x, y;

};

bool operator==(const Point& lhs, const Point& rhs) {
return lhs.x == rhs.x && lhs.y == rhs.y;

}

Operator Overloading

Non member function. LHS
is explicit first parameter.

struct Point {
int x, y;

};

bool operator==(const Point& lhs, const Point& rhs) {
return lhs.x == rhs.x && lhs.y == rhs.y;

}

Operator Overloading

struct Point {
int x, y;

};

bool operator==(const Point& lhs, const Point& rhs) {
return lhs.x == rhs.x && lhs.y == rhs.y;

}

Operator Overloading

Operator Overloading

Two ways to overload operators:

● Member functions

● Non-member functions

Member Functions

Just add a function named operator@ to your class

bool operator==(const HashSet& rhs) const;

Set operator+(const Set& rhs) const;

Set& operator+=(const ValueType& value);

For binary operators, accept the right hand side as an argument.

I usually name mine rhs.

Add a function named operator@ outside your class.

Have it take all its operands.

bool operator==(const Point& lhs, const Point& rhs) {
return lhs.x == rhs.x && lhs.y == rhs.y;

}

Non-member Functions

Some examples:

OperatorOverload
(OpOverload.pro)

Operator Overloading

Let’s go back for a second...

Operator Overloading

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= *= /= %= ^=

&= |= <<= >>= [] ()

-> ->* new new [] delete delete []

Let’s go back for a second...

Operator Overloading

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= *= /= %= ^=

&= |= <<= >>= [] ()

-> ->* new new [] delete delete []

Anything curious here?

Let’s go back for a second...

Operator Overloading

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= *= /= %= ^=

&= |= <<= >>= [] ()

-> ->* new new [] delete delete []

Anything curious here?

Let’s go back for a second...

Operator Overloading

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= *= /= %= ^=

&= |= <<= >>= [] ()

-> ->* new new [] delete delete []

Anything curious here?

Some experimentation:

FunctionOperator
(FuncitonOp.pro)

Operator Overloading

Functors

Classes which define the () operator.

Why is this useful?

● Can have state
● Customizable through constructor

Very useful for algorithms!

Functors

Remember this problem?

Functors

Using functors:

StudentClass
(StudentClass.pro)

Operator Overloading

Functors let us make customizable functions!

We can pass useful information to their constructor that was
not known at compile time.

But…

Kind of a PainTM

Functors

Functors let us make customizable functions!

We can pass useful information to their constructor that was
not known at compile time.

But…

Kind of a PainTM

Functors

C++ has a solution!

Functors let us make customizable functions!

We can pass useful information to their constructor that was
not known at compile time.

But…

Kind of a PainTM

Functors

C++11 has a solution!

Lambdas

A C++11 feature that lets you make functions on the fly.

[capture-list](params) -> ReturnType {

// code

};

Lambdas

Best learnt by example:

auto print_int = [](int x) {

cout << x << endl;

};

print_int(5)// outputs 5 to console

Lambdas

Best learnt by example:

vector<int> v{3, 1, 4, 1, 5};

std::sort(v.begin(), v.end(),

[](int i, int j) -> bool { return i > j;});

// sorts vector in decreasing order

Lambdas

Questions

A C++11 feature that lets you make functions on the fly.

[capture-list](params) -> ReturnType {

// code

};

Lambda Captures

A C++11 feature that lets you make functions on the fly.

[capture-list](params) -> ReturnType {

// code

};

Lambda Captures

What is this for?

Remember this problem?

Lambda Captures

Lambda Captures

You can capture available variables to use in the lambda

[byValue, &byReference]

You can also capture all currently available variables:

[=] // By value

[&] // By reference

This will only capture the ones used inside the function.

How Does This Work?

How Lambdas Work?

[capture-list](params) ->
ReturnType {

// code

};

class SomeName {
public:
 SomeName(capture-list) {
 // set each private member to

// thing in capture list
 }

 ReturnType operator()(params) {
 // code
 }

private:
 // create private member for each
 // thing in capture-list
};

