
 
 
Ali Malik            Handout 03 
CS106L Winter 2018                    Feb 14th, 2018 

 
 

Assignment 2: CS106L WikiRacer  
 

 

Due: Tuesday, 27th Feb, 11:59pm 

Introduction: 
Human beings are obsessed with finding patterns. Whether it be in the depths of                           
mathematical study or the playground of hobbies like Chess and Sudoku, it is clear                           
that the human race enjoys engaging with the art and science of discovering trends.                           
It is actually claimed by ​some that our ability to recognize the most complex of                             
patterns was one of the central factors in our development as an ultra intelligent                           
species. Yet with the recent advances in data mining and information distribution,                       
we have reached an age where the sheer volume of data easily overwhelms our                           
ability to immediately understand it. This is where you, as computer programmers,                       
come in. Just as the advances in computing have allowed us to gather such                           
egregiously large collections of data, so to have advances in algorithm design and                         
programming methodology pushed the boundaries of the complexity of patterns we                     
can detect. With the advent of fields like data science, we are now able to inspect and                                 
analyze trends beyond those capable by our minds alone. 

 

One interesting place to look for meaningful trends is the vast collection of articles on                             
Wikipedia. For example, there is a famous observation that repeatedly clicking the                       
first, non-parenthesised/italicised link starting on any Wikipedia page will always get                     
you to the Philosophy page. This fact, popularised by an xkcd ​comic’s hover caption,                           
lead a team of mathematicians from the University of Vermont to ​conjecture that the                           
flow of information in the world’s largest, most meticulously indexed collection of                       
human knowledge tends to pages like Philosophy because the subject matter of this                         
field is a major organizing principle for the ideas represented by human knowledge.                         
Trends like this, where a collection of information conceives a web of emerging                         
relationships, can give enormous insight into the structure of human knowledge and                       
understanding. 

 

1 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141622/
https://en.wikipedia.org/wiki/Wikipedia:Getting_to_Philosophy
https://xkcd.com/903/
https://arxiv.org/pdf/1605.00309.pdf


 

One fun game to play is ​Wikiraces​, where any number of participants race to get to a                                 
target Wikipedia page by using links to travel from page to page. The start and end                               
page can be anything but are usually unrelated to make the game harder. Before the                             
timer starts, you are allowed some time to read the target page to get a better                               
understanding of it. If you want to have a try, there is an online version ​here​! 

Although usually just a fun past time, looking at different Wikipedia ladders can give a                             
lot of interesting insights into the relationship and semantic similarity between                     
different pages. In this assignment, you are going to implement a bot that will                           
intelligently find a Wikipedia link ladder between two given pages. In the process you                           
will get practice working with iterators, algorithms, templates, and special containers                     
like a priority queue. 

 

A broad pseudocode overview of our algorithm is as follows: 

 

To find a ladder from startPage to endPage: 

Make startPage the currentPage being processed. 

 

Get set of links on currentPage. 

 

If endPage is one of the links on currentPage: 

We are done! Return path of links followed to get here. 

 

Otherwise visit each link on currentPage in an intelligent way          

and search each of those pages in a similar manner. 

 

 

It is time for part B of the assignment! 

 

 

 

 

2 

https://en.wikipedia.org/wiki/Wikipedia:Wikirace
http://thewikigame.com/


 

Part B: 
Congratulations on finishing the first part of the assignment! As you probably 
remember, you implemented a function  
 

  unordered_set<string> findWikiLinks(const string& page_html); 

 

that takes the html of a page in the form of a string as a parameter and returns an                                     
unordered_set<string> containing all the valid Wikipedia links in the page_html                   
string. 

In this next part, we are actually going to write the code to find a Wikipedia ladder                                 
between two pages. We will be writing a function: 

 

vector<string> findWikiLadder(const string& start_page,  

const string& end_page); 

 

that takes a string representing the name of a start page and a string representing                             
the name of the target page and will return a ​vector<string> ​that will be the link                              
ladder between the start page and the end page. For example, a call to                           
findWikiLadder("Mathematics", "American_literature") might return the        
vector that looks like ​{Mathematics, Alfred_North_Whitehead, Americans,           

Visual_art_of_the_United_States, American_literature} since from the        
Mathematics wikipedia page, you can follow a link to the ​Alfred_North_Whitehead                     
page, then follow a link to the ​American page, then the ​Visual_art_of_the_United_States                       
page, and finally arrive at the ​American_Literature​ page. 

We are going to break the project into steps: 

 

Designing the Algorithm 

We want to search for a link ladder from the start page to the end page. The hard                                   
part in solving a problem like this is dealing with the fact that Wikipedia is ​enormous.                               
We need to make sure our algorithm makes intelligent decisions when deciding                       
which links to follow so that it can find a solution quickly. 

3 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Alfred_North_Whitehead
https://en.wikipedia.org/wiki/Americans
https://en.wikipedia.org/wiki/Visual_art_of_the_United_States
https://en.wikipedia.org/wiki/American_literature


 

A good first strategy to consider when designing algorithms like these is to                         
contemplate how you as a human would solve this problem. Let’s work with a small                             
example using some simplified Wikipedia pages. 

Suppose our start page is ​Lion ​and our target page is ​Barack_Obama​. Let’s say these                             
are the links we could follow from the Lion page: 

 

● Middle_Ages 
● Federal_government_of_the_United_States 
● Carnivore 
● Cowardly_Lion 
● Subspecies 
● Taxonomy_(biology) 

 

Which link would you choose to explore first? It is fairly clear that some of these links                                 
look more promising than others. For example, the link to the page titled                         
Federal_government_of_the_United_States looks like a winner since it is probably                 
really close to the ​Barack_Obama page. On the other hand, the ​Subspecies page is                           
less directly related to a page about a former president of the United States and will                               
probably not lead us anywhere helpful in terms of finding the target page. 

In our algorithm, we want to capture this idea of following links to pages “closer” in                               
meaning to the target page before those that are more unrelated. How can we                           
measure this similarity?  

One idea to determine “closeness” of a page to the target page is to look at the links                                   
in common between that page and the target page. The intuition is that pages                           
dealing with similar content will often have more links in common than unrelated                         
pages. This intuition seems to pan out in terms of the links we just considered. For                               
example, here are the number of links each of the pages above have in common with                               
the target ​Barack_Obama​ page: 

 

 

 

4 

https://en.wikipedia.org/wiki/Lion
https://en.wikipedia.org/wiki/Barack_Obama
https://en.wikipedia.org/wiki/Middle_Ages
https://en.wikipedia.org/wiki/Federal_government_of_the_United_States
https://en.wikipedia.org/wiki/Carnivore
https://en.wikipedia.org/wiki/Cowardly_Lion
https://en.wikipedia.org/wiki/Subspecies
https://en.wikipedia.org/wiki/Taxonomy_(biology)
https://en.wikipedia.org/wiki/Federal_government_of_the_United_States
https://en.wikipedia.org/wiki/Barack_Obama
https://en.wikipedia.org/wiki/Subspecies
https://en.wikipedia.org/wiki/Barack_Obama


 

 
Pages 

Links in common with 
Barack_Obama​ page 

Middle_Ages   0 

Federal_government_of_the_United_States  5 

Carnivore  0 

Cowardly_Lion  0 

Subspecies  0 

Taxonomy_(biology)  0 

 

This makes sense! Of course the kind of links on the ​Barack_Obama page will be                             
similar to those on the ​Federal_government_of_the_United_States page; they are                 
related in their content. For example, these are the links that are on both the                             
Federal_government_of_the_United_States​ page and the ​Barack_Obama​ page: 

● Democratic_Party_(United_States) 
● United_States_Senate 
● President_of_the_United_States 
● Donald_Trump 
● Vice_President_of_the_United_States 

 

Thus, our idea of following the page with more links in common with the target page                               
seems like a promising metric. Equipped with this, we can start writing our algorithm. 

 

 

 

 

5 

https://en.wikipedia.org/wiki/Barack_Obama
https://en.wikipedia.org/wiki/Middle_Ages
https://en.wikipedia.org/wiki/Federal_government_of_the_United_States
https://en.wikipedia.org/wiki/Carnivore
https://en.wikipedia.org/wiki/Cowardly_Lion
https://en.wikipedia.org/wiki/Subspecies
https://en.wikipedia.org/wiki/Taxonomy_(biology)
https://en.wikipedia.org/wiki/Barack_Obama
https://en.wikipedia.org/wiki/Federal_government_of_the_United_States
https://en.wikipedia.org/wiki/Federal_government_of_the_United_States
https://en.wikipedia.org/wiki/Barack_Obama


 

The Algorithm 

In our code, we will be doing something very similar to the 106B ​WordLadder                           
assignment, except instead of using a normal queue, we will use a priority queue. A                             
priority queue is a data structure where elements can be enqueued (just like a                           
regular queue), but the element with the highest priority (determined by a priority                         
function) is returned on a request to dequeue. This is useful for us because we can                               
enqueue each possible page we could follow and define each page’s priority to be the                             
number of links it has in common with the target page. Thus, when we dequeue                             
from the queue, the page with the highest priority (i.e. the most number of links in                               
common with the target page) will be dequeued first.  

In our code, we will use a vector<string> to represent a “link ladder” between pages,                             
where pages are represented by their links. Our pseudocode looks like this: 

 

  
    Finding a link ladder between pages start_page and end_page:  
        Create an empty priority queue of ladders (a ladder is a vector<string>).  
  
        Create/add a ladder containing {start_page} to the queue.  
  
        While the queue is not empty:  
 
            Dequeue the highest priority partial-ladder from the front of the queue.  
  
            Get the set of links of the current page i.e. the page at the end of the  
              just dequeued ladder.  
  
            If the end_page is in this set:  
                We have found a ladder!  
                Add end_page to the ladder you just dequeued and return it.  
  
            For each neighbour page in the current page’s link set:  
 
                If this neighbour page hasn’t already been visited:  
 
                    Create a copy of the current partial-ladder.  
  
                    Put the neighbor page string on top of the copied ladder.  
  
                    Add the copied ladder to the queue.  
  
        If while loop exits, no ladder was found so return an empty vector<string> 
 
 
 
 

6 

http://web.stanford.edu/class/cs106b/assn/serafini.html


 

Using the WikiScraper Class 
 
To assist you with connecting to Wikipedia and getting the page html, I have provided                             
a WikiScraper class. It exports the following public method: 

unordered_set<string> WikiScraper::getLinkSet(const string& page_name); 

which takes a string representing the name of a Wikipedia page and returns a set of                               
all links on this page. Throughout this assignment, we will take the name of a                             
Wikipedia page to be what gets displayed in the url when you visit that page on your                                 
browser. For example, the name of the Stanford University page would be                       
Stanford_University ​ ​(note the _ instead of spaces): 

1 

In part A of this assignment, you wrote most of the code that implements the                             
functionality of the ​getLinkSet method. The WikiScraper class adds a bit more                       
functionality on top of the ​findWikiLinks() method you wrote to avoid redundant                       
work, but otherwise completely relies on ​findWikiLinks() to work properly. Your                     
first task is to copy your code from the ​findWikiLinks() method you wrote for                           
part A and replace the unimplemented ​findWikiLinks() ​method in the                  
wikiscraper.cpp file. Once this is done, the WikiScraper class is complete and you can                           
use it for the rest of the assignment. 

7 



 

To use the class, you will first need to make a single WikiScraper object in the                               
findWikiLadder() method that you are implementing in main.cpp. This would look                     
something like this: 

 

vector<string> findWikiLadder(const string& start_page,  

const string& end_page) { 

 

    ​// creates WikiScraper object 
    WikiScraper scraper;  

 

    ​// gets the set of links on page specified by end_page  
    // variable and stores in target_set variable 

    auto target_set = scraper.getLinkSet(end_page); 

 

    ​// ... rest of implementation 
} 

 

Note: Do not create more than one WikiScraper object; doing so will slow your code down.                               
Just create one at the start of the function and pass it around wherever it is needed. 

 

Creating the Priority Queue 

The next task in the assignment is to make a priority queue using a constructor from                               
the standard library. Although this sounds like a simple task in theory, it will require                             
you to really understand how to use lambdas and variable capture.  

The first thing to do is read the ​documentation for ​std::priority_queue​. The                       
format of a ​std::priority_queue​ looks like this: 

 

template​< 

    ​class​ T, 

    ​class​ Container ​=​ ​std::vector​<​T​>​, 
    ​class​ Compare ​=​ ​std::less​<​typename​ Container​::​value_type​> 

>​ ​class​ priority_queue​; 
 

Let’s break this down. This is telling us the ​std::priority_queue ​needs three                      
template types specified to be constructed. We can read the documentation further                       
to see what each one represents: 

 

8 

http://en.cppreference.com/w/cpp/container/priority_queue
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/utility/functional/less


 

Template parameters 

T - The type of the stored elements. The behavior is undefined if T is not the same 
type as Container::value_type. ​(since C++17) 

Container - The type of the underlying container to use to store the elements. The container 
must satisfy the requirements of ​SequenceContainer​, and its iterators must 
satisfy the requirements of ​RandomAccessIterator​. Additionally, it must provide 
the following functions with the usual semantics: 

■ front() 
■ push_back() 
■ pop_back() 

The standard containers ​std::vector​ and ​std::deque​ satisfy these requirements. 

Compare - A ​Compare​ type providing a strict weak ordering 

 

So we essentially need to specify the type of thing the priority_queue will store (T),                             
the container the priority_queue will use behind the scenes (which will be a vector<T>                           
for our purposes), and finally, the type of our comparison function that will be used                             
to determine which element has the highest priority. 

 

Since we want a ​priority_queue of ladders, where we represent a ladder as a                           
vector<string>​, we will take ​T to be ​vector<string>​, and so the Container,                       
which is of the form ​vector<T>, will be a ​vector<vector<string>>​. Lastly, we                       
need to determine what comparator function we want to use. Remember, we want                         
to order the elements by how many links the page at the very end of it’s respective                                 
ladder has in common with the target_page. To make the ​priority_queue we will                         
need to write this comparator function: 

 

To compare ​ladder1​ and ​ladder2​:  
    page1 = word at the end of ladder1 
    page2 = word at the end of ladder2 
    int num1 = number of links in common between set of links on  

page1 and set of links on end_page 
    int num2 = number of links in common between set of links on  

page2 and set of links on end_page 
    return num1 < num2 
 

9 

http://en.cppreference.com/w/cpp/concept/SequenceContainer
http://en.cppreference.com/w/cpp/concept/RandomAccessIterator
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/deque
http://en.cppreference.com/w/cpp/concept/Compare


 

The thing to keep in mind is that this function will need to have access to the 
WikiScraper object you made in your findWikiLadder() method so that it can get the 
set of links on page1 and page2. Think about how you can write this comparison 
function as a lambda that can access the WikiScraper object in the function where 
the lambda is declared. 

Equipped with this, we can create the priority_queue, which takes three template                       
parameters: the thing to store (ladder), the container to use behind the scenes                         
(vector<ladder>), and the ​type of the comparison function we will use. We hit a little                             
snag here, since if we write our comparison function as a lambda, we have no idea                               
what it’s type is. To deal with this, C++ provides the ​decltype()​method which takes                           
an object and returns its type. Then, to the constructor of the priority_queue, we                           
actually just pass the comparison function. All in all, we can create our priority_queue                           
like this: 

vector<string> findWikiLadder(const string& start_page,  

const string& end_page) { 

    ​// creates WikiScraper object 
    WikiScraper scraper;  

 

    ​// Comparison function for priority_queue 
    ​auto cmpFn = ​/* declare lambda comparator function */; 
 

    ​// creates a priority_queue names ladderQueue 
    std::priority_queue<vector<string>, vector<vector<string>>, 

                        decltype(cmpFn)> ladderQueue(cmpFn); 

 

 

    ​// ... rest of implementation 
 

} 

 

Implementation Tips: 

● The code we wrote on the Feb 15th lecture is really helpful for this part of the                                 
assignment. We created and used a priority_queue in a similar manner to the                         
one needed for this assignment. 

● I would ​strongly suggest you print the ladder as you deque it at the start of the                                 
while loop so that you can see what your algorithm is exploring. 

● Since we will be dealing with actual Wikipedia pages, there are no simple test                           
cases. Because of this, you will have to implement your code in stages and test                             

10 

http://web.stanford.edu/class/cs106l/lectures.html


 

each stage. To assist with this, I have put a few sample runs of the program in                                 
the sample-output.txt file in the res folder. 

● Here are some good test pages to try your algorithm on in the early stages: 

○ Start page​: Fruit 
○ End page​: Strawberry 
○ Expected return​: {Fruit, Strawberry} 
○ Notes​: This should return almost instantly since it is a one link jump 

 
○ Start page​: Milkshake 
○ End page​: Gene 
○ Expected return​: {Milkshake, Carbohydrate,  DNA, Gene} 
○ Notes: ​This ran in less than 60 seconds on my computer. 

 
○ Start page​: Emu 
○ End page​: Stanford_University 
○ Expected return​: {Emu, Savannah, United_States,  

  University_of_California,_Berkeley, Stanford_University} 
○ Notes​: This ran in less than 60 seconds on my computer. 

 
 

You don’t need to match this ladder exactly but your code should run in less                             
than the times specified. If not, chances are your priority queue is not working                           
correctly. 

 
● Definitely consult the lecture on lambdas to see how you can make the                         

comparator function on the fly. In particular, you will need to leverage a special                           
mechanism of lambdas to capture the WikiScraper object so that it can be                         
used in the lambda. 

 
If you want to discuss your plan of attack, definitely email me! The code for this                               
assignment is not long at all, but it can be hard to wrap your head around. Ask                                 
questions early if things don’t make sense; I will be more than happy to talk through                               
ideas with you. 

 

Good luck! :) 

11 


