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Introduction

One of the most useful abstractions in computer science is the graph, a means of
expressing relationships between objects.  Formally, a graph is a collection of nodes
(also called vertices) joined together by edges (also called arcs), where each node
represents some object and each edge connects two nodes that are somehow re-
lated.  For example, Facebook represents people and friendships as a graph – each
person is node, and two people are connected by edges if they are friends of one
another.  The Google search engine is powered by the PageRank algorithm, which
treats webpages as nodes and has an edge between any two pages that have links
to one another.  Recent work into the smart grid treats the electrical grid as a graph
by modeling power stations and substations as nodes and power lines as edges.

One advantage of using graphs to represent relationships is that graphs have a nat-
ural  geometric  interpretation.   In  particular,  we can visualize  the structure  of  a
graph by drawing a dot for each node and a line between any two nodes joined by
an edge.  For example, suppose that we want to represent friendships in a small
group of people using a graph.  Let's name the people in this group Alice, Bob,
Christine, David, and Evelyn and suppose that their friendships are as follows:

• Alice, Christine, and David are all friends of one another.

• Bob and Christine are friends.

• Evelyn and Alice are friends.

We could then draw these relationships in a graph as follows:

E BD

A C

This picture makes it much easier to see who is friends with one another.  

An important detail to notice, though, is that this is not the only possible way that
we could have drawn this graph.  Below is an entirely diferent rendering of the
graph:
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And here is yet another:

E

B
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In all three of these cases, it is possible to discern the group's friendships, though
some of these drawings are easier to interpret than others.  In the extreme, it is
possible to lay out graphs in ways that entirely obscure the relationships between
the graph's nodes.  For example, consider the following graph layout:

This drawing is a mess!  Many of the arcs cross one another, the nodes seem to be
scattered around randomly, and the overall drawing is garbled.  However, consider
this alternative drawing below:
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This drawing is for exactly the same graph as the previous image, but the structure
is much more visible.  The drawing is symmetric, the nodes are spaced apart in an
aesthetically pleasing manner, and the edges do not cross one another.

In general, it can be diicult to ind aesthetically pleasing layouts for graphs.  The
question then arises – given an arbitrary graph, how can we produce a good draw-
ing for that graph?  This is called the graph drawing problem and has been studied
extensively.   Interestingly,  while  there  are  many  good  algorithms  for  drawing
graphs, no one algorithm shines as “the” graph drawing algorithm.  Every algorithm
has its strengths and weaknesses, and many algorithms that work marvelously on
certain graphs will produce poor layouts for other graphs.  In this assignment, you'll
learn about one particular type of algorithm called a force-directed layout algorithm
and will get a chance to see its performance on a variety of graphs.  In doing so,
you'll cement your skills with the streams library and the STL  vector class.  Plus,
you'll end up with an incredibly entertaining piece of software.

Graph Layout Heuristics

Before going into the details of how force-directed layouts work, we need to address
the following question: how can a computer, which can only blindly crunch num-
bers, tell whether a particular graph drawing is is aesthetically pleasing to its hu-
man masters?  This question is both diicult to pose and diicult to answer – what
one person inds intuitive might leave another baled – and in this assignment we
won't try to answer it directly.  Instead, we will come up with a set of criteria that in
general lead to nice graph layouts, then will design an algorithm to try to pick lay-
outs meeting these criteria.  This will not always result in ideal graph drawings, but
will do a surprisingly good job laying out many graphs.

There are many heuristics that could be used to determine how good a graph draw-
ing is.  For example, we could try to minimize the number of arcs crossing one an-
other, or try to maximize the symmetry of the drawing.  In this assignment, how-
ever, we'll limit ourselves to the following two heuristics, which work remarkably
well in practice:
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• Position connected nodes near one another.  When laying out a graph, it

is often a good idea to place nodes that are joined by an edge near one an-
other.  The idea behind this metric is that if connected nodes are near each
other, a reader can focus on one part of the graph and see the local structure
of the graph in that region.  For example, below are two renditions of the
same graph, where the graph on the left-hand side has connected nodes
placed near each other and the right-hand side has connected nodes spaced
far apart:

 
As you can see, the left-hand graph is much easier to interpret. 
 

• Maximize  the  distance between unconnected nodes.   If  two  uncon-

nected nodes are placed near one another, the reader can be confused into
thinking that they are somehow related when in fact there is no connection
between them.  For example, consider  the two drawings below:
 

 
In the left-hand graph, nodes that are not connected are spaced apart from
one another, providing insight into the structure of the graph.  In the right-
hand side, no two horizontally adjacent nodes are connected, and the struc-
ture of the graph is much harder to intuit.

Now that we have a set of heuristics for elegant graphs, how do we go about plac-
ing nodes according to those heuristics?  In general, this problem is diicult.  The
position of each node inluences the position of each other node, so picking a layout
that balances the heuristics requires solving a large, complicated system of equa-
tions.* Fortunately,  there  is  a clever  strategy that  lets  us avoid  this  complexity.

* Later on when we cover the actual math behind node placement, it's a fun exercise to think about solving the 
system of equations manually.  This is very difficult because, as you'll see, the equations governing node 
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Rather than solving for the answer directly, we'll instead start of with a random
guess,  then continuously  reine the positions of  the nodes to improve  upon the
heuristics.  Over time, the nodes will reach a positions that balance the heuristics,
and we'll end up with an aesthetically pleasing graph drawing.

The key step in this algorithm is inding some way to update the node positions, and
to do this we'll take a cue from physics.  At each step of the graph layout, we'll have
the nodes exert forces on one another.  These forces will push and pull nodes that
are in suboptimal positions until they eventually come to rest in a stable location.
Because we want unconnected nodes to be far apart from one another, we'll have
each node repel each other node with some force.  Similarly, because we want con-
nected nodes to remain near one another, we'll have each edge between nodes at-
tract its endpoints.  As these forces move the nodes around, the positions of the
nodes will tend toward conigurations where the net force on each node is mini-
mized; that is, when there is a balance between the forces spacing out unconnected
nodes and keeping together connected nodes.

The general skeleton of our algorithm is as follows:

    Assign each node in the graph an initial location.
    While the layout is not yet finished:
        Have each node exert a repulsive force on each other node.
        Have each edge exert an attractive force on its endpoints.
        Move the nodes according to the net force acting on them.

The details of each of these steps are quite customizable: we can initialize the posi-
tions of the nodes however we choose, decide when to stop based on multiple cri-
teria, and use almost any function to determine the strengths of the attractive and
repulsive forces between nodes.  In this assignment, you'll implement one particular
version of a force-directed layout algorithm, but I highly encourage you to try out
your own variations; I've suggested several ideas at the end of this handout.

Let's now go over the speciics of how each of the above steps work.

Assigning initial node positions.  There is no one “correct way” to initially lay
out the nodes in the graph.  Because the algorithm takes an initial guess and im-
proves over time, pretty much any initial layout will do.  In this assignment, how-
ever, you'll initially position the nodes so that they are evenly spaced apart on the
unit circle.  In particular, in a graph with n nodes, node k should be placed at

  cos
2 k
n
,sin

2 k
n 

Here, angles are represented in radians.  In C++, you can compute sine and cosine
using the  sin and  cos functions exported by the  <cmath> header ile.  There is no
predeined C++ constant for π, but you should be ine with

    const double kPi = 3.14159265358979323;

Determining whether to continue iterating.  The heart of the force-directed al-
gorithm is the iteration.  If the iteration cuts of too early, then the nodes may not

positions are nonlinear.
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have moved into good positions; if the iteration runs too long, then the computer
will waste time trying to improve upon an already perfect layout.  Although there
are ways to automatically detect whether to continue or cut of the iteration,* in this
assignment we'll adopt a simple approach – asking the user to control how long the
algorithm runs.  In particular, before running the algorithm, you should prompt the
user for a number of seconds, then run the algorithm until that many seconds have
elapsed.

In C++, you can retrieve the current time by using the time function, exported by
<ctime>.  The time function returns a value of type time_t which holds some unique
value identifying the current time.  In order to track how much time has elapsed in
the simulation, you can use the difftime function.  difftime takes as arguments two
time_ts, then reports the number of seconds that have elapsed between the two
time points.  For example, the following illustrates one way to use difftime to mea-
sure how long a computation takes:

    time_t startTime = time(NULL);

    /* ... some complex operation ... */

    double elapsedTime = difftime(time(NULL), startTime);

Here, the irst line invokes the time function to get the start time, and the last line
uses difftime to compute the diference in time between now and the start time.

Computing forces.   The  particular  approach  we will  use  to  compute  forces  is
based of of  the  Fruchterman-Reingold algorithm,  an early but efective force-di-
rected layout algorithm.  In Fruchterman-Reingold, every node exerts a repulsive
force on every other node that is inversely proportional to the distance between
those nodes, and each arc exerts an attractive force on its endpoints proportional to
the  square of the distance between those nodes.  This means that as connected
nodes grow more distant to one another, the attractive force rises quickly and the
repulsive force drops of, so connected nodes will have a tendency to “snap back”
toward one another.  Similarly, as the nodes draw increasingly close, the repulsive
force grows rapidly while the attractive force diminishes, so the nodes will move
away from each other.  Only when the nodes are at a perfect distance from one an-
other will the forces balance and the nodes cease to move.

To keep track of the net forces on each node, you'll maintain a Δx and Δy value for
each node which stores the net forces on that node along the x and y axes.  It's im-
portant to track both, since it's possible that a node might be repelled entirely verti-
cally (in which case it will have a strong force in the y direction but no force in the x
direction) or horizontally (strong force in the x direction, no force in the y direction).
The net forces in each direction begin at zero, but will be adjusted by the interac-
tions of each node with each other node.

* One common approach is to compute the kinetic energy of the system, which is given by 
the sum of the squares of the Δx and Δy terms of each of the nodes.  When the kinetic 
energy drops below some particular threshold, the algorithm can assume that the graph 
is more or less in its inal coniguration and can stop the iteration.
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The irst source of force acting on each node is the repulsive force exerted by every
node against every other node.  For each pair of nodes (x0, y0) and (x1, y1), the mag-
nitude of the repulsive force Frepel between these nodes is

F repel=
krepel

 x1−x0
2 y1− y0

2

Where krepel is a constant that controls the strength of the repulsive attraction.  If the
magnitude of this constant increases, then nodes repel each other more strongly; if
it has a small magnitude, then nodes hardly repel each other at all.  I advise using a
value of 10-3 for this constant, but you are free to experiment with this value if you
wish.

Once you have computed the magnitude of the repulsive force, you will need to de-
termine how much of that force is in the y direction and how much of it is in the x
direction.  To see how this force splits up, consider the following diagram:

F
repel

(x
0
, y

0
)

(x
1
, y

1
)

            F
y

F
x

θ

Here, Fx and Fy are the forces in the x and y directions exerted on the node (x0, y0).
Using some simple trigonometry, we get that

F x0
=−F repel cos

F y0
=−F repel sin 

By Newton's laws, the force exerted against the node (x1, y1) are thus

F x1
=F repel cos

F y1
=F repel sin

Here, we've been using the angle θ to represent the angle indicated in the above
drawing.  Again, simple trigonometry tells us that

=tan
−1 y1− y0

x1−x0

In C++, you can compute this arctangent using the atan2 function, also in <cmath>.
atan2 takes in two arguments – the irst representing y1 – y0 and the second x1 – x0

– and returns the value of the above expression in radians.  For example:
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    double theta = atan2(y1 – y0, x1 – x0);

To summarize, the logic for computing repulsive forces is as follows:

    For each pair of nodes (x0, y0), (x1, y1):
        Compute Frepel = krepel / sqrt ((y1 – y0)

2 + (x1 – x0)
2)

        Compute θ = atan2(y1 – y0, x1 – x0)
        Δx0 -= Frepel cos(θ)
        Δy0 -= Frepel sin(θ)
        Δx1 += Frepel cos(θ)
        Δy1 += Frepel sin(θ)

The second source of force acting on each node is the attractive forces between
nodes joined together by edges.  In this case, the attractive force  Fattract is propor-
tional to the square of the distance between the nodes:

F attract=k attract x1−x0
2 y1− y0

2

Again, kattract is a constant controlling the strength of the attractive force.  As with kre-

pel I suggest using the value 10-3, but you should feel free to experiment with this
value as well.

Using logic similar to the above reasoning with repulsive forces, we can compute
how this force divides over the x and y components as follows:

    For each edge:
        Let the first endpoint be (x0, y0)
        Let the second endpoint be (x1, y1)
        Compute Fattract = kattract * ((y1 – y0)

2 + (x1 – x0)
2)

        Compute θ = atan2(y1 – y0, x1 – x0)
        Δx0 += Fattract cos(θ) // Note that this is a += and not a -=!
        Δy0 += Fattract sin(θ)
        Δx1 -= Fattract cos(θ) // Note that this is a -= and not a +=!
        Δy1 -= Fattract sin(θ)

Moving Nodes According to the Forces.  Once you've computed the net Δx and
Δy for each node, moving the nodes is an easy step – simply increment each node's
x coordinate by its Δx and each node's y coordinate by its Δy.  Note that in a true
physical simulation the forces on each object would change the velocity of the ob-
ject rather than directly modifying its position, but for our simpliied example chang-
ing position alone is suicient.  If you'd like to experiment with each node having a
velocity and a position, feel free to do so.

The Assignment

Your assignment is to implement a simple program which reads in a graph from a
ile, then runs the force-directed layout algorithm described above to ind an ap-
pealing layout for the graph.  In particular, your program should do the following:

1. Prompt the user for the name of a ile containing the graph to visualize.  (The
graph ile format is discussed below.)
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2. Prompt the user for the number of seconds to run the algorithm, which should
be positive.

3. Place each node into its initial coniguration.

4. While the speciied number of seconds has not elapsed:
1. Compute the net forces on each node.
2. Move each node by the speciied amount.
3. Display the current state of the graph using the provided library.

5. (optional) Ask the user if they want to display another graph and loop accord-
ingly.

In the provided starter code, I have provided you a header ile, SimpleGraph.h, which
exports a set of types for representing a graph.  In particular, you're given:

• Node, a struct representing a node in a graph.  It simply stores an x and y po-

sition.
• SimpleGraph, which stores two vectors, one of Nodes and one of Edges.

• Edge, a struct representing an edge in the graph.  Each Edge has two ields,

start and end, which correspond to the indexes of the edge's endpoints in the
Node vector.

The provided starter code also contains many sample graphs you can run your pro-
gram on.  Each graph is represented as a ile, where the irst line contains the num-
ber of nodes and each remaining line deines an edge.  For example, here is a graph
ile where the nodes and edges represent the corners and edges of a cube:
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8
0 1
1 2
2 3
3 0
4 5
5 6
6 7
7 4
0 4
1 5
2 6
3 7

Here, the irst line of the ile indicates that there are eight nodes in the graph, and
the remainder of the lines consist of two numbers denoting which nodes are con-
nected by edges.  For example, the line  0 1 indicates that there is an edge from
node 0 to node 1, the line 3 7 that there is an edge from node 3 to node 7, etc.  You
can assume that every ile the user opens is well-formed, though if you wanted to
make this program more resilient you may want to add some code to check that this
is the case.

The code in SimpleGraph.h also contains two functions: InitGraphVisualizer, which
accepts a  SimpleGraph sets up the internal state of the visualizer, and  DrawGraph,
which accepts a SimpleGraph and displays it on screen.  At the start of your program,
you should call the InitGraph, and after each iteration of the main algorithm should
call  DrawGraph on the current graph coniguration.  This will let you watch as the
computer incrementally inds a good layout for the graph.  For example, here is a
time-lapse view of the computer drawing a grid graph (a 10 x 10 array of nodes con-
nected to their neighbors in the cardinal directions), done using a slight modiication
to the base algorithm:
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When writing this program, you should not use any of the CS106B/X libraries.  That
is, you should not use anything from the  strlib.h,  scanner.h,  simpio.h,  filelib.h
headers.  However, you are free to use anything of of the CS106L course website,
including the implementations of the functions contained in these headers.  This
may seem like an arbitrary restriction, but the idea is to get you to write your entire
program using purely portable C++ code.

Task Breakdown

Although this handout is fairly lengthy,  don't panic – you don't need to write very
much code to complete this assignment.  To help you get started, I've constructed
one possible breakdown of the required tasks.  You should feel free to implement
the assignment in any way you see it, so don't worry if this ordering sounds un-
usual.

• Implement code to read a graph from disk.  As a irst step, I suggest writing a

set of functions that will prompt the user for the name of a graph ile and
then read that ile from disk.  The actual ile reading should not be particu-
larly diicult, and depending on how you go about reading the ile it may ac-
tually require more code to prompt the user for a valid ilename than to ac-
tual read in the graph.  You should be sure to use getline (or a wrapper func-
tion) to read input from the user. 

• Implement the logic to initially position the nodes.  Before you can run the

force-directed algorithm, you will  need to position all  of  the nodes in the
graph in a circle.  I suggest getting this step working before writing the itera-
tive part of the algorithm since it's easy to check whether it's working.  In
particular, you can always call DrawGraph and check whether all of the nodes
are arranged in a circle.
 

• Implement the force-directed layout algorithm.   This is the core of the as-

signment,  but fortunately the code necessary to get it  working is  not too
daunting.  You will ultimately need to prompt the user for how long to run the
algorithm, but initially I suggest just putting the iteration in a  while (true)
loop and just letting the algorithm run forever.  As a test of whether your
code is working, if you run the algorithm on the graph 10line, your algorithm
should eventually end up arranging the points in a straight line.  Similarly,
running the algorithm on the ile cube should arrange the points in a way that
looks like a 3D perspective drawing of a cube, as shown here:
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• Implement the code to time the simulation.  Once you have all the rest of the

program working, add in the code to prompt the user for the length of time to
run the algorithm, and then update your  iteration to terminate once that
amount of time has passed.  Feel free to use the  GetInteger code from the
CS106L website to read a number of seconds from the user.

Advice, Tips, and Tricks

Here are a few speciic pointers that might make your life a lot easier as you go
through this assignment:

• Don't hesitate to ask questions!  The point of this assignment is to give
you a chance to play around with C++ and build cool software, not to
punish you for not understanding a particular library or language de-
tail.  If you're having trouble understanding the starter code, run into inexpli-
cable runtime errors, or can't seem to get some part of the assignment work-
ing,  please send me an email,  talk to me after lecture,  or come to oice
hours.  I genuinely love this material and want to help you learn it, so don't
hesitate to ask questions if you need to.
 

• Make sure to read the graph iles correctly.  When reading in the graph data

from each ile, make sure that you don't write the loop to read the edges as
follows:
 
    while (!infile.fail()) { // Error: Don't do this!!
        /* ... read another edge ... */
    }

 
This loop structure will incorrectly detect when you have read all of the lines
from the ile, since if in the body of the loop you read data and ind that none
exists, the error will not be detected until the current loop iteration inishes.
This will cause your program to add garbage data to the edge list.  To avoid
this, use a diferent loop structure, such as the one suggested in Chapter 3 of
the online course reader.

• Be careful when reading input from the user.  As mentioned in class, directly

reading data from  cin is dangerous and can completely break input in the
program.  You should instead use a wrapper around cin along the lines of the
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GetLine or GetInteger functions we wrote in class.  If you'd like to use lecture
code in your program, that's completely ine, but you should be sure to cite it.

• DO NOT make copies of your SimpleGraph. It will mess up the graphics and

give you a whole mess of problems. You should have one copy that is passed
in as a parameter everywhere

Extensions

This  assignment implements one of  many algorithms that  can be used to draw
graphs.  Here are a few possible extensions you may want to experiment with.  I
hope that you try at least one of these changes out, since most of them require only
a few lines of code and can yield noticeable changes in the resulting graphs:

1. Change the  relative  strength  of  the  attractive  and repulsive  forces.   The
aforementioned algorithm uses two constants,  krepel and kattract, which control
how strong the attractive and repulsive forces are.  My suggestion is to set
both of these values to 10-3, but there's no reason that they stay at this value,
or that they even stay in a 1:1 ratio.  Try changing these values indepen-
dently of one another.  What do you notice happening to the graph layouts?
Do any values cause the algorithm to completely fail to work? 

2. Add random pertubations.  One potential problem with this force-directed al-
gorithm is that the graph can get stuck in a local minimum, a coniguration in
which all of the forces are balanced but which is not the optimal conigura-
tion.  Often, this manifests itself in a situation in which if any of the nodes
were to move even a slight amount, the graph would collapse into a much
better coniguration.  For example, consider a graph in which three nodes are
each connected to one another in a triangle.  One possible layout for the
graph would be to put them all in a straight line.  If this happens, then the re -
pulsive and attractive forces on the nodes would always push and pull along
that line, and so the nodes would always be collinear.  However, if one of the
nodes were to get bumped slightly out of place, then the forces between the
nodes would no longer be along a line and the nodes will  quickly arrange
themselves in a triangle.  Try modifying the current algorithm by giving each
node a slight “push” in a random direction at each step of the process.  Does
this result in better layouts in any cases?
 

3. Add node velocities.  In this particular force-directed algorithm, the amount
each node moves on each iteration is completely independent of the amount
that the node moved on the previous steps.  That is, if a node moves a great
distance on one step, it has no “memory” of this and on the next step it will
move based solely on the current coniguration.  In an actual physical system,
each node would have an associated velocity which would keep it moving in a
particular direction until the net forces slowed it down.  Consider modifying
the algorithm to incorporate information about the previous iteration's veloci-
ties into the current step.  One way to do this would be to track the Δx and Δy
of each object from one iteration to the next, rather than resetting it to zero
each time.  What do you notice about the graph layouts?
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4. Add penalties for crossing edges.  One aspect of graph drawings we did not
take into account when computing forces is the number of edges that are
crossing in a particular drawing.  A graph drawing without crossings is more
likely to be aesthetically pleasing than a graph drawing with crossings.  Mod-
ify the algorithm to detect these crossings and adjust the layout accordingly.
One common approach for doing this is to pretend that there is an invisible
node at the center of each edge that exerts a repulsive force against the cen-
ter of each other edge, thus pushing edges apart from one another.
 

5. Add penalties for low resolution.  The  resolution of a graph drawing is the
smallest angle between any two edges incident to a single node.  Graphs that
have low resolution can be hard to understand, since the edges emanating
from a source node will all be bunched together.  Modify the algorithm to try
to avoid low resolution.  One way to do this might be to add a repulsive force
between the endpoints of arcs that have a small angle between them.
 

6. Generalize the deinition of an attractive force.  In our current algorithm, only
nodes directly connected by edges have an attractive force between them.
The rationale behind this was that nodes that are connected to one another
ought to be close to each other.  However, given this same reasoning, it also
makes sense to have nodes that are almost connected to one another exert a
force on each other.  For example, if node A is connected to node B and node
B is connected to node C, then A and C are likely to be near each other in the
inal graph layout.  Similarly, if C is then connected to D, perhaps A and D
should be near each other as well.  Update the algorithm so that nodes that
are more than one hop away from each other still exert an attractive force.
One option might be to have each node exert an attractive force on each
other node proportional to how “close” they are to one another in the initial
graph.

There are a whole host of extensions you could try out, so don't be limited just by
these.  If you come up with something impressive, I'll gladly show it of to the rest of
the class.

Deliverables

To submit the assignment, please submit your assignment on paperless (located at
paperless.stanford.edu).  Then pat yourself on the back – you've just completed the
irst assignment of the quarter!

Good luck!
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