CS106L

Standard C++ Programming Laboratory

Course Reader
Fall 2010

Keith Schwarz
Stanford University



Acknowledgements

This course reader represents the culmination of two years' work on CS106L and its course handouts.
Neither the class nor this reader would have been possible without Julie Zelenski's support and generosity
during CS106L's infancy. 1 strongly encourage you to take one of Julie's classes - you will not be
disappointed.

I'd also like to extend thanks to all of the CS106L students I've had the pleasure of teaching over the years.
It is truly a joy to watch students light up when they see exactly what C++ can do. The long hours that
went into this course reader would not have been possible without the knowledge that students are
genuinely interested in the material.

Additionally, [ would like to thank the brave souls who were generous enough to proofread draft versions
of this course reader. Yin Huang and Steven Wu offered particularly apt advice on style and grammar. Ilya
Sherman gave wonderful suggestions on typesetting and layout and caught many errors that slipped
under my radar. Kyle Knutson helped double-check the correctness of the code in the extended examples.
David Goldblatt helped me stay on top of recent developments in C++0x and pointed out how to make
many of the STL practice problems truer to the spirit of the library. Sam Schreiber provided excellent
advice about the overall structure of the reader and was the inspiration for the “Critiquing Class Design”
chapter. Leonid Shamis astutely suggested that I expand the section on development environments.
Brittney Fraser's amazing feedback made many of the examples easier to understand and prevented
several major errors from making it into this reader.

This is the third edition of this course reader. There are certainly ", opiems, typoz, grammatically errors,
and speling misstakes that have made it into this version. If you have any comments, corrections, or
suggestions, please send me an email at htiek@cs.stanford.edu.

This course reader and its contents, except for quotations from other sources, are all © 2009 - 2010 Keith
Schwarz. If you would like to copy this course reader or its contents, send me an email and I'd be glad to
see how I can help out.


mailto:htiek@cs.stanford.edu

Table of Contents

00 0T L ot ) T 1
(00 0= o1 =) ol A = Ul 00 PP 5
Chapter 1: GEHNG SEATTEA. .. e recereereerserseessees s ss s sees s s s sees s s s s E bR e en e 11
Chapter 2: C++ WIthOUt SENIID.N.... ettt bbb s 19

4 N 27 1) (O 23
(00 0T o1 c) s Y 0 - V' LR 25
Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor..... o eeeeseeseesesseeseenees 47
Chapter 5: STL SEQUENCE CONTAINETS. ....vwuriereeurereesreseessessesssesssssessessesssessesssessssssesssssssssessssssssssssssssssssesssssssasssssssssassesassaes 79
Chapter 6: STL Associative CoOntainers and [tErators. ... eeneeeneesseeseessessessessessesssssssssssssessessessssssssesssssssses 121
Chapter 7: STL ALGOTTERIMIS ...ttt ses e ss s s bbb s 175
CRAPLET 81 € STIINES . reurreureeseesreeeseesseesssesssesssessseesseessesssesssesssessssesssessse e sssaesseesssessessseesssssssesssssssesssesssasssesssesssessssesssesssesssesssees 203

Data ADSTIACHION.....i ittt AR AR 217
Chapter 9: ADSTraction ANd ClaSSES ... eureurierreurerseessesseessessesssessessesssssssssesssssse s s ssssssessessse bbb sssseess s sssnsass 219
Chapter 10: RefiNiNg ADSIACiONS. ....iuiueereesseesseeseeseesssessssssssssss s sssesssass s ssss s ssss s s s s s sess s s senes 257
Chapter 11: Operator OVETrIOAdiNEG. ... e eeereeeeeerrerssessseesseesseesseessessssesssssssesssssssasssessseesssesssssssesssesssssssssssasssasssessseses 319
Chapter 12: RESOUICE MaANAZEIMENT.....c.icuriureereeeesreeseessessesasessssssessesssssesssssss s ssssssssssessessss st sebsssssebnssssbssssssssssasssssans 363

L) 1 T g Lol g 0073tz U1 L 395
Chapter 13: What is GeNneric Programming?..... o ecenernesnersesssssssssssssssesssessssssssssssssssssssesssasssessssssssssssssssesenss 397
CRAPLET 141 COMCEPES. corurerueeseesseesseesseeseesseesssesssesssesssesssessseesseessesssesssessssesssesssesssesssesssesssessseessessssesssesssesssesssesssessesssssssessessesas 399
CNAPLET 15 FUNCEOTS ittt ssessee s s s s £ s bR bR 401

Object-Oriented Programiming......cccmimsssmsmssssssssssssssssssssssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssnss 443
Chapter 16: INtroduction t0 INNETTTANCE. ... s s e 445

10700 o 00094 0] (0] 485
CRAPLET 177 C A 0Xoueuiuueeueeeeureeseesseseessesseessessesssessesssessseseessesees s essse e Esse b aEsse b s Eare £ E s EareE s £ R bbb e s bbbt st 487
Chapter 18: Where t0 GO FTOM HETE......c.eeeceeeeceseieeseseesessessset s ssess s ssesss e sss s ssssss s sessss s sssss s s 505

2 0] 0 =3 1 1 B Lo 509
Appendix 0: MoVING fTOIM C t0 CHininesineissessssssssssssssssssesssssssssesssssss s ssssssssssssssssssssssssssssssssssssssssssssssssssanes 511
Appendix 1: Solutions t0 PractiCe ProDIEMIS. ...t sssssss s ssssssssss s seasssees 529

L33 10] U0 0] 0 551



Part Zero

Introduction

Suppose we want to write a function that computes the average of a list of numbers. One implementation
is given here:

double GetAverage (double arr[], int numElems) {
double total = 0.0;
for(int h = 0; h < numElems; ++h)
total += arr[h] / numElems;

return total;

}
An alternative implementation is as follows:

template <typename ForwardIterator>
double GetAverage (ForwardIterator begin, ForwardIterator end) {
return accumulate (begin, end, 0.0) / distance (begin, end);

}

Don't panic if you don't understand any of this code - you're not expected to at this point - but even
without an understanding of how either of these functions work it's clear that they are implemented
differently. Although both of these functions are valid C++ and accurately compute the average,
experienced C++ programmers will likely prefer the second version to the first because it is safer, more
concise, and more versatile. To understand why you would prefer the second version of this function
requires a solid understanding of the C++ programming language. Not only must you have a firm grasp of
how all the language features involved in each solution work, but you must also understand the benefits
and weaknesses of each of the approaches and ultimately which is a more versatile solution.

The purpose of this course is to get you up to speed on C++'s language features and libraries to the point
where you are capable of not only writing C++ code, but also critiquing your design decisions and arguing
why the cocktail of language features you chose is appropriate for your specific application. This is an
ambitious goal, but if you take the time to read through this reader and work out some of the practice
problems you should be in excellent C++ shape.

Who this Course is For

This course is designed to augment CS106B/X by providing a working knowledge of C++ and its
applications. C++ is an industrial-strength tool that can be harnessed to solve a wide array of problems,
and by the time you've completed CS106B/X and CS106L you should be equipped with the skill set
necessary to identify solutions to complex problems, then to precisely and efficiently implement those
solutions in C++.

This course reader assumes a knowledge of C++ at the level at which it would be covered in the first two
weeks of CS106B/X. In particular, I assume that you are familiar with the following:



]
N
]

Nk LW —o

Introduction

How to print to the console (i.e. cout and end1)

Primitive variable types (int, double, etc.)

The string type.

enums and structs.

Functions and function prototypes.

Pass-by-value and pass-by-reference.

Control structures (i f, for, while, do, switch).
CS106B/X-specific libraries (genlib.h, simpio.h, the ADTs, etc.)

If you are unfamiliar with any of these terms, I recommend reading the first chapter of Programming
Abstractions in C++ by Eric Roberts and Julie Zelenski, which has an excellent treatment of the material.
These concepts are fundamental to C++ but aren't that particular to the language - you'll find similar
constructs in C, Java, Python, and other languages - and so I won't discuss them at great length. In
addition to the language prerequisites, you should have at least one quarter of programming experience
under your belt (CS106A should be more than enough). We'll be writing a lot of code, and the more
programming savvy you bring to this course, the more you'll take out of it.

How this Reader is Organized

The course reader is logically divided into six sections:

0.

Introduction: This section motivates and introduces the material and covers information
necessary to be a working C++ programmer. In particular, it focuses on the history of C++, how to
set up a C++ project for compilation, and how to move away from the genlib.h training wheels
we've provided you in CS106B/X.

A Better C: C++ supports imperative programming, a style of programming in which programs are
sequences of commands executed in order. In this sense, C++ can be viewed as an extension to the
C programming language which makes day-to-day imperative programming more intuitive and
easier to use. This section of the course reader introduces some of C++'s most common libraries,
including the standard template library, and shows how to use these libraries to build imperative
programs. In addition, it explores new primitives in the C++ language that originally appeared in
the C programming language, namely pointers, C strings, and the preprocessor.

Data Abstraction. What most distinguishes C++ from its sibling C is the idea of data abstraction,
that the means by which a program executes can be separated from the ways in which
programmers talk about that program. This section of the course reader explores the concept of
abstraction, how to model it concretely in C++ using the class keyword, and an assortment of
language features which can be used to refine abstractions more precisely.

Object-Oriented Programming. Object-oriented programming is an entirely different way of
thinking about program design and can dramatically simplify complex software systems. The key
concepts behind object-orientation are simple, but to truly appreciate the power of object-oriented
programming you will need to see it in action time and time again. This section of the course
reader explores major concepts in object-oriented programming and how to realize it in C++ with
inheritance and polymorphism.

Generic Programming. Generic programming is a style of programming which aims to build
software that can tackle an array of problems far beyond what it was initially envisioned to
perform. While a full treatment of generic programming is far beyond the scope of an introductory
C++ programming class, many of the ideas from generic programming are accessible and can
fundamentally change the ways in which you think about programming in C++. This section



Introduction -3-

explores the main ideas behind generic programming and covers several advanced C++
programming techniques not typically found in an introductory text.

5. More to Explore. C++ is an enormous language and there simply isn't enough time to cover all of
its facets in a single course. To help guide further exploration into C++ programming, this course
reader ends with a treatment of the future of C++ and a list of references for further reading.

Notice that this course reader focuses on C++'s standard libraries before embarking on a detailed tour of
its language features. This may seem backwards - after all, how can you understand libraries written in a
language you have not yet studied? - but from experience I believe this is the best way to learn C++. A
comprehensive understanding of the streams library and STL requires a rich understanding of templates,
inheritance, functors, and operator overloading, but even without knowledge of these techniques it's still
possible to write nontrivial C++ programs that use these libraries. For example, after a quick tour of the
streams library and basic STL containers, we'll see how to write an implementation of the game Snake
with an Al-controlled player. Later, once we've explored the proper language features, we'll revisit the
standard libraries and see how they're put together.

To give you a feel for how C++ looks in practice, this course reader contains several extended examples
that demonstrate how to harness the concepts of the previous chapters to solve a particular problem. I
strongly suggest that you take the time to read over these examples and play around with the code. The
extended examples showcase how to use the techniques developed in previous chapters, and by seeing
how the different pieces of C++ work together you will be a much more capable coder. In addition, I've
tried to conclude each chapter with a few practice problems. Take a stab at them - you'll get a much more
nuanced view of the language if you do. Solutions to some of my favorite problems are given in Appendix
One. Exercises with solutions are marked with a diamond ( 4).

C++ is a large language and it is impossible to cover all of its features in a single course. To help guide
further exploration into C++ techniques, most chapters contain a “More to Explore” section listing
important topics and techniques that may prove useful in your future C++ career.

Supplemental Reading

This course reader is by no means a complete C++ reference and there are many libraries and language
features that we simply do not have time to cover. However, the portions of C++ we do cover are among
the most-commonly used and you should be able to pick up the remaining pieces on a need-to-know basis.
If you are interested in a more complete reference text, Bjarne Stroustrup's The C++ Programming
Language, Third Edition is an excellent choice. Be aware that TC++PL is not a tutorial - it's a reference -
and so you will probably want to read the relevant sections from this course reader before diving into it. If
you're interested in a hybrid reference/tutorial, I would recommend C++ Primer, Fourth Edition by
Lippman, Lajoie, and Moo. As for online resources, the C++ FAQ Lite at www.parashift.com/c++-fag-lite/
has a great discussion of C++'s core language features. cplusplus.com has perhaps the best coverage of the
C++ standard library on the Internet, though its discussion of the language as a whole is fairly limited.

Onward and Forward!


http://www.cplusplus.com/
http://www.parashift.com/c++-faq-lite/

Chapter 0: What is C++?

C++ is a general purpose programming language with a bias towards systems programming that
* isa better C.
* supports data abstraction.
* supports object-oriented programming.
* supports generic programming

- Bjarne Stroustrup, inventor of C++ [Str09.2]

Every programming language has its own distinct flavor influenced by its history and design. Before
seriously studying a programming language, it's important to learn why the language exists and what its
objectives are. This chapter covers a quick history of C++, along with some of its design principles.

An Abbreviated History of C++

The story of C++ begins with Bjarne Stroustrup, a Danish computer scientist working toward his PhD at
Cambridge University. Stroustrup's research focus was distributed systems, software systems split across
several computers that communicated over a network to solve a problem. At one point during his
research, Stroustrup came up with a particularly clever idea for a distributed system. Because designing
distributed systems is an enormously complicated endeavor, Stroustrup decided to test out his idea by
writing a simulation program, which is a significantly simpler task. Stroustrup chose to write this
simulation program in a language called Simula, one of the earliest object-oriented programming
languages. As Stroustrup recalled, initially, Simula seemed like the perfect tool for the job:

It was a pleasure to write that simulator. The features of Simula were almost ideal for the
purpose, and [ was particularly impressed by the way the concepts of the language helped me
think about the problems in my application. The class concept allowed me to map my
application concepts into the language constructs in a direct way that made my code more
readable than [ had seen in any other language...

[ had used Simula before... but was very pleasantly surprised by the way the mechanisms of the
Simula language became increasingly helpful as the size of the program increased. [Str94]

In Simula, it was possible to model a physical computer using a computer object and a physical network
using a network object, and the way that physical computers sent packets over physical networks
corresponded to the way computer objects sent and received messages from network objects. But while
Simula made it easier for Stroustrup to develop the simulator, the resulting program was so slow that it
failed to produce any meaningful results. This was not the fault of Stroustrup's implementation, but of the
language Simula itself. Simula was bloated and language features Stroustrup didn't use in his program
were crippling the simulator's efficiency. For example, Stroustrup found that eighty percent of his
program time was being spent on garbage collection despite the fact that the simulation didn't create any
garbage. [Str94] In other words, while Simula had decreased the time required to build the simulator, it
dramatically increased the time required for the simulator to execute.

Stroustrup realized that his Simula-based simulator was going nowhere. To continue his research,
Stroustrup scrapped his Simula implementation and rewrote the program in a language he knew ran
quickly and efficiently: BCPL. BCPL has since gone the way of the dodo, but at the time was a widely used,

* This section is based on information from The Design and Evolution of C++ by Bjarne Stroustrup.



-6- Chapter 0: What is C++?

low-level systems programming language. Stroustrup later recalled that writing the simulator in BCPL
was “horrible.” [Str94] As a low-level language, BCPL lacked objects and to represent computers and
networks Stroustrup had to manually lay out and manipulate the proper bits and bytes. However, BCPL
programs were far more efficient than their Simula counterparts, and Stroustrup's updated simulator
worked marvelously.

Stroustrup's experiences with the distributed systems simulator impressed upon him the need for a more
suitable tool for constructing large software systems. Stroustrup sought a hybridization of the best
features of Simula and BCPL - a language with both high-level constructs and low-level runtime efficiency.
After receiving his PhD, Stroustrup accepted a position at Bell Laboratories and began to create such a
language. Settling on C as a base language, Stroustrup incorporated high-level constructs in the style of
Simula while still maintaining C's underlying efficiency. After several revisions, C with Classes, as his
language was known, accumulated other high-level features and was officially renamed C++. C++ was an
overnight success and spread rapidly into the programming community; for many years the number of C+
+ programmers was doubling every seven months. By 2007, there were over three million C++
programmers worldwide, and despite competition from other languages like Java and Python the number
of C++ programmers is still increasing. [Str09] What began as Stroustrup's project at Bell Laboratories
became an ISO-standardized programming language found in a variety of applications.

C++ as a Language

When confronted with a new idea or concept, it's often enlightening to do a quick Wikipedia search to see
what others have to say on the subject. If you look up C++ this way, one of the first sentences you'll read (at
least, at the time of this writing) will tell you that C++ is a general-purpose, compiled, statically-typed,
multiparadigm, mid-level programming language. If you are just learning C++, this description may seem
utterly mystifying. However, this sentence very aptly captures much of the spirit of C++, and so before
continuing our descent into the realm of C++ let's take a few minutes to go over exactly what this
definition entails.

C++ is a General-Purpose Programming Language

Programming languages can be broadly categorized into two classes - domain-specific programming
languages and general-purpose programming languages. A language is domain-specific if it is designed to
solve a certain class of problems in a particular field. For example, the MATLAB programming language is a
domain-specific language designed for numerical and mathematical computing, and so has concise and
elegant support for matrix and vector operations. Domain-specific languages tend to be extremely easy to
use, particularly because these languages let programmers express common operations concisely and
elegantly because the language has been designed with them in mind. As an example, in MATLAB it is
possible to solve a linear system of equations using the simple syntax x = A\b. The equivalent C++ or Java
code would be significantly more complex. However, because domain-specific languages are optimized on
a particular class of problems, it can be difficult if not impossible to adapt those languages into other
problem domains. This has to do with the fact that domain-specific languages are custom-tailored to the
problems they solve, and consequently lack the vocabulary or syntactic richness to express structures
beyond their narrow scope. This is best illustrated by analogy - an extraordinary mathematician with
years of training would probably have great difficulty holding a technical discussion on winemaking with
the world's expert oenologist simply because the vocabularies of mathematics and winemaking are
entirely different. It might be possible to explain viticulture to the mathematician using terms from
differential topology or matrix theory, but this would clearly be a misguided effort.

Contrasting with domain-specific languages are general-purpose languages which, as their name suggests,
are designed to tackle all categories of problems, not just one particular class. This means that general-
purpose languages are more readily adapted to different scenarios and situations, but may have a harder
time describing some of the fundamental concepts of those domains than a language crafted specifically



Chapter 0: What is C++? -7-

for that purpose. For example, an American learning German as a second language may be fluent enough
in that language to converse with strangers and to handle day-to-day life, but might have quite an
experience trying to hold a technical conversation with industry specialists. This is not to say, of course,
that the American would not be able to comprehend the ideas that the specialist was putting forth, but
rather that any discussion the two would have would require the specialist to define her terms as the
conversation unfolded, rather than taking their definitions for granted at the start.

C++ is a general-purpose programming language, which means that it is robust enough to adapt to handle
all sorts of problems without providing special tools that simplify tasks in any one area. This is a trade-off,
of course. Because C++ is general-purpose, it will not magically provide you a means for solving a
particular problem; you will have to think through a design for your programs in order for them to work
correctly. But because C++ is general-purpose, you will be hard-pressed to find a challenge for which C++
is a poor choice for the solution. Moreover, because C++ is a general-purpose language, once you have
learned the structures and techniques of C++, you can apply your knowledge to any problem domain
without having to learn new syntax or structures designed for that domain.

C++ is a Compiled Language

The programs that actually execute on a computer are written in machine language, an extremely low-
level and hardware-specific language that encodes individual instructions for the computer's CPU.
Machine languages are indecipherable even to most working programmers because these languages are
designed to be read by computer hardware rather than humans. Consequently, programmers write
programs in programming languages, which are designed to be read by humans. In order to execute a
program written in a programming language, that program must somehow be converted from its source
code representation into equivalent machine code for execution. How this transformation is performed is
not set in stone, and in general there are two major approaches to converting source code to machine
code. The first of these is to interpret the program. In interpreted languages,a special program called the
interpreter takes in the program's source code and translates the program as it is being executed.
Whenever the program needs to execute a new piece of code, the interpreter reads in the next bit of the
source code, converts it into equivalent machine code, then executes the result. This means that if the
same interpreted program is run several times, the interpreter will translate the program anew every
time. The other option is to compile the program. In a compiled language, before running the program, the
programmer executes a special program called the compiler on the source code which translates the entire
program into machine code. This means that no matter how many times the resulting program is run, the
compiler is only invoked once. In general, interpreted languages tend to run more slowly than compiled
languages because the interpreter must translate the program as it is being executed, whereas the
translation work has already been done in the case of compiled languages. Because C++ places a premium
on efficiency, C++ is a compiled language. While C++ interpreters do exist, they are almost exclusively for
research purposes and rarely (if at all) used in professional settings.

What does all of this mean for you as a C++ programmer? That is, why does it matter whether C++ is
compiled or interpreted? A great deal, it turns out; this will be elaborated upon in the next segment on
static type checking. However, one way that you will notice immediately is that you will have to compile
your programs every time you make a change to the source code that you want to test out. When working
on very large software projects (on the order of millions to hundreds of millions of lines of code), it is not
uncommon for a recompilation to take hours to complete, meaning that it is difficult to test out lots of
minor changes to a C++ program. After all, if every change takes three minutes to test, then the number of
possible changes you can make to a program in hopes of eliminating a bug or extending functionality can
be greatly limited. On the other hand, though, because C++ is compiled, once you have your resulting
program it will tend to run much, much faster than programs written in other languages. Moreover, you
don't need to distribute an interpreter for your program in addition to the source - because C++ programs
compile down directly to the machine code, you can just ship an executable file to whoever wants to run
your program and they should be able to run it without any hassle.



-8- Chapter 0: What is C++?

C++ is a Statically-Typed Language

One of the single most important aspects of C++ is that it is a statically-typed language. If you want to
manipulate data in a C++ program, you must specify in advance what the type of that data is (for example,
whether it's an integer, a real number, English text, a jet engine, etc.). Moreover, this type is set in stone and
cannot change elsewhere in the source code. This means that if you say that an object is a coffee mug, you
cannot treat it as a stapler someplace else.

At first this might seem silly - of course you shouldn't be able to convert a coffee mug into a stapler or a
ball of twine into a jet engine; those are entirely different entities! You are completely correct about this.
Any program that tries to treat a coffee mug as though it is a stapler is bound to run into trouble because a
coffee mug isn't a stapler. The reason that static typing is important is that these sorts of errors are caught
at compile-time instead of at runtime. This means that if you write a program that tries to make this sort of
mistake, the program won't compile and you won't even have an executable containing a mistake to run. If
you write a C++ program that tries to treat a coffee mug like a stapler, the compiler will give you an error
and you will need to fix the problem before you can test out the program. This is an extremely powerful
feature of compiled languages and will dramatically reduce the number of runtime errors that your
programs encounter. As you will see later in this book, this also enables you to have the compiler verify
that complex relationships hold in your code and can conclude that if the program compiles, your code
does not contain certain classes of mistakes.

C++ is a Multi-Paradigm Language

C++ began as a hybrid of high- and low-level languages but has since evolved into a distinctive language
with its own idioms and constructs. Many programmers treat C++ as little more than an object-oriented C,
but this view obscures much of the magic of C++. C++ is a multiparadigm programming language, meaning
that it supports several different programming styles. C++ supports imperative programming in the style
of C, meaning that you can treat C++ as an upgraded C. C++ supports object-oriented programming, so you
can construct elaborate class hierarchies that hide complexity behind simple interfaces. C++ supports
generic programming, allowing you to write code reusable in a large number of contexts. Finally, C++
supports a limited form of higher-order programming, allowing you to write functions that construct and
manipulate other functions at runtime.

C++ being a multiparadigm language is both a blessing and a curse. It is a blessing in that C++ will let you
write code in the style that you feel is most appropriate for a given problem, rather than rigidly locking
you into a particular framework. It is also a blessing in that you can mix and match styles to create
programs that are precisely suited for the task at hand. It is a curse, however, in that multiparadigm
languages are necessarily more complex than single-paradigm languages and consequently C++ is more
difficult to pick up than other languages. Moreover, the interplay among all of these paradigms is complex,
and you will need to learn the subtle but important interactions that occur at the interface between these
paradigms.

This book is organized so that it covers a mixture of all of the aforementioned paradigms one after
another, and ideally you will be comfortable working in each by the time you've finished reading.

C++ is a Mid-Level Language

Computer programs ultimately must execute on computers. Although computers are capable of executing
programs which perform complex abstract reasoning, the computers themselves understand only the
small set of commands necessary to manipulate bits and bytes and to perform simple arithmetic. Low-
level languages are languages like C and assembly language that provide minimal structure over the actual
machine and expose many details about the inner workings of the computer. To contrast, high-level
languages are languages that abstract away from the particulars of the machine and let you write



Chapter 0: What is C++? -9.-

programs independently of the computer's idiosyncrasies. As mentioned earlier; low-level languages make
it hard to represent complex program structure, while high-level languages often are too abstract to
operate efficiently on a computer.

C++ is a rare language in that it combines the low-level efficiency and machine access of C with high-level
constructs like those found in Java. This means that it is possible to write C++ programs with the strengths
of both approaches. It is not uncommon to find C++ programs that model complex systems using object-
oriented techniques (high level) while taking advantage of specific hardware to accelerate that simulation
(low-level). One way to think about the power afforded by C++ is to recognize that C++ is a language that
provides a set of abstractions that let you intuitively design large software systems, but which lets you
break those abstractions when the need to optimize becomes important. We will see some ways to
accomplish this later in this book.

Design Philosophy

C++ is a comparatively old language; its first release was in 1985. Since then numerous other
programming languages have sprung up - Java, Python, C#, and Javascript, to name a few. How exactly has
C++ survived so long when others have failed? C++ may be useful and versatile, but so were BCPL and
Simula, neither of which are in widespread use today.

One of the main reasons that C++ is still in use (and evolving) today has been its core guiding principles.
Stroustrup has maintained an active interest in C++ since its inception and has steadfastly adhered to a
particular design philosophy. Here is a sampling of the design points, as articulated in Stroustrup's The
Design and Evolution of C++.

* C++'s evolution must be driven by real problems. When existing programming styles prove
insufficient for modern challenges, C++ adapts. For example, the introduction of exception
handling provided a much-needed system for error recovery, and abstract classes allowed
programmers to define interfaces more naturally.

* Don't try to force people. C++ supports multiple programming styles. You can write code similar
to that found in pure C, design class hierarchies as you would in Java, or develop software
somewhere in between the two. C++ respects and trusts you as a programmer, allowing you to
write the style of code you find most suitable to the task at hand rather than rigidly locking you
into a single pattern.

* Always provide a transition path. C++ is designed such that the programming principles and
techniques developed at any point in its history are still applicable. With few exceptions, C++ code
written ten or twenty years ago should still compile and run on modern C++ compilers. Moreover,
C++ is designed to be mostly backwards-compatible with C, meaning that veteran C coders can
quickly get up to speed with C++.

The Goal of C++
There is one quote from Stroustrup ([Str94]) I believe best sums up C++:
C++ makes programming more enjoyable for serious programmers.
What exactly does this mean? Let's begin with what constitutes a serious programmer. Rigidly defining

“serious programmer” is difficult, so instead I'll list some of the programs and projects written in C++ and
leave it as an exercise to the reader to infer a proper definition. For example, you'll find C++ in:



-10 - Chapter 0: What is C++?

Mozilla Firefox. The core infrastructure underlying all Mozilla
projects is written predominantly in C++. While much of the code
for Firefox is written in Javascript and XUL, these languages are
executed by interpreters written in C++.

The WebKit layout engine used by Safari and Google Chrome is
also written in C++. Although it's closed-source, I suspect that
Internet Explorer is also written in C++. If you're browsing the
web, you're seeing C++ in action.

Java HotSpot. The widespread success of Java is in part due to
HotSpot, Sun's implementation of the Java Virtual Machine.
HotSpot supports just-in-time compilation and optimization and
is a beautifully engineered piece of software. It's also written in
C++. The next time that someone engages you in a debate about
the relative merits of C++ and Java, you can mention that if not for
a well-architected C++ program Java would not be a competitive
language.

NASA / JPL. The rovers currently exploring the surface of Mars
have their autonomous driving systems written in C++. C++ison
Mars!

C++ makes programming more enjoyable for serious programmers. Not only does C++ power all of the
above applications, it powers them in style. You can program with high-level constructs yet enjoy the
runtime efficiency of a low-level language like C. You can choose the programming style that's right for
you and work in a language that trusts and respects your expertise. You can write code once that you will
reuse time and time again. This is what C++ is all about, and the purpose of this book is to get you up to
speed on the mechanics, style, and just plain excitement of C++.

With that said, let's dive into C++. Our journey begins!



Chapter 1: Getting Started

Every journey begins with a single step, and in ours it's getting to the point where you can compile, link,
run, and debug C++ programs. This depends on what operating system you have, so in this section we'll
see how to get a C++ project up and running under Windows, Mac OS X, and Linux.

Compiling C++ Programs under Windows

This section assumes that you are using Microsoft Visual Studio 2005 (VS2005). If you are a current
CS106B/X student, you can follow the directions on the course website to obtain a copy. Otherwise, be
prepared to shell out some cash to get your own copy, though it is definitely a worthwhile investment.
Alternatively, you can download Visual C++ 2008 Express Edition, a free version of Microsoft's
development environment sporting a fully-functional C++ compiler. The express edition of Visual C++
lacks support for advanced Windows development, but is otherwise a perfectly fine C++ compiler. You can
get Visual C++ 2008 Express Edition from http://www.microsoft.com/express/vc/. With only a few minor
changes, the directions for using VS2005 should also apply to Visual C++ 2008 Express Edition, so this
section will only cover VS2005.

VS2005 organizes C++ code into “projects,” collections of source and header files that will be built into a
program. The first step in creating a C++ program is to get an empty C++ project up and running, then to
populate it with the necessary files. To begin, open VS2005 and from the File menu choose New >
Project.... You should see a window that looks like this:

Project types: Templates:

E|-- Visual Studic installed templates
%CSIOGB;’X C++ Assignment Wizard = Custom Wizard
.EWindows Forms Applicaticn .3CLR Console Application
A Win32 Console Application [l ATl Project
EEIMFC Application .EMakeﬁle Project
5% ASP.MET Web Service EATL Server Project
‘i ATL Server Web Service EATL Smart Device Project
,]-'._‘ECIass Library FEcr Empty Project
&2 Empty Project ﬂ"_c'lMFC ActiveX Contrel
EﬁMFC DLL __:]EMFC Smart Device ActiveX Control

General
i MFC
Smart Device
L Win32
t- Other Languages
t- Other Project Types

:][$ MFC Smart Device Application _,j,"éJMFC Smart Device DLL

{1SQL Server Project [Ewin32 Project

_,E‘Winﬂ Smart Device Project EAWindows Farms Contral Library
:a'gWindows Service

My Templates

A project for creating a Win32 console application

MName: <Enter_name>

Location: ChUsers\Keith\Documents\Visual Studio 2005\Projects -

Solution Mame: <Enter_namex> Create directory for solution

l

*

I first began programming in C++ in 2001 using Microsoft Visual C++ 6.0, which cost roughly eighty dollars. 1
recently (2008) switched to Visual Studio 2005. This means that the compiler cost just over ten dollars a year.

Considering the sheer number of hours I have spent programming, this was probably the best investment I have
made.


http://www.microsoft.com/express/vc/

-12 - Chapter 1: Getting Started

As you can see, VS2005 has template support for all sorts of different projects, most of which are for
Microsoft-specific applications such as dynamic-link libraries (DLLs) or ActiveX controls. We're not
particularly interested in most of these choices — we just want a simple C++ program! To create one, find
and choose Win32 Console Application. Give your project an appropriate name, then click OK. You
should now see a window that looks like this, which will ask you to configure project settings:

Application Wizard - Yet Another C++ Program

Welcome to the Win32 Application Wizard

Crveryisw These are the current project settings:

Application Settings * Console application
Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. twt file for information
about the project features and files that are generated.

[ MNext = ][ Finish ][ Cancel ]

Note that the window title will have the name of the project you entered in the previous step in its title;
“Yet Another C++ Program” is a placeholder.

At this point, you do not want to click Finish. Instead, hit Next > and you'll be presented with the
following screen:



Chapter 1: Getting Started -13-

fet Another C++ Program

Application Settings

Crerviemy Application type: Add common header files for:
() Windows application [l an

(@) Console application [ mrFc

@ DLL

() Static library

Application Settings

Additional options:
(] Empty project

Precompiled header

[ Finish ” Cancel ]

Keep all of the default settings listed here, but make sure that you check the box marked Empty Project.
Otherwise V52005 will give you a project with all sorts of Microsoft-specific features built into it. Once
you've checked that box, click Finish and you'll have a fully functional (albeit empty) C++ project.

Now, it's time to create and add some source files to this project so that you can enter C++ code. To do this,
go to Project > Add New Item... (or press CTRL+SHIFT+A). You'll be presented with the following dialog
box:



-14 - Chapter 1: Getting Started

Categories: Templates:

=) Visual C++ Visual Studio installed templates
u &) C++ File (.cpp) ] Header File (.h)
: %] Midl File (.idI) 2] Module-Definition File (.def)
] Component Class ] Installer Class
My Temnplates

. Data

i Resource
. Web ,
Utility L] Search Online Templates...

Property Sheets

Creates a file containing C++ source code

MName: <Enter_name>

Location: chUsers\Keith\Documents\Visual Studio 20054 Projects\Scratchworld\ Scratchwork

|| cance |

Choose C++ File (.cpp) and enter a name for it inside the Name field. VS2005 automatically appends .cpp
to the end of the filename, so don't worry about manually entering the extension. Once you're ready, click
Add and you should have your source file ready to go. Any C++ code you enter in here will be considered
by the compiler and built into your final application.

Once you've written the source code, you can compile and run your programs by pressing F5, choosing
Debug> Start Debugging, or clicking the green “play” icon. By default VS2005 will close the console
window after your program finishes running, and if you want the window to persist after the program
finishes executing you can run the program without debugging by pressing CTRL+F5 or choosing Debug >
Start Without Debugging. You should be all set to go!

Compiling C++ Programs in Mac OS X

If you're developing C++ programs on Mac OS X, your best option is to use Apple's Xcode development
environment. You can download Xcode free of charge from the Apple Developer Connection website at

http://developer.apple.com/.

Once you've downloaded and installed Xcode, it's reasonably straightforward to create a new C++ project.
Open Xcode. The first time that you run the program you'll get a nice welcome screen, which you're free to
peruse but which you can safely dismiss. To create a C++ project, choose File > New Project.... You'll be
presented with a screen that looks like this:


http://developer.apple.com/

Chapter 1: Getting Started

-15 -

Choose a template for your new project:

m Mac Q5 X

Audio Units
Automator Action
Bundle

Command Line Utility
Dynamic Library
Framework

Java

Kernel Extension
Standard Apple Plug-ins
Static Library

Other

Application

-y

Cocoa
Application

§

Cocoa Core Data
Document-based Application
Application

I ea— ]

Description This project builds a Cocoa-based application written

in Objective-C.

( Cancel ) Eﬁm—a

e

There are a lot of options here, most of which are Apple-specific or use languages other than C++ (such as
Java or Objective-C). In the panel on the left side of the screen, choose Command Line Utility and you will

see the following options:

Choose a template for your new project:

m Mac OS5 X

Application

Audio Units

Automator Action
Bundle |
Dynamic Library
Framewark

Java

Kernel Extension
Standard Apple Plug-ins
Static Library

Other

C++ Tool

&

CoreFoundation
Tool

CoreServices
Tool

i ——— ]

Description This project builds a command-line tool that links
against the stdc++ library.

( Cancel ) M

P

Select C++ Tool and click the Choose... button. You'll be prompted for a project name and directory; feel
free to choose whatever name and location you'd like. In this example I've used the name “Yet Another C+



-16 - Chapter 1: Getting Started

+ Project,” though I suggest you pick a more descriptive name. Once you've made your selection, you'll see
the project window, which looks like this:

Q.- String Matching

Croups & Files 13
=] @ main.cpp v [}
»[ ] Source Bl Yet Another C++ Project
(| Documentation D Yet Another C++ Project. 1
»[ | Products
» @ Targets
b < Executables
» % Errors and Warnings
v (4 Find Results
[ Bookmarks
'ﬂscnf <[] = Jc.[#
8 Project Symbols 3
¥ 38 Implementation Files No Editor
& (3] NIB Files ol

Notice that your project comes prepackaged with a file called main.cpp. This is a C++ source file that will

be compiled and linked into the final program. By default, it contains a skeleton implementation of the
Hello, World! program, as shown here:

« | » |[&maincpp:l +  <Noselected symbol> 3
Finclude <ioztreom=

int main (int arge, char * const orgv[]) {
/¢ insert code here...
stdzicout << "Hello, World!hn";
return B3

H




Chapter 1: Getting Started -17 -

Feel free to delete any of the code you see here and rewrite it as you see fit.

Because the program we've just created is a command-line utility, you will need to pull up the console
window to see the output from your program. You can do this by choosing Run > Console or by pressing
&BR. Initially the console will be empty, as shown here:

800 [™ Yet Another C++ Project - Debugger Console —J
[10.5 | Debug | 1386 | N ® o = ra
: Overview Build and Go Tasks Restart Pause Deactivate Clear Log
|

P

Once you've run your program, the output will be displayed here in the console. You can run the program
by clicking the Build and Go button (the hammer next to a green circle containing an arrow). That's it!
You now have a working C++ project.

If you're interested in compiling programs from the Mac OS X terminal, you might find the following
section on Linux development useful.

Compiling C++ Programs under Linux

For those of you using a Linux-based operating system, you're in luck - Linux is extremely developer-
friendly and all of the tools you'll need are at your disposal from the command-line.

Unlike the Windows or Mac environments, when compiling code in Linux you won't need to set up a
development environment using Visual Studio or Xcode. Instead, you'll just set up a directory where you'll
put and edit your C++ files, then will directly invoke the GNU C++ Compiler (g++) from the command-line.

If you're using Linux I'll assume that you're already familiar with simple commands like mkdir and chdir
and that you know how to edit and save a text document. When writing C++ source code, you'll probably
want to save header files with the .h extension and C++ files with the .cc, .cpp, .C, or .c++ extension. The .cc
extension seems to be in vogue these days, though .cpp is also quite popular.

To compile your source code, you can execute g++ from the command line by typing g++ and then a list of
the files you want to compile. For example, to compile myfile.ccand myotherfile.cc, you'd type

g+t+ myfile.cc myotherfile.cc



-18- Chapter 1: Getting Started

By default, this produces a file named a.out, which you can execute by entering . /a.out. If you want to
change the name of the program to something else, you can use g++'s —o switch, which produces an output
file of a different name. For example, to create an executable called myprogram from the file myfile.cc, you
could write

gt+ myfile.cc -o myprogram

g++ has a whole host of other switches (such as -c to compile but not link a file), so be sure to consult the
man pages for more info.

[t can get tedious writing out the commands to compile every single file in a project to form a finished
executable, so most Linux developers use makefiles, scripts which allow you to compile an entire project
by typing the make command. A full tour of makefiles is far beyond the scope of an introductory C++ text,
but fortunately there are many good online tutorials on how to construct a makefile. The full manual for
make is available online at http://www.gnu.org/software/make /manual/make.html.

Other Development Tools

If you are interested in using other development environments than the ones listed above, you're in luck.
There are dozens of IDEs available that work on a wide range of platforms. Here's a small sampling:

* NetBeans: The NetBeans IDE supports C++ programming and is highly customizable. It also is
completely cross-platform compatible, so you can use it on Windows, Mac OS X, and Linux.

*  MinGW: MinGW is a port of common GNU tools to Microsoft Windows, so you can use tools like
g++ without running Linux. Many large software projects use MinGW as part of their build
environment, so you might want to explore what it offers you.

* Eclipse: This popular Java IDE can be configured to run as a C++ compiler with a bit of additional
effort. If you're using Windows you might need to install some additional software to get this IDE
working, but otherwise it should be reasonably straightforward to configure.

*  Sun Studio: If you're a Linux user and command-line hacking isn't your cup of tea, you might want
to consider installing Sun Studio, Sun Microsystem's C++ development environment, which has a
wonderful GUI and solid debugging support.

* Qt Creator: This Linux-based IDE is designed to build C++ programs using the open-source Qt
libraries, but is also an excellent general-purpose C++ IDE. It is a major step above what the
terminal and your favorite text editor have to offer, and I highly recommend that you check this
program out if you're a Linux junkie.


http://www.gnu.org/software/make/manual/make.html

Chapter 2: C++ Without genlib.h

When you arrived at your first CS106B/X lecture, you probably learned to write a simple “Hello, World”
program like the one shown below:

#include "genlib.h"
#include <iostream>

int main () {
cout << "Hello, world!" << endl;
return 0;

}

Whether or not you have previous experience with C++, you probably realized that the first line means
that the source code references an external file called genlib.h. For the purposes of CS106B/X, this is
entirely acceptable (in fact, it's required!), but once you migrate from the educational setting to
professional code you will run into trouble because genlib.h is not a standard header file; it's included in
the CS106B/X libraries to simplify certain language features so you can focus on writing code, rather than
appeasing the compiler.

In CS106L, none of our programs will use genlib.h, simpio.h, or any of the other CS106B/X library files.
Don't worry, though, because none of the functions exported by these files are “magical.” In fact, in the
next few chapters you will learn how to rewrite or supersede the functions and classes exported by the
CS106B/X libraries.” If you have the time, I encourage you to actually open up the genlib.h file and peek
around at its contents.

To write “Hello, World” without genlib.h, you'll need to add another line to your program. The “pure” C+
+ version of “Hello, World” thus looks something like this:

#include <iostream>
using namespace std;

int main() {
cout << "Hello, World!" << endl;
return 0O;

}

We've replaced the header file genlib.h with the cryptic statement “using namespace std;” Before
explaining exactly what this statement does, we need to take a quick diversion to lessons learned from
development history. Suppose you're working at a company that produces two types of software: graphics
design programs and online gunfighter duels (admittedly, this combination is pretty unlikely, but humor
me for a while). Each project has its own source code files complete with a set of helper functions and
classes. Here are some sample header files from each project, with most of the commenting removed:

* The exceptions are the graphics and sound libraries. C++ does not have natural language support for multimedia,

and although many such libraries exist, we won't cover them in this text.



-20- Chapter 2: C++ Without genlib.h

GraphicsUtility.h:
/* File: graphicsutility.h
* Graphics utility functions.

*/

/* ClearScene: Clears the current scene. */
void ClearScene () ;

/* AddLine: Adds a line to the current scene. */
void AddLine (int x0, int y0, int x1, int yl);

/* Draw: Draws the current scene. */
void Draw () ;

GunfighterUtility.h:
/* File: gunfighterutility.h
* Gunfighter utility functions.

*/

/* MarchTenPaces: Marches ten paces, animating each step. */
void MarchTenPaces (PlayerObject &toMove) ;

/* FaceFoe: Turns to face the opponent. */
void FaceFoe () ;

/* Draw: Unholsters and aims the pistol. */
void Draw () ;

Suppose the gunfighter team is implementing MarchTenPaces and needs to animate the gunfighters
walking away from one another. Realizing that the graphics team has already implemented an entire
library geared toward this, the gunfighter programmers import graphicsutility.h into their project, write
code using the graphics functions, and try to compile. However, when they try to test their code, the linker
reports errors to the effect of “error: function 'void Draw()' already defined.”

The problem is that the graphics and gunfighter modules each contain functions named Draw () with the
same signature and the compiler can't distinguish between them. It's impractical for either team to
rename their Draw function, both because the other programming teams expect them to provide functions
named Draw and because their code is already filled with calls to Draw. Fortunately, there's an elegant
resolution to this problem. Enter the C++ namespace keyword. A namespace adds another layer of
naming onto your functions and variables. For example, if all of the gunfighter code was in the namespace
“Gunfighter,” the function Draw would have the full name Gunfighter: :Draw. Similarly, if the graphics
programmers put their code inside namespace “Graphics,” they would reference the function Draw as
Graphics::Draw. Ifthis is the case, there is no longer any ambiguity between the two functions, and the
gunfighter development team can compile their code.

But there's still one problem - other programming teams expect to find functions named ClearScene and
FaceFoe, not Graphics::ClearScene and Gunfighter::FaceFoe. Fortunately, C++ allows what's
known as a using declaration that lets you ignore fully qualified names from a namespace and instead use
the shorter names.

Back to the Hello, World example, reprinted here:



Chapter 2: C++ Without genlib.h -21-

#include <iostream>
using namespace std;

int main() {
cout << "Hello, World!" << endl;
return 0O;

The statement “using namespace std;” following the #include directive tells the compiler that all of
the functions and classes in the namespace std can be used without their fully-qualified names. This “std”
namespace is the C++ standard namespace that includes all the library functions and classes of the
standard library. For example, cout is truly named std::cout, and without the using declaration importing
the std namespace, Hello, World would look something like this:

#include <iostream>

int main() {
std::cout << "Hello, World!" << std::endl;
return 0;

While some programmers prefer to use the fully-qualified names when using standard library
components, repeatedly writing std:: can be a hassle. To eliminate this problem, in genlib.h, we
included the using declaration for you. But now that we've taken the training wheels off and genlib.h is
no more, you'll have to remember to include it yourself!

There's one more important part of genlib.h, the string type. Unlike other programming languages,
C++ lacks a primitive string type.” Sure, there's the class string, but unlike int or double it's not a built-
in type and must be included with a #include directive. Specifically, you'll need to write #include
<string> at the top of any program that wants to use C++-style strings. And don't forget the using
declaration, or you'll need to write std: : string every time you want to use C++ strings!

* Technically speaking there are primitive strings in C++, but they aren't objects. See the chapter on C strings for

more information.



Part One

A Better C




Chapter 3: Streams

It's time to begin our serious foray into the magical world of C++ programming. In this first chapter, we'll
explore C++'s streams library, a collection of functions that allow you to read and write formatted data
from a variety of sources. The streams library allows your program to print text to the user and read back
responses. It also lets you load persistent data from external files and to save custom information on-disk.
As you continue your exploration of C++, you will use the contents of this chapter time and time again,
whether for simple error-reporting or more complex data management.

Streams: An Overview

In the physical world, all interesting devices have some way of interacting with their environment. Take a
common alcohol thermometer, for example. The thermometer has a liquid-filled bulb that is warmed up
by the environment and a graduated meter which allows the user to read off the temperature near the
bulb. Or consider a car, which has an accelerator, brake, gearbox, and steering wheel to control the
direction and speed of the vehicle and a dashboard which reports the current state of the automobile. C+
+'s streams library is the primary means by which a C++ program can interact with its environment,
namely the user and the file system.

The basic unit of communication between a program and its environment is a stream. A stream is a
channel between a source and a destination which allows the source to push formatted data to the
destination. The type of the source and the sink varies from stream to stream. In some streams the source
is the program itself and the destination is a file on disk, and the stream can be used to write persistent
data to the user's hard drive. In others, the source is the keyboard and the destination is the program, and
the stream can be used to read user input from the physical world into the computer.

The use of the term “stream” in the context of the streams library is similar to the use of “stream” in the
context of “streaming video.” When a data provider (for example, YouTube) streams video over the
Internet, the video is not sent all at once. Instead, the program receiving the video continuously queries
the server for more and more information, and the video is sent in fixed-size chunks and reassembled by
the video player. When using the streams library to read or write data, you do not need to read or write all
of the data at once. It's perfectly legal (and quite common) to read the data one piece at a time. For
example, if you want to read data from a file, instead of loading all of the file contents at once, you can read
the file line-by-line, or character-by-character, or using some hybrid approach. This gives you great
flexibility, since you can read different pieces of the file in different ways to get the data in a format
appropriate to your application.

To give you a better sense of how streams work in practice, let's consider an actual stream, cout. cout
(for character output) is a stream connected to the console, a text window that displays plain text data.
Any information pushed across cout displays in the console, and so you can think of cout as a way of
displaying data to the user. For example, here's a simple program which displays a message to the user
and then quits:

#include <iostream>
using namespace std;

int main () {
cout << "I'm sorry Dave, I'm afraid I can't do that." << endl;
return 0;



-26- Chapter 3: Streams

There's a lot of code here, so let's take a few minutes to dissect it. The first line of the program, #include
<iostream>, instructs the C++ compiler to import the cout stream into the program. The line using
namespace std is covered in the previous chapter and makes the cout stream available. Inside of main,
we have the following line of code:

cout << "I'm sorry Dave, I'm afraid I can't do that." << endl;

The special << operator is called the stream insertion operator and is a C++ operator that is used to push
data into a stream object. Here, we push the text string I'm sorry Dave, I'm afraid I can't do
that into the cout stream. This causes the this text to display on-screen. Afterwards, we push the special
object end1 into the stream. endl stands for “end line” and prints a newline character to the cout stream.
This means that the next time we push text into cout, the text will display on the next line, rather than
directly after the text string we just printed. We'll discuss end1 in more detail later in this chapter.

Streams are very versatile and you can write data of multiple types to stream objects. In fact, you can push
data of any primitive type into a stream. For example, here's a program showing off the sorts of data that
can move across a stream:

#include <iostream>
using namespace std;

int main() {
cout << "Streams can take in text." << endl;
cout << 137 << endl; // Streams can take in integers.
cout << 2.71828 << endl; // Streams can take in real numbers.
cout << "Here is text followed by a number: " << 31415 << endl;
return 0;

Running this program will produce the following output:

Streams can take in text.

137

2.71828

Here is text followed by a number: 31415

In the first line of this program, we sent a text string to the console. In the second and third, we sent an
integer and a natural number, respectively. The last line is perhaps the most interesting. In it, we push
both a string and an integer to the console by chaining together the stream insertion operator. The
designers of the streams library were fairly clever, and so it's perfectly legal to chain together as many
stream insertions as you'd like.

To give you a better feel for why each of the stream operations in the above program end by pushing end1
into the stream, let's consider what would happen if this weren't the case. Here's a revised version of the
above program will all instances of end1 removed:



Chapter 3: Streams -27 -

#include <iostream>
using namespace std;

int main() {
cout << "Streams can take in text.";
cout << 137;
cout << 2.71828;
cout << "Here 1is text followed by a number: " << 31415;
return 0;

This produces the following output:

Streams can take in text.1372.71828Here is text followed by a number: 31415

Notice that all of this text runs together. C++ will not “automatically” insert newlines into any text you
write, and when outputting data to the console you will need to manually insert line breaks. As a general
rule, most of the time that you use cout to push data to the console, you will need to append end1 to
ensure the output doesn't all run together.

All of the stream examples we have seen so far have revolved around cout and pushing data from the
program to the console. To build a truly interactive program, however, we'll need to get input from the
user. In CS106B/X, we provide the simpio.h header file, which exports the input functions GetLine,
GetInteger, GetReal, and GetLong. Though useful, these functions are not part of the C++ standard
library and will not be available outside of CS106B/X. Don't worry, though, because by the end of this
chapter we'll see how to implement them using only standard C++.

The streams library exports another stream object called cin (character input) which lets you read values
directly from the user. To read a value from cin, you use the stream extraction operator >>. Syntactically,
the stream extraction operator mirrors the stream insertion operator. For example, here's a code snippet
to prompt the user for an integer.

cout << "Please enter an integer: ";

int myInteger;
cin >> myInteger; // Value stored in myInteger

When the program encounters the highlighted line, it will pause and wait for the user to type in a number
and hit enter. Provided that the user actually enters an integer, its value will be stored inside the
myInteger variable. What happens if the user doesn't enter an integer is a bit more complicated, and we'll
return to this later in the chapter.

You can also read multiple values from cin by chaining together the stream extraction operator in the
same way that you can write multiple values to cout by chaining the stream insertion operator:

int myInteger;
string myString;
cin >> myInteger >> myString; // Read an integer and string from cin

This will pause until the user enters an integer, hits enter, then enters a string, then hits enter once more.
These values will be stored in myInteger and myString, respectively.

Note that when using cin, you should not read into endl the way that you write endl when using cout.
Hence the following code is illegal:



-28- Chapter 3: Streams

int myInteger;
cin >> myInteger >> endl; // Error: Cannot read into endl.

Intuitively, this makes sense because end1 means “print a newline.” Reading a value into end1 is therefore
a nonsensical operation.

In practice, it is not a good idea to read values directly from cin. Unlike GetInteger and the like, cin
does not perform any safety checking of user input and if the user does not enter valid data, cin will begin
behaving unusually. Later in this chapter, we will see how the GetInteger function is implemented and
you will be able to use the function in your own programs. In the meantime, though, feel free to use cin,
but make sure that you always type in input correctly!

Reading and Writing Files

So far, we have seen two examples of streams - cout, which sends data to the console, and cin, which
reads data from the keyboard. In this next section we'll see two new kinds of streams - ifstreams and
ofstreams — which can be used to read or write files on disk. This will allow your program to save data
indefinitely, or to read in configuration data from an external source.

C++ provides a header file called <fstream> (file stream) that exports the ifstream and ofstream
types, streams that perform file I/O. The naming convention is unfortunate - i fstream stands for input
file stream (not “something that might be a stream”) and ofstream for output file stream. There is also a
generic fstream class which can do both input and output, but we will not cover it in this chapter. Unlike
cin and cout, which are concrete stream objects, ifstream and ofstream are types. To read or write
from a file, you will create an object of type ifstream or ofstream, much in the same way that you would
create an object of type string to store text data or a variable of type double to hold a real number. Once
you have created the file stream object, you can read or write to it using the stream insertion and
extraction operators just as you would cin or cout.

To create an i fstream that reads from a file, you can use this syntax:

ifstream myStream("myFile.txt");

This creates a new stream object named myStream which reads from the file myFile.txt, provided of
course that the file exists. We can then read data from myStream just as we would from cin, as shown
here:

ifstream myStream("myFile.txt");
int myInteger;
myStream >> myInteger; // Read an integer from myFile.txt

Notice that we wrote myStream >> myInteger rather than ifstream >> myInteger. When reading
data from a file stream, you must read from the stream variable rather than the ifstream type. If you
read from ifstream instead of your stream variable, the program will not compile and will give you a
fairly cryptic error message.

You can also open a file by using the i fstream's open member function, as shown here:

ifstream myStream; // Note: did not specify the file
myStream.open ("myFile.txt"); // Now reading from myFile.txt

When opening a file using an ifstream, there is a chance that the specified file can't be opened. The
filename might not specify an actual file, you might not have permission to read the file, or perhaps the file



Chapter 3: Streams -29-

is locked. If you try reading data from an ifstream that is not associated with an open file, the read will
fail and you will not get back meaningful data. After trying to open a file, you should check if the stream is
valid by using the .is open () member function. For example, here's code to open a file and report an
error to the user if a problem occurred:

ifstream input ("myfile.txt");
if (!input.is open())
cerr << "Couldn't open the file myfile.txt" << endl;

Notice that we report the error to the cerr stream. cerr, like cout, is an output stream, but unlike cout,
cerr is designed for error reporting and is sometimes handled differently by the operating system.

The output counterpart to ifstream is ofstream. As with ifstream, you specify which file to write to
either by using the .open () member function or by specifying the file when you create the ofstream, as
shown below:

ofstream myStream("myFile.txt"); // Write to myFile.txt

A word of warning: if you try writing to a nonexistent file with an ofstream, the ofstream will create the
file for you. However, if you open a file that already exists, the of st ream will overwrite all of the contents
of the file. Be careful not to write to important files without first backing them up!

The streams library is one of the older libraries in C++ and the open functions on the ifstream and
ofstream classes predate the string type. If you have the name of a file stored in a C++ string, you will
need to convert the string into a C-style string (covered in the second half of this book) before passing it
as a parameter to open. This can be done using the .c str () member function of the string class, as
shown here:

ifstream input (myString.c str()); // Open the filename stored in myString

When a file stream object goes out of scope, C++ will automatically close the file for you so that other
processes can read and write the file. If you want to close the file prematurely, you can use the .close ()
member function. After calling close, reading or writing to or from the file stream will fail.

As mentioned above in the section on cin, when reading from or writing to files you will need to do
extensive error checking to ensure that the operations succeed. Again, we'll see how to do this later.

Stream Manipulators
Consider the following code that prints data to cout:

cout << "This is a string!" << endl;
What exactly is end1? It's an example of a stream manipulator, an object that can be inserted into a stream
to change some sort of stream property. endl is one of the most common stream manipulators, though
others exist as well. To motivate some of the more complex manipulators, let's suppose that we have a file

called table-data.txt containing four lines of text, where each line consists of an integer value and a
real number. For example:



-30- Chapter 3: Streams

File: table-data.txt

137 2.71828

42 3.14159
7897987 1.608

1337 .01101010001

We want to write a program which reads in this data and prints it out in a table, as shown here:

_____________________ +______________________+_____________________
1 | 137 | 2.71828
2 42 | 3.14159
3 7897987 | 1.608
4 | 1337 | 0.01101

Here, the first column is the one-indexed line number, the second the integer values from the file, and the
third the real-numbered values from the file.

Let's begin by defining a few constants to control what the output should look like. Since there are four
lines in the file, we can write

const int NUM LINES = 4;

And since there are three columns,

const int NUM COLUMNS = 3;

Next, we'll pick an arbitrary width for each column. We'll choose twenty characters, though in principle
we could pick any value as long as the data fit:

const int COLUMN WIDTH = 20;

Now, we need to read in the table data and print out the formatted table. We'll decompose this problem
into two smaller steps, resulting in the following source code:

#include <iostream>
#include <fstream>
using namespace std;

const int NUM LINES = 4;
const int NUM COLUMNS = 3;
const int COLUMN WIDTH = 20;

int main () {
PrintTableHeader () ;
PrintTableBody () ;
return 0;

}

PrintTableHeader is responsible for printing out the top part of the table (the row of dashes and pluses)
and PrintTableBody will load the contents of the file and print them to the console.

Despite the fact that PrintTableHeader precedes PrintTableBody in this program, we'll begin by
implementing PrintTableBody as it illustrates exactly how much firepower we can get from the stream
manipulators. We know that we need to open the file table-data.txt and that we'll need to read four
lines of data from it, so we can begin writing this function as follows:



Chapter 3: Streams -31-

void PrintTableBody () {
ifstream input ("table-data.txt");
/* No error-checking here, but you should be sure to do this in any real
* program.

*/

/* Loop over the lines in the file reading data. */
for(int k = 0; k < NUM LINES; ++k) {
/* ... process data ... */

}

You may have noticed that at the end of this for loop I've written ++k instead of k++. There's a slight
difference between the two syntaxes, but in this context they are interchangeable. When we talk about
operator overloading in a later chapter we'll talk about why it's generally considered better practice to use
the prefix increment operator instead of the postfix.

Now, we need to read data from the file and print it as a table. We can start by actually reading the values
from the file, as shown here:

void PrintTableBody () {
ifstream input ("table-data.txt");
/* No error-checking here, but you should be sure to do this in any real
* program.

*/

/* Loop over the lines in the file reading data. */
for(int k = 0; k < NUM LINES; ++k) {

int intValue;

double doubleValue;

input >> intValue >> doubleValue;

}

Next, we need to print out the table row. This is where things get tricky. If you'll recall, the table is
supposed to be printed as three columns, each a fixed width, that contain the relevant data. How can we
ensure that when we print the values to cout that we put in the appropriate amount of whitespace?
Manually writing space characters would be difficult, so instead we'll use a stream manipulator called
setw (set width) to force cout to pad its output with the right number of spaces. setw is defined in the
<iomanip> header file and can be used as follows:

cout << setw(10) << 137 << endl;

This tells cout that the next item it prints out should be padded with spaces so that it takes up at least ten
characters. Similarly,

cout << setw(20) << "Hello there!" << endl;
Would print out Hello there! with sufficient leading whitespace.

By default setw pads the next operation with spaces on the left side. You can customize this behavior with
the 1eft and right stream manipulators, as shown here:

cout << '[' << left << setw(1l0) << "Hello!"™ << ']' << endl; // [ Hello!]
cout << '[' << right << setw(10) << "Hello!" << ']' << endl; // [Hello! ]



-32- Chapter 3: Streams

Back to our example. We want to ensure that every table column is exactly COLUMN WIDTH spaces across.
Using setw, this is relatively straightforward and can be done as follows:

void PrintTableBody () {
ifstream input ("table-data.txt");
/* No error-checking here, but you should be sure to do this in any real
* program.

*/

/* Loop over the lines in the file reading data. */
for(int k = 0; k < NUM LINES; ++k) {

int intValue;

double doubleValue;

input >> intValue >> doubleValue;

cout << setw(COLUMN WIDTH) << (k + 1) << " | ";

cout << setw (COLUMN WIDTH) << intValue << " | ";
cout << setw (COLUMN WIDTH) << doubleValue << endl;

This produces the following output when run on the input file described above:

1 | 137 | 2.71828
2 42 | 3.14159
3 7897987 | 1.608
4 | 1337 | 0.01101

The body of the table looks great, and now we just need to print the table header, which looks like this:

_____________________ +______________________+_____________________

If you'll notice, this is formed by printing twenty dashes, then the pattern -+-, another twenty dashes, the
pattern -+-, and finally another twenty dashes. We could thus implement PrintTableHeader like this:

void PrintTableHeader () {
/* Print the ---...---+- pattern for all but the last column. */
for(int column = 0; column < NUM COLUMNS - 1; ++column) {
for(int k = 0; k < COLUMN WIDTH; ++k)
cout << '-=-"';
cout << "—+-=-";

}

/* Now print the ---...--- pattern for the last column. */
for(int k = 0; k < COLUMN WIDTH; ++k)

cout << '-=-"';
/* Print a newline... there's nothing else on this line. */

cout << endl;

As written there's nothing wrong with this code and the program will work just fine, but we can simplify
the implementation by harnessing stream manipulators. Notice that at two points we need to print out
COLUMN_ WIDTH copies of the dash character. When printing out the table body, we were able to use the
setw stream manipulator to print multiple copies of the space character; is there some way that we can
use it here to print out multiple dashes? The answer is yes, thanks to setfi11l. The setfill manipulator



Chapter 3: Streams -33-

accepts a parameter indicating what character to use as a fill character for setw, then changes the stream
such that all future calls to setw pad the stream with the specified character. For example:

cout << setfill('0'") << setw(8) << 1000 << endl; // Prints 00001000
cout << setw(8) << 1000 << endl; // Prints 00001000 because of last setfill

Note that set£i11 does not replace all space characters with instances of some other character. It is only
meaningful in conjunction with setw. For example:

cout << setfill('X') << "Some Spaces" << endl; // Prints Some Spaces

Using setfill and setw, we can print out COLUMN WIDTH copies of the dash character as follows:

cout << setfill('-"') << setw(COLUMN WIDTH) << "" << setfill(' ');

This code is dense, so let's walk through it one step at a time. The first part, set£i11('-"), tells cout to
pad all output with dashes instead of spaces. Next, we use setw to tell cout that the next operation should
take up at least coLuMN WIDTH characters. The trick is the next step, printing the empty string. Since the
empty string has length zero and the next operation will always print out at least COLUMN WIDTH
characters padded with dashes, this code prints out coLUMN WIDTH dashes in a row. Finally, since
setfill permanently sets the fill character, we use set£i11 (' ') to undo the changes we made to cout.

Using this code, we can rewrite PrintTableHeader as follows:

void PrintTableHeader () {

/* Print the ---...---+- pattern for all but the last column. */
for(int column = 0; column < NUM COLUMNS - 1; ++column)
cout << setfill('-') << setw(COLUMN WIDTH) << "" << "—+4-";
/* Now print the ---...--- pattern for the last column and a newline. */
cout << setw (COLUMN WIDTH) << "" << setfill(' ") << endl;
}
Notice that we only call setfill (' ') once, at the end of this function, since there's no reason to clear it at

each step. Also notice that we've reduced the length of this function dramatically by having the library take care
of the heavy lifting for us. The code to print out a table header is now three lines long!

There are many stream manipulators available in C++. The following table lists some of the more
commonly-used ones:

boolalpha cout << true << endl; // Output: 1
cout << boolalpha << true << endl; // Output: true

Determines whether or not the stream should output boolean values as 1 and 0 or
as “true” and “false.” The opposite manipulator is noboolalpha, which reverses
this behavior.

setw (n) cout << 10 << endl; // Output: 10
cout << setw(5) << 10 << endl; // Output: 10

Sets the minimum width of the output for the next stream operation. If the data
doesn't meet the minimum field requirement, it is padded with the default fill
character until it is the proper size.




-34- Chapter 3: Streams

Common stream manipulators, contd.

hex, dec, oct cout << 10 << endl; // Output: 10
cout << dec << 10 << endl; // Output: 10
cout << oct << 10 << endl; // Output: 12
cout << hex << 10 << endl; // Output: a
cin >> hex >> x; // Reads a hexadecimal value.

Sets the radix on the stream to either octal (base 8), decimal (base 10), or
hexadecimal (base 16). This can be used either to format output or change the base
for input.

WS myStream >> ws >> value;

Skips any whitespace stored in the stream. By default the stream extraction
operator skips over whitespace, but other functions like get1ine do not. ws can
sometimes be useful in conjunction with these other functions.

When Streams Go Bad

Because stream operations often involve transforming data from one form into another, stream operations
are not always guaranteed to succeed. For example, consider the following code snippet, which reads
integer values from a file:

ifstream in("input.txt"); // Read from input.txt
for(int i = 0; 1 < NUM_INTS; ++i) {

int value;

in >> value;

/* ... process value here ... */

If the file input.txt contains NUM INTS consecutive integer values, then this code will work correctly.
However, what happens if the file contains some other type of data, such as a string or a real number?

If you try to read stream data of one type into a variable of another type, rather than crashing the program
or filling the variable with garbage data, the stream fails by entering an error state and the value of the
variable will not change. Once the stream is in this error state, any subsequent read or write operations
will automatically and silently fail, which can be a serious problem.

You can check if a stream is in an error state with the .fail () member function. Don't let the name
mislead you - fail checks if a stream is in an error state, rather than putting the stream into that state.
For example, here's code to read input from cin and check if an error occurred:

int myInteger;
cin >> myInteger;
if(cin.fail()) { /* ... error ... */ }

If a stream is in a fail state, you'll probably want to perform some special handling, possibly by reporting the
error. Once you've fixed any problems, you need to tell the stream that everything is okay by using the
.clear () member function to bring the stream out of its error state. Note that clear won't skip over the input
that put the stream into an error state; you will need to extract this input manually.

Streams can also go into error states if a read operation fails because no data is available. This occurs
most commonly when reading data from a file. Let's return to the table-printing example. In the
PrintTableData function, we hardcoded the assumption that the file contains exactly four lines of data.



Chapter 3: Streams -35-

But what if we want to print out tables of arbitrary length? In that case, we'd need to continuously read
through the file extracting and printing numbers until we exhaust its contents. We can tell when we've run
out of data by checking the .fail () member function after performing a read. If .fail () returns true,
something prevented us from extracting data (either because the file was malformed or because there was
no more data) and we can stop looping.

Recall that the original code for reading data looks like this:

void PrintTableBody () {
ifstream input ("table-data.txt");

/* Loop over the lines in the file reading data. */
for(int k = 0; k < NUM _LINES; ++k) {

int intvalue;

double doubleValue;

input >> intValue >> doubleValue;

cout << setw (COLUMN WIDTH) << (k + 1) << ™ | ";
cout << setw (COLUMN WIDTH) << intValue << " | ";
cout << setw (COLUMN WIDTH) << doubleValue << endl;

The updated version of this code, which reads all of the contents of the file, is shown here:

void PrintTableBody () {
ifstream input ("table-data.txt");

/* Loop over the lines in the file reading data. */
int rowNumber = 0;
while (true) {

int intValue;

double doubleValue;

input >> intValue >> doubleValue;

if (input.fail()) break;
cout << setw (COLUMN WIDTH) << (rowNumber + 1) << " | ";
cout << Setw(COLUMN_WIDTH) << intValue << " | ";

cout << setw (COLUMN WIDTH) << doubleValue << endl;

rowNumber++;

Notice that we put the main logic into a while (true) loop that breaks when input.fail () returns
true instead of a while (!input.fail ()) loop. These two structures may at first appear similar, but are
quite different from one another. In a while (!input.£fail()) loop, we only check to see if the stream
encountered an error after reading and processing the data in the body of the loop. This means that the
loop will execute once more than it should, because we don't notice that the stream malfunctioned until
the top of the loop. On the other hand, in the above loop structure (while (true) plus break), we stop
looping as soon as the stream realizes that something has gone awry. Confusing these two loop structures
is a common error, so be sure that you understand why to use the “loop-and-a-half” idiom rather than a
simple while loop.



-36- Chapter 3: Streams

A Useful Shorthand

In the above code, we used the loop-and-a-half idiom to determine whether we should continue reading
and printing data out of the file or whether we should stop looping. The general pattern for this idiom is
as follows:

while (true) {
int intValue;
double doubleValue;
input >> intValue >> doubleValue;

if (input.fail()) break;

/* ... process values here ... */

This code is perfectly valid, but it's a bit clunky. The outermost loop is a while (true) loop, which means
“loop forever;” but in reality the idea we want to represent is “loop until there is no more available data.”
The designers of the streams library anticipated this use case and provided a remarkably simple
shorthand to alleviate this complexity. The above code is entirely equivalent to

int intValue;
double doubleValue;

while (input >> intValue >> doubleValue) ({
/* ... process values here ... */

}

Notice that the condition of the while loop is now input >> intValue >> doubleValue. Recall thatin
C++, any nonzero value is interpreted as “true” and any zero value is interpreted as “false.” The streams
library is configured so that most stream operations, including stream insertion and extraction, yield a
nonzero value if the operation succeeds and zero otherwise. This means that code such as the above,
which uses the read operation as the looping condition, is perfectly valid. One particular advantage of this
approach is that while the syntax is considerably more dense, the code is more intuitive. You can read this
while loop as “while I can successfully read data into intvalue and doubleVvalue, continue executing the
loop.” Compared to our original implementation, this is much cleaner.

This syntax shorthand is actually a special case of a more general technique. In any circumstance where a
boolean value is expected, it is legal to place a stream object or a stream read/write operation. We will see
this later in this chapter when we explore the getline function.

When Streams Do Too Much
Consider the following code snippet, which prompts a user for an age and hourly salary:
int age;

double hourlyWage;

cout << "Please enter your age: ";
cin >> age;
"

cout << "Please enter your hourly wage: ";
cin >> hourlyWage;



Chapter 3: Streams -37-

As mentioned above, if the user enters a string or otherwise non-integer value when prompted for their
age, the stream will enter an error state. There is another edge case to consider. Suppose the input is
2.71828. You would expect that, since this isn't an integer (it's a real number), the stream would go into
an error state. However, this isn't what happens. The first call, cin >> age, will set age to 2. The next
call, cin >> hourlyWage, rather than prompting the user for a value, will find the .71828 from the
earlier input and fill in hourlyWage with that information. Despite the fact that the input was malformed
for the first prompt, the stream was able to partially interpret it and no error was signaled.

As if this wasn't bad enough, suppose we have this program instead, which prompts a user for an
administrator password and then asks whether the user wants to format her hard drive:

string password;
cout << "Enter administrator password: ";

cin >> password;
if (password == "password") { // Use a better password, by the way!
cout << "Do you want to erase your hard drive (Y or N)? ";

char yesOrNo;
cin >> yesOrNo;

if (yesOrNo == 'y')
EraseHardDrive () ;

What happens if someone enters password y? The first call, cin >> password, will read only
password. Once we reach the second cin read, it automatically fills in yesOrNo with the leftover y, and
there goes our hard drive! Clearly this is not what we intended.

As you can see, reading directly from cin is unsafe and poses more problems than it solves. In CS106B/X
we provide you with the simpio.h library primarily so you don't have to deal with these sorts of errors.
In the next section, we'll explore an entirely different way of reading input that avoids the above problems.

An Alternative: getline

Up to this point, we have been reading data using the stream extraction operator, which, as you've seen,
can be dangerous. However, there are other functions that read data from a stream. One of these
functions is get1ine, which reads characters from a stream until a newline character is encountered, then
stores the read characters (minus the newline) in a string. getline accepts two parameters, a stream to
read from and a string to write to. For example, to read a line of text from the console, you could use this
code:

string myStr;
getline(cin, myStr);

No matter how many words or tokens the user types on this line, because getline reads until it
encounters a newline, all of the data will be absorbed and stored in myStr. Moreover, because any data
the user types in can be expressed as a string, unless your input stream encounters a read error, getline
will not put the stream into a fail state. No longer do you need to worry about strange 1/0 edge cases!



-38- Chapter 3: Streams

You may have noticed that the get1line function acts similarly to the CS106B/X GetLine function. This is
no coincidence, and in fact the GetLine function from simpio.h is implemented as follows:

string GetLine () {
string result;
getline(cin, result);
return result;

At this point, get1ine may seem like a silver-bullet solution to our input problems. However, getline
has a small problem when mixed with the stream extraction operator. When the user presses return after
entering text in response to a cin prompt, the newline character is stored in the cin internal buffer.
Normally, whenever you try to extract data from a stream using the >> operator, the stream skips over
newline and whitespace characters before reading meaningful data. This means that if you write code like
this:

int first, second;
cin >> first;
cin >> second;

The newline stored in cin after the user enters a value for first is eaten by cin before second is read.
However, if we replace the second call to cin with a call to get1ine, as shown here:

int dummyInt;

string dummyString;

cin >> dummyInt;
getline(cin, dummyString);

getline will return an empty string. Why? Unlike the stream extraction operator, get1ine does not skip
over the whitespace still remaining in the cin stream. Consequently, as soon as getline is called, it will
find the newline remaining from the previous cin statement, assume the user has pressed return, and
return the empty string.

To fix this problem, your best option is to replace all normal stream extraction operations with calls to
library functions like GetInteger and GetLine that accomplish the same thing. Fortunately, with the
information in the next section, you'll be able to write GetInteger and almost any Get  function
you'd ever need to use. When we cover templates and operator overloading in later chapters, you'll see
how to build a generic read function that can parse any sort of data from the user.

Reading Files with getline

Our treatment of getline so far has only considered using getline to read data from cin, but getline
is in fact much more general and can be used to read data from any stream object, including file streams.
To give a better feel for how the get1ine function works in practice, let's go over a quick example of how
to use getline to read data from files. In this example, we'll write a program that takes in a data file
containing some useful information and display it in a nice, pretty format. In particular, we'll write a
program that reads a data file called world-capitals.txt containing a list of all the world's countries
and their capitals, then displays them to the user. We will assume that the world-capitals.txt file is
formatted as follows:

* Technically, the implementation of GetLine from simpio.h is slightly different, as it checks to make sure that cin
is not in an error state before reading.



Chapter 3: Streams -39-

File: world-capitals.txt

Abu Dhabi

United Arab Emirates
Abuja

Nigeria

Accra

Ghana

Addis Ababa

Ethiopia

In this file, every pair of lines represents a capital city and the country of which it is the capital. For
example, the first two lines indicate that Abu Dhabi is the capital of the United Arab Emirates, the second
two that Abuja is the capital of Nigeria, etc. Our goal is to write a program that prints this data in the
following format:

Abu Dhabi is the capital of United Arab Emirates
Abuja is the capital of Nigeria
Accra is the capital of Ghana

How can we go about writing a program like this? Well, we can start by opening the file and printing an
error if we can't find it:

int main () {
ifstream capitals ("world-capitals.txt")
if (l!capitals.is open()) {

cerr << "Cannot find the file world-capitals.txt" << endl;
return -1;

}
/* oo %/

Now, we need to process pairs of lines in the file. Using the concepts from this chapter, we have two
general lines of attack to consider. First, we could use the stream extraction operator >> to read the data
from the file. Second, we could use the getline function to read lines of text from the file. In this
particular circumstance, it is not a particularly good idea to use the stream extraction operator.
Remember that the extraction operator reads data from files one token at a time, rather than one line at a
time. Not all world capitals are a single token long (for example, Abu Dhabi or Addis Ababa) nor are all
countries one token long (for example, United Arab Emirates). If we were to try to read the file data using
the stream extraction operator, we would have no way of knowing when we had read in the complete
name of a capital city or country, and it would be all but impossible to print the data out in a meaningful
format. However, get1line does not have this problem, since get1line blindly reads lines of text and has
no notion of whitespace-delineated tokens. Thus for this particular program, we'll use the getline
function to read file data.

As with most file reading operations, we will need to keep looping until we've exhausted all of the data in
the file. This can usually be done with the loop-and-a-half idiom. In our case, one possible version of the
code is as follows:



-40 - Chapter 3: Streams

int main() {
ifstream capitals("world-capitals.txt")
if (l!capitals.is open()) {

cerr << "Cannot find the file world-capitals.txt" << endl;
return -1;

}

while (true) {
string capital, country;
getline (capitals, capital);
getline(capitals, country);

if (capitals.fail()) break;

cout << capital << " is the capital of " << country << endl;

The above code creates two strings, capital and country, and populates them with data from the file. It
then checks whether the read succeeded, and, if so, prints out the formatted data string.

This code is perfectly correct, but it's clunky. The loop-and-a-half idiom is never pretty, and there has to be
a better way to structure this code. Fortunately, there is a wonderful shorthand we can use to condense
this code. Recall that when using the stream extraction operator >>, we could write code to the following
effect to read data from a file and continue looping while the read operation succeeds:

while (myStream >> myValue) {
/* ... process myValue here ... */

We can use a similar trick with getline. In particular, the getline function returns a nonzero value if

data can be read from a file and a zero value otherwise. Consequently, we can rewrite the above code as
follows:

int main ()
{
ifstream capitals ("world-capitals.txt")
if (l!capitals.is open()) {
cerr << "Cannot find the file world-capitals.txt" << endl;
return -1;

}

string capital, country;
while (getline(capitals, capital) && getline(capitals, country))
cout << capital << " 1is the capital of " << country << endl;

This code is considerably more concise than our original version and arguably easier to read. The
condition of the while loop now reads “while we can read a line from the file into capital and a line from
the file into country, keep executing the loop.” If you ever find yourself reading a file line-by-line, feel free
to adapt this trick into your own code - you'll save yourself a great deal of typing if you do.



Chapter 3: Streams -41 -

A String Buffer: stringstream
Before we discuss writing Get Integer, we'll need to take a diversion to another type of C++ stream.

Often you will need to construct a string composed both of plain text and numeric or other data. For
example, suppose you wanted to call this hypothetical function:

void MessageBoxAlert (string message) ;

and have it display a message box to the user informing her that the level number she wanted to warp to is
out of bounds. At first thought, you might try something like

int levelNum = /* ... */;
MessageBoxAlert ("Level " + levelNum + " is out of bounds."); // Error

For those of you with Java experience this might seem natural, but in C++ this isn't legal because you can't
add numbers to strings (and when you can, it's almost certainly won't do what you expected; see the
chapter on C strings).

One solution to this problem is to use another kind of stream object known as a stringstream, exported
by the <sstream> header. Like console streams and file streams, stringstreams are stream objects and
consequently all of the stream operations we've covered above work on stringstreams. However,
instead of reading or writing data to an external source, stringstreams store data in temporary string
buffers. In other words, you can view a stringstream as a way to create and read string data using
stream operations.

For example, here is a code snippet to create a stringstreamand put text data into it:

stringstream myStream;
myStream << "Hello!" << 137;

Once you've put data into a stringstream, you can retrieve the string you've created using the .str ()
member function. Continuing the above example, we can print out an error message as follows:

int levelNum = /* ... */;
stringstream messageText;

messageText << "Level " << levelNum << " is out of bounds.";
MessageBoxAlert (messageText.str());

stringstreams are an example of an iostream, a stream that can perform both input and output. You
can both insert data into a stringstream to convert the data to a string and extract data from a
stringstream to convert string data into a different format. For example:

stringstream myConverter;
int myInt;

string myString;

double myDouble;

myConverter << "137 Hello 2.71828"; // Insert string data
myConverter >> myInt >> myString >> myDouble; // Extract mixed data



-42 - Chapter 3: Streams

The standard rules governing stream extraction operators still apply to stringstreams, so if you try to
read data from a stringstream in one format that doesn't match the character data, the stream will fail.
We'll exploit this functionality in the next section.

Putting it all together: Writing GetInteger

Using the techniques we covered in the previous sections, we can implement a set of robust user input
functions along the lines of those provided by simpio.h. In this section we'll explore how to write
GetInteger, which prompts the user to enter an integer and returns only after the user enters valid input.

Recall from the above sections that reading an integer from cin can result in two types of problems. First,
the user could enter something that is not an integer, causing cin to fail. Second, the user could enter too
much input, such as 137 246 or Hello 37, in which case the operation succeeds but leaves extra data in
cin that can garble future reads. We can immediately eliminate these sorts of problems by using the
getline function to read input, since get1line cannot put cin into a fail state and grabs all of the user's
data, rather than just the first token.

The main problem with getline is that the input is returned as a string, rather than as formatted data.
Fortunately, using a stringstream, we can convert this text data into another format of our choice. This
suggests an implementation of Get Integer. We read data from the console using get1ine and funnel it
into a stringstream. We then use standard stream manipulations to extract the integer from the
stringstream, reporting an error and reprompting if unable to do so. We can start writing GetInteger
as follows:

int GetInteger () {
while (true) { // Read input until user enters valid data
stringstream converter;
converter << GetLine();

/* Process data here. On error: */
cout << "Retry: "

At this point, we've read in all of the data we need, and simply need to check that the data is in the proper
format. As mentioned above, there are two sorts of problems we might run into - either the data isn't an
integer, or the data contains leftover information that isn't part of the integer. We need to check for both
cases. Checking for the first turns out to be pretty simple - because stringstreams are stream objects,
we can see if the data isn't an integer by extracting an integer from our stringstream and checking if this
puts the stream into a fail state. If so, we know the data is invalid and can alert the user to this effect.

The updated code for Get Integer is as follows:



Chapter 3: Streams

int GetInteger () {
while (true) { // Read input until user enters valid data
stringstream converter;
converter << GetLine();

/* Try reading an int, continue if we succeeded. */
int result;
if (converter >> result) {

/* ... check that there isn't any leftover data
} else

cout << "Please enter an integer." << endl;

cout << "Retry: "

*/

- 43 -

Finally, we need to check if there's any extra data left over. If so, we need to report to the user that
something is wrong with the input, and can otherwise return the value we read. While there are several
ways to check this, one simple method is to read in a single char from the stringstream. Ifitis possible
to do so, then we know that there must have been something in the input stream that wasn't picked up
when we extracted an integer and consequently that the input is bad. Otherwise, the stream must be out
of data and will enter a fail state, signaling that the user's input was valid. The final code for GetInteger,

which uses this trick, is shown here:

int GetlInteger () {
while (true) { // Read input until user enters valid data
stringstream converter;
converter << GetLine();

/* Try reading an int, continue if we succeeded. */
int result;
if (converter >> result) {

char remaining;

if (converter >> remaining) // Something's left,

else
return result;
} else
cout << "Please enter an integer." << endl;

cout << "Retry: "

input is invalid
cout << "Unexpected character: " << remaining << endl;



-44 - Chapter 3: Streams

More To Explore

C++ streams are extremely powerful and encompass a huge amount of functionality. While there are many
more facets to explore, I highly recommend exploring some of these topics:

* Random Access: Most of the time, when performing 1/0, you will access the data sequentially;
that is, you will read in one piece of data, then the next, etc. However, in some cases you might
know in advance that you want to look up only a certain piece of data in a file without considering
all of the data before it. For example, a ZIP archive containing a directory structure most likely
stores each compressed file at a different offset from the start of the file. Thus, if you wanted to
write a program capable of extracting a single file from the archive, you'd almost certainly need the
ability to jump to arbitrary locations in a file. C++ streams support this functionality with the
seekgq, tellq, seekp, and tellp functions (the first two for istreams, the latter for ostreams).
Random access lets you quickly jump to single records in large data blocks and can be useful in
data file design.

* read and write: When you write numeric data to a stream, you're actually converting them into
sequences of characters that represent those numbers. For example, when you print out the four-
byte value 78979871, you're using eight bytes to represent the data on screen or in a file — one for
each character. These extra bytes can quickly add up, and it's actually possible to have on-disk
representations of data that are more than twice as large as the data stored in memory. To get
around this, C++ streams let you directly write data from memory onto disk without any
formatting. All ostreams support a write function that writes unformatted data to a stream, and
istreams support read to read unformatted data from a stream into memory. When used well,
these functions can cut file loading times and reduce disk space usage. For example, The
CS106B/X Lexicon class uses read to quickly load its data file into memory.

Practice Problems

Here are some questions to help you play around with the material from this chapter. Try some of these
out; you'll be a better coder for the effort.

1. How do you write data to a file in C++?

2. What does the setw manipulator do? What does the setfill manipulator do? How do you use
them?

3. Whatis stream failure? How do you check for it?
4. Whatisastringstream?
5. Usinga stringstream, write a function that converts an int intoa string.

6. Modify the code for GetInteger to create a function GetReal that reads a real number from the
user. How much did you need to modify to make this code work?

7. Using the code for GetInteger and the boolalpha stream manipulator, write a function
GetBoolean that waits for the user to enter “true” or “false” and returns the corresponding
boolean value.



Chapter 3: Streams -45 -

10.

In common usage, numbers are written in decimal or base 10. This means that a string of digits is
interpreted as a sum of multiples of powers of ten. For example, the number 137 is 1-:100 + 3-10 +
7-1, which is the same as 1-10* + 3-10' + 7-10°. However, it is possible to write numbers in other
bases as well. For example, octal, or base 8, encodes numbers as sums of multiples of powers of
eight. For example, 137 in octal would be 1-8 + 3-8" + 7-8° = 64 + 24 + 7 = 95 in decimal.”
Similarly, binary, or base 2, uses powers of two.

When working in a particular base, we only use digits from 0 up to that base. Thus in base 10 we
use the digits zero through nine, while in base five the only digits would be 0, 1, 2, 3, and 4. This
means that 57 is not a valid base-five number and 93 is not a valid octal number. When working in
bases numbered higher than ten, it is customary to use letters from the beginning of the alphabet
as digits. For example, in hexadecimal, or base 16, one counts 0, 1, 2, .., 9, A, B, C, D, E, E 10. This
means that 3D45E is a valid hexadecimal number, as is DEADBEEF or DEFACED.

Write a function HasHexLetters that accepts an int and returns whether or not that integer's
hexadecimal representation contains letters. (Hint: you'll need to use the hex and dec stream
manipulators in conjunction with a stringstream. Try to solve this problem without brute-forcing
it: leverage off the streams library instead of using loops.) ¢

Although the console does not naturally lend itself to graphics programming, it is possible to draw
rudimentary approximations of polygons by printing out multiple copies of a character at the
proper location. For example, we can draw a triangle by drawing a single character on one line,
then three on the next, five on the line after that, etc. For example:

#

i
igaad:
FHEHHEE
FHEFAAAAS

Using the setw and setfill stream manipulators, write a function DrawTriangle that takes in
an int corresponding to the height of the triangle and a char representing a character to print,
then draws a triangle of the specified height using that character. The triangle should be aligned so
that the bottom row starts at the beginning of its line.

Write a function OpenFile that accepts as input an i fstream by reference and prompts the user
for the name of a file. If the file can be found, OpenFile should return with the i fstream opened
to read that file. Otherwise, OpenFile should print an error message and reprompt the user.
(Hint: If you try to open a nonexistent file with an i fstream, the stream goes into a fail state and you
will need to use .clear () to restore it before trying again).

*

Why do programmers always confuse Halloween and Christmas? Because 31 Oct = 25 Dec. ©



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

All of the programs we saw in the previous chapter were fairly short - the most complex of them ran at
just under one hundred lines of code. In industrial settings, though, programs are far bigger, and in fact it
is common for programs to be tens of millions of lines of code. When code becomes this long, it is simply
infeasible to store all of the source code in a single file. Were all the code to be stored in a single file, it
would be next to impossible to find a particular function or constant declaration, and it would be
incredibly difficult to discern any of the high-level structure of the program. Consequently, most large
programs are split across multiple files.

When splitting a program into multiple files, there are many considerations to take into account. First,
what support does C++ have for partitioning a program across multiple files? That is, how do we
communicate to the C++ compiler that several source files are all part of the same program? Second, what
is the best way to logically partition the program into multiple files? In other words, of all of the many
ways we could break the program apart, which is the most sensible?

In this chapter, we will address these questions, plus several related problems that arise. First, we will talk
about the C++ compilation model - the way that C++ source files are compiled and linked together. Next,
we will explore the most common means for splitting a project across files by seeing how to write custom
header and implementation files. Finally, we will see how header files work by discussing the
preprocessor, a program that assists the compiler in generating C++ code.

The C++ Compilation Model

C++ is a compiled language, meaning that before a C++ program executes, a special program called the
compiler converts the C++ program directly to machine code. Once the program is compiled, the resulting
executable can be run any number of times, even if the source code is nowhere to be found.

C++ compilation is a fairly complex process that involves numerous small steps. However, it can generally
be broken down into three larger processes:

*  Preprocessing, in which code segments are spliced and inserted,
*  Compilation, in which code is converted to object code, and
* Linking, in which compiled code is joined together into a final executable.

During the preprocessing step, a special program called the preprocessor scans over the C++ source code
and applies various transformations to it. For example, #include directives are resolved to make various
libraries available, special tokens like FILE and LINE (covered later) are replaced by the file and
line number in the source file, and #define-d constants and macros (also covered later) are replaced by
their appropriate values.

In the compilation step, the C++ source file is read in by the compiler, optimized, and transformed into an
object file. These object files are machine-specific, but usually contain machine code which executes the
instructions specified in the C++ file, along with some extra information. It's at this stage where the
compiler will report any syntax errors you make, such as omitting semicolons, referencing undefined
variables, or passing arguments of the wrong types into functions.

Finally, in the linking phase, a program called the linker gathers together all of the object files necessary to
build the final executable, bundles them together with OS-specific information, and finally produces an



-48 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

executable file that you can run and distribute. During this phase, the linker may report some final errors
that prevent it from generating a working C++ program. For example, consider the following C++
program:

#include <iostream>
using namespace std;

int Factorial(int n); // Prototype for a function to compute n!

int main() {
cout << Factorial (10) << endl;
return 0;

This program prototypes a function called Factorial, calls it in main, but never actually defines it.
Consequently, this program is erroneous and will not run. However, the error is not detected by the
compiler; rather, it shows up as a linker error. During linking, the linker checks to see that every function
that was prototyped and called has a corresponding implementation. If it finds that some function has no
implementation, it reports an error. In order to understand why this is, consider the following diagram,
which portrays the relationships between the three main phases of compilation:

C++ C++ C++ C++

N y N y
Preprocessor Preprocessor Preprocessor Preprocessor
N y N y
Compiler Compiler Compiler Compiler

N N
1101110010 1101110010 1101110010 1101110010
1110111100 1110111100 1110111100 1110111100

Executable
Program

Notice that during compilation, each C++ source file is treated independently the others, but during linking
all of the files are glued together. Consequently, it's possible (and, in fact, extremely common) for a
function to be prototyped in one C++ file but implemented in another. For this reason, if the compiler sees a
prototype for a function but no implementation, it doesn't report an error - the definition might just be in
a different file it hasn't seen yet. Only when all of the files are pulled together by the linker is there an
opportunity to check that all of the prototyped functions have some sort of implementation.

What does this mean for you as a C++ programmer? In practice, this distinction usually only manifests
itself in the types of error messages you may get compilation. In particular, a program may compile
perfectly well but fail to link because you prototyped a function that was never defined. Understanding
the source of these errors and why they are reported during linking will help you diagnose these errors
more handily.



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -49 -

As an example, consider the following C++ program, which contains a subtle error:

#include <iostream>

#include <string>

#include <cctype> // For tolower
using namespace std;

/* Prototype a function called ConvertToLowerCase, which returns a lower-case
* version of the input string.
*/

string ConvertToLowerCase (string input);

int main() {
string myString = "THIS IS A STRING!";
cout << ConvertToLowerCase (myString);

}

/* Implementation of ConvertToLowerCase. */
string ConvertToLowerCase (string& input) { // Error: Doesn't link; see below
for (int k = 0; k < input.size(); ++k)
input[k] = tolower (input([k]); // tolower converts a char to lower-case

return input;

If you compile this program in g++, the program compiles but the linker will produce this mysterious
error:

main.cpp: (.text+0x14d): undefined reference to
"ConvertToLowerCase (std::basic_string<char, std::char traits<char>,
std::allocator<char> >)'

If you compile this program in Microsoft Visual Studio 2005, it will similarly compile and produce this
monstrosity of an error:

error LNK2019: unresolved external symbol "class std::basic string<char,struct
std::char traits<char>,class std::allocator<char> >  cdecl
ConvertToLowerCase (class std::basic_string<char, struct
std::char traits<char>,class std::allocator<char> >)"
(?ConvertToLowerCase@@YA?AV?S
basic string@DU?$char traits@DEstd@@V?Sallocator@D@2Q@@std@@V12@@Z) referenced
in function main

What's going on here? This error is tricky to decipher, but as you can see from the highlighting has
something to do with ConvertToLowerCase. Let's try to see if we can get to the root of the problem.
Since this is a linker error, we can immediately rule out any sort of syntax error. If we had made a
syntactic mistake, the compiler, not the linker, would have caught it. Moreover, since this is a linker error, it
means that we somehow prototyped a function that we never got around to implementing. This seems
strange though - we prototyped the function ConvertToLowerCase and it seems like we implemented it
later on in the program. The problem, though, is that the function we implemented doesn't match the
prototype. Here are the prototype and the implementation, reprinted right next to each other:



-50- Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

string ConvertToLowerCase (string input); // Prototype

string ConvertToLowerCase (string& input) { // Implementation
for (int k = 0; k < input.size(); ++k)
input[k] = tolower (input[k]); // tolower converts a char to lower-case

return input;

Notice that the function we've prototyped takes in a string as a parameter, while the implementation
takes in a strings&. That is, the prototype takes its argument by value, and the implementation by
reference.  Because these are different parameter-passing schemes, the compiler treats the
implementation as a completely different function than the one we've prototyped. Consequently, during
linking, the linker can't locate an implementation of the prototyped function, which takes in a string by
value. Although the functions have the same name, their signatures are different, and they are treated as
entirely different entities.

To fix this problem, we must either update the prototype to match the implementation or the
implementation to match the prototype. In this case, we'll change the implementation so that it no longer
takes in the parameter by reference. This results in the following program, which compiles and links
without error:

#include <iostream>

#include <string>

#include <cctype> // For tolower
using namespace std;

/* Prototype a function called ConvertToLowerCase, which returns a lower-case
* version of the input string.
*/

string ConvertToLowerCase (string input);

int main () {
string myString = "THIS IS A STRING!";
cout << ConvertToLowerCase (myString);

}

/* Implementation of ConvertToLowerCase. */
string ConvertToLowerCase (string input) { // Now corrected.
for (int k = 0; k < input.size(); ++k)
input[k] = tolower (input([k]); // tolower converts a char to lower-case

return input;

Running this program produces the output
this is a string!
If you ever write a program and discover that it produces a linker error, always check to make sure that

you've implemented all functions you've prototyped and that those implementations match the
prototypes. Otherwise, you might be directing your efforts toward catching a nonexistent syntax error.

Modularity and Abstraction



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -51-

Because compilation and linking are separate steps in C++, it is possible to split up a C++ program across
multiple files. To do so, we must first answer two questions:
1. How do you split a program up? That is, syntactically, how do you communicate to the C++
compiler that you want to build a single program from a collection of files?

2. What is the best way to split a program up? In other words, given how a single C++ program
can be built from many files, what is the best way to logically partition the program code across
those files?

To answer these questions, we first must take a minute to reflect on the structure of most C++ programs.”
When writing a C++ program to perform a particular task or solve a particular problem, one usually begins
by starting with a large, difficult problem and then solves that problem by breaking it down into smaller
and smaller pieces. For example, suppose we want to write a program that allows the user to send and
receive emails. Initially, we can think of this as one, enormous task:

Send/Receive

Email

How might we go about building such a program? Well, we might begin by realizing that to write an email
client, we will need to be able to communicate over a network, since we'll be transmitting and receiving
data. Also, we will need some way to store the emails we've received on the user's hard disk so that she
can read messages while offline. We'll also need to be able to display graphics contained in those emails,
as well as create windows for displaying content. Each one of these tasks is itself a fairly complex problem
which needs to be solved, and so if we rethink our strategy for writing the email client, we might be able to
visualize it as follows:

Send/Receive

Email

v v v

Networking Graphics Storage

Of course, these tasks in of themselves might have some related subproblems. For example, when reading
and writing from disk, we will need some tools to allow us to read and write general data from disk,
another set of libraries to structure the data stored on disk, another to recover gracefully from errors, etc.
Here is one possible way of breaking each of the subproblems down into smaller units:

* In fact, programs in virtually any language will have the structure we're about to describe.



-52- Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

Send/Receive

Email

v v v

Networking Graphics Storage

Window Disk Error

TCP/IP UDP Mgmt | |CSCTIPUY) | Girage | | Recovery

In general, we write programs to solve large, complicated tasks by breaking the task down into
successively smaller and smaller pieces, then combining all of those pieces back together into a coherent
whole.” When using this setup, though, one must be extremely careful. Refer to the above diagram and
notice that the abstract problem at the top depends directly on three subproblems. Each of those
subproblems depends in turn on even more subproblems, etc. If the top-level program needed to explicitly
know how each of these sub-subproblems were to work, it would be all but impossible to write. A
programmer tasked with designing the email program shouldn't have to understand exactly how the
networking module works, but should instead only need to know how to use it. Similarly, in order to use
the windowing module, the programmer shouldn't have to understand all of its internal workings.

In order for each part of the program to use its subcomponents without getting overwhelmed by
complexity, there must be some way to separate out how each subproblem is solved from the way that
each subproblem is used. For example, think back to the streams library from the previous chapter. As you
saw, you can use the ifstream and ofstream classes to read and write files. But how exactly are
ifstream and ofstream put together behind the scenes? Internally, these classes are incredibly
complicated and are composed of numerous different pieces of C++ code that fit together in intricate ways.
From your perspective, though, all of this detail is irrelevant; you only care about how you use these
stream classes to do input and output.

This distinction between the inner workings of a module (a collection of source code that solves a
problem) and the way in which a client use it is an example of abstraction. An abstraction is a
simplification of a complex object - whether physical or in software - that allows it to be used without an
understanding of its underlying mechanism. For example, the iPhone is an incredibly complex piece of
hardware with billions of transistors and gates. Even the simplest of tasks, such as making a phone call or
sending email, triggers a flurry of electrical activity in the underlying device. But despite the
implementation complexity, the iPhone is incredibly easy to use because the interface works at a high
level, with tasks like “send text message” or “play music.” In other words, the complexity of the
implementation is hidden behind a very simple interface.

When designing software, you should strive to structure your software in a similar manner. Whenever you
write code to solve a particular task, you should try to package that code so that it communicates
primarily what it does, rather than how it does it. This has several advantages:

* For those of you familiar with recursion, you might recognize that this general structure follows a simple
recursive formulation: if the problem is simple enough, solve it; otherwise break it down into smaller pieces, solve
those pieces, and then glue them all together again.



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -53-

* Simplicity. If you package your code by giving it a simple interface, you make it easier for yourself
and other programmers to use. Moreover, if you take a break from a project and then return to it
later, it is significantly easier to resume if the interface clearly communicates its intention.

* Extensibility. If you design a simple, elegant interface, then you can change the implementation as
the program evolves over time without breaking client code. We'll see examples of this later in the
chapter.

* Reusability. If your interface is sufficiently generic, then you may be able to reuse the code you've
written in multiple projects. As an example, the streams library is sufficiently flexible that you can
use it to write both a simple “Hello, World!” and a complex program with detailed file-processing
requirements.

A Sample Module: String Utilities

To give you a sense for how interfaces and implementations look in software, let's take a quick diversion to
build a sample C++ module to simplify common string operations. In particular, we'll write a collection of
functions that simplify conversion of several common types to strings and vice-versa, along with
conversions to lower- and upper-case.”

In C++, to create a module, we create two files — a header file saying what functions and classes a module
exports, and an implementation file containing the implementations of those functions and classes. Header
files usually have the extension .h, though the extension .hh is also sometimes used. Implementation files
are regular C++ files, so they often use the extensions .cpp, .cc, or (occasionally) .C or .cpp. Traditionally, a
header file and its associated implementation file will have the same name, ignoring the extension. For
example, in our string processing library, we might name the header file strutils.h and the
implementation file strutils.cpp.

To give you a sense for what a header file looks like, consider the following code for strutils.h:

File: strutils.h

#ifndef StrUtils Included
#define StrUtils Included

#include <string>
using namespace std;

string ConvertToUpperCase (string input) ;
string ConvertToLowerCase (string input);

string IntegerToString(int value);
string DoubleToString (double wvalue);

#endif

Notice that the highlighted part of this file looks just like a regular C++ file. There's a #include directive
to import the string type, followed by several prototypes for functions. However, none of these functions
are implemented - the purpose of this file is simply to say what the module exports, not to provide the
implementations of those functions.

However, this header file contains some code that you have not yet seen in C++ programs: the lines

* In other words, we'll be writing the strutils.h library from CS106B/X.



-54 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

#ifndef StrUtils Included
#define StrUtils Included

and the line

#endif

These lines are called an include guard. Later in this chapter, we will see exactly why they are necessary
and how they work. In the meantime, though, you should note that whenever you create a header file, you
should surround that file using an include guard. There are many ways to write include guards, but one
simple approach is as follows. When creating a file named file.h, you should surround the file with the
lines

#ifndef File Included
#define File Included

#endif

Now that you've seen how to write a header file, let's write the matching implementation file. This is
shown here:

File: strutils.cpp

#include "strutils.h"
#include <cctype> // For tolower, toupper
#include <sstream> // For stringstream

string ConvertToUpperCase (string input) {
for (size t k = 0; k < input.size(); ++k)
input[k] = toupper (input([k]):;
return input;

}

string ConvertToUpperCase (string input) {
for (size t k = 0; k < input.size(); ++k)
input[k] = toupper (input[k]);
return input;

}

string IntegerToString(int input) {
stringstream converter;
converter << input;
return converter.str();

}

string DoubleToString (double input) {
stringstream converter;
converter << input;
return converter.str();

This C++ source file does not contain any new language constructs - it's just your standard, run-of-the-mill
C++ file. However, do note that it provides an implementation of every file exported in the header file.
Moreover, the file begins with the line

#include "strutils.h"



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -55-

Traditionally, an implementation file #includes its corresponding header file. When we discuss the
preprocessor in the latter half of this chapter, the rationale behind this should become more clear.

Now that we've written the strutils.h/.cpp pair, we can use these functions in other C++ source files.
For example, consider the following simple C++ program:

#include <iostream>
#include <string>
#include "strutils.h"
using namespace std;

int main() {
cout << ConvertToLowerCase ("THIS IS A STRING!");
return 0;

This program produces the output
this is a string!

Notice that nowhere in this file did we implement or define the ConvertToLowerCase function. It suffices
to #include "strutils.h" to gain access to this functionality.

Behind the Curtain: The Preprocessor

One of the most exciting parts of writing a C++ program is pressing the “compile” button and watching as
your code transforms from static text into dynamic software. As mentioned earlier, this process proceeds
in several steps. One of the first of these steps is preprocessing, where a special program called the
preprocessor reads in commands called directives and modifies your code before handing it off to the
compiler for further analysis. You have already seen one of the more common preprocessor directives,
#include, which imports additional code into your program. However, the preprocessor has far more
functionality and is capable of working absolute wonders on your code. But while the preprocessor is
powerful, it is difficult to use correctly and can lead to subtle and complex bugs. The rest of this chapter
introduces the preprocessor, highlights potential sources of error, and concludes with advanced
preprocessor techniques.

A word of warning: the preprocessor was developed in the early days of the C programming language,
before many of the more modern constructs of C and C++ had been developed. Since then, both C and C++
have introduced new language features that have obsoleted or superseded much of the preprocessor's
functionality and consequently you should attempt to minimize your use of the preprocessor. This is not
to say, of course, that you should never use the preprocessor - there are times when it's an excellent tool
for the job, as you'll see later in the chapter - but do consider other options before adding a hastily-crafted
directive.

#include Explained

In both CS106B/X and CS106L, every program you've encountered has begun with several lines using the
#include directive; for example, #include <iostream> or #include "genlib.h". Intuitively, these
directives tell the preprocessor to import library code into your programs. Literally, #include instructs
the preprocessor to locate the specified file and to insert its contents in place of the directive itself. Thus,
when you write #include "genlib.h" at the top of your CS106B/X assignments, it is as if you had
copied and pasted the contents of genlib.h into your source file. These header files usually contain



-56- Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

prototypes or implementations of the functions and classes they export, which is why the directive is
necessary to access other libraries.



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -57-

You may have noticed that when #include-ing CS106B/X-specific libraries, you've surrounded the name
of the file in double quotes (e.g. "genlib.h"), but when referencing C++ standard library components,
you surround the header in angle brackets (e.g. <iostream>). These two different forms of #include
instruct the preprocessor where to look for the specified file. If a filename is surrounded in angle brackets,
the preprocessor searches for it a compiler-specific directory containing C++ standard library files. When
filenames are in quotes, the preprocessor will look in the current directory.

#include is a preprocessor directive, not a C++ statement, and is subject to a different set of syntax
restrictions than normal C++ code. For example, to use #include (or any preprocessor directive, for that
matter), the directive must be the first non-whitespace text on its line. For example, the following is
illegal:

cout << #include <iostream> << endl; // Error: #include must start a line.

Second, because #include is a preprocessor directive, not a C++ statement, it must not end with a
semicolon. Thatis, #include <iostream>; will probably cause a compiler error or warning. Finally, the
entire #include directive must appear on a single line, so the following code will not compile:

#include
<iostream> // Error: Multi-line preprocessor directives are illegal.

The #define Directive

One of the most commonly used (and abused) preprocessor directives is #define, the equivalent of a
“search and replace” operation on your C++ source files. While #include splices new text into an existing
C++ source file, #define replaces certain text strings in your C++ file with other values. The syntax for
#defineis

#define phrase replacement

After encountering a #define directive, whenever the preprocessor find phrase in your source code, it
will replace it with replacement. For example, consider the following program:

#define MY CONSTANT 137

int main () {
int x = MY CONSTANT - 3;
return 0O;

The first line of this program tells the preprocessor to replace all instances of MY CONSTANT with the
phrase 137. Consequently, when the preprocessor encounters the line

int x = MY CONSTANT - 3;
It will transform it to read
int x = 137 - 3;

So x will take the value 134.



-58- Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

Because #define is a preprocessor directive and not a C++ statement, its syntax can be confusing. For
example, #define determines the stop of the phrase portion of the statement and the start of the
replacement portion by the position of the first whitespace character. Thus, if you write

#define TWO WORDS 137

The preprocessor will interpret this as a directive to replace the phrase Two with WorRDS 137, which is
probably not what you intended. The replacement portion of the #define directive consists of all text
after phrase that precedes the newline character. Consequently, it is legal to write statements of the form
#define phrase without defining a replacement. In that case, when the preprocessor encounters the
specified phrase in your code, it will replace it with nothingness, effectively removing it.

Note that the preprocessor treats C++ source code as sequences of strings, rather than representations of
higher-level C++ constructs. For example, the preprocessor treats int x = 137 as the strings “int,” “x,”
“=’ and “137” rather than a statement creating a variable x with value 137." It may help to think of the
preprocessor as a scanner that can read strings and recognize characters but which has no understanding
whatsoever of their meanings, much in the same way a native English speaker might be able to split Czech

text into individual words without comprehending the source material.

That the preprocessor works with text strings rather than language concepts is a source of potential
problems. For example, consider the following #define statements, which define margins on a page:

#define LEFT MARGIN 100
#define RIGHT_MARGIN 100
#define SCALE .5

/* Total margin is the sum of the left and right margins, multiplied by some
* scaling factor.

*/

#define TOTAL MARGIN LEFT MARGIN * SCALE + RIGHT MARGIN * SCALE

What happens if we write the following code?

int x = 2 * TOTAL MARGIN;
Intuitively, this should set x to twice the value of TOTAL MARGIN, but unfortunately this is not the case.
Let's trace through how the preprocessor will expand out this expression. First, the preprocessor will
expand TOTAL MARGIN to LEFT MARGIN * SCALE + RIGHT MARGIN * SCALE, as shown here:

int x = 2 * LEFT MARGIN * SCALE + RIGHT MARGIN * SCALE;

Initially, this may seem correct, but look closely at the operator precedence. C++ interprets this statement
as

int x = (2 * LEFT MARGIN * SCALE) + RIGHT MARGIN * SCALE;

Rather the expected

int x = 2 * (LEFT_MARGIN * SCALE + RIGHT MARGIN * SCALE);

* Technically speaking, the preprocessor operates on “preprocessor tokens,” which are slightly different from the
whitespace-differentiated pieces of your code. For example, the preprocessor treats string literals containing
whitespace as a single object rather than as a collection of smaller pieces.



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -59-

And the computation will be incorrect. The problem is that the preprocessor treats the replacement for
TOTAL MARGIN as a string, not a mathematical expression, and has no concept of operator precedence.
This sort of error - where a #defined constant does not interact properly with arithmetic expressions - is
a common mistake. Fortunately, we can easily correct this error by adding additional parentheses to our
#define. Let's rewrite the #define statement as

#define TOTAL MARGIN (LEFT MARGIN * SCALE + RIGHT MARGIN * SCALE)
We've surrounded the replacement phrase with parentheses, meaning that any arithmetic operators
applied to the expression will treat the replacement string as a single mathematical value. Now, if we
write

int x = 2 * TOTAL MARGIN;
It expands out to

int x = 2 * (LEFT MARGIN * SCALE + RIGHT MARGIN * SCALE) ;

Which is the computation we want. In general, if you #define a constant in terms of an expression
applied to other #defined constants, make sure to surround the resulting expression in parentheses.

Although this expression is certainly more correct than the previous one, it too has its problems. What if
we redefine LEFT MARGIN as shown below?

#define LEFT MARGIN 200 - 100
Now, if we write
int x = 2 * TOTAL MARGIN
[t will expand out to
int x = 2 * (LEFT_MARGIN * SCALE + RIGHT MARGIN * SCALE);
Which in turn expands to
int x = 2 * (200 - 100 * .5 + 100 * .5)
Which yields the incorrect result because (200 - 100 * .5 + 100 * .5) isinterpreted as
(200 - (100 * .5) + 100 * .5)
Rather than the expected
((200 - 100) * .5 + 100 * .5)

The problem is that the #defined statement itself has an operator precedence error. As with last time, to
fix this, we'll add some additional parentheses to the expression to yield

#define TOTAL MARGIN ((LEFT MARGIN) * (SCALE) + (RIGHT MARGIN) * (SCALE))

This corrects the problem by ensuring that each #defined subexpression is treated as a complete entity
when used in arithmetic expressions. When writing a #define expression in terms of other #defines,



- 60 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

make sure that you take this into account, or chances are that your constant will not have the correct
value.

Another potential source of error with #define concerns the use of semicolons. If you terminate a
#define statement with a semicolon, the preprocessor will treat the semicolon as part of the replacement
phrase, rather than as an “end of statement” declaration. In some cases, this may be what you want, but
most of the time it just leads to frustrating debugging errors. For example, consider the following code
snippet:

#define MY CONSTANT 137; // Oops-- unwanted semicolon!

int x = MY CONSTANT * 3;
During preprocessing, the preprocessor will convert the line int x = MY CONSTANT * 3toread
int x = 137; * 3;

This is not legal C++ code and will cause a compile-time error. However, because the problem is in the
preprocessed code, rather than the original C++ code, it may be difficult to track down the source of the
error. Almost all C++ compilers will give you an error about the statement * 3 rather than a malformed
#define.

As you can tell, using #define to define constants can lead to subtle and difficult-to-track bugs.
Consequently, it's strongly preferred that you define constants using the const keyword. For example,
consider the following const declarations:

const int LEFT_MARGIN = 200 - 100;

const int RIGHT_MARGIN 100;

const int SCALE = .5;

const int TOTAL_MARGIN = LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE;
int x = 2 * TOTAL_MARGIN;

Even though we've used mathematical expressions inside the const declarations, this code will work as
expected because it is interpreted by the C++ compiler rather than the preprocessor. Since the compiler
understands the meaning of the symbols 200 - 100, rather than just the characters themselves, you will
not need to worry about strange operator precedence bugs.

Include Guards Explained

Earlier in this chapter when we covered header files, you saw that when creating a header file, you should
surround the header file using an include guard. What is the purpose of the include guard? And how does
it work? To answer this question, let's see what happens when a header file lacks an include guard.

Suppose we make the following header file, mystruct.h, which defines a st ruct called MyStruct:

File: mystruct.h

struct MyStruct {
int x;
double y;
char z;

}i

What happens when we try to compile the following program?



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -61-

#include "mystruct.h"
#include "mystruct.h"™ // #include the same file twice

int main() {
return 0O;

}

This code looks innocuous, but produces a compile-time error complaining about a redefinition of struct
MyStruct. The reason is simple - when the preprocessor encounters each #include statement, it copies
the contents of mystruct.h into the program without checking whether or not it has already included the
file. Consequently, it will copy the contents of mystruct.h into the code twice, and the resulting code
looks like this:

struct MyStruct {
int x;
double y;
char z;
}i
struct MyStruct {// <-- Error occurs here
int x;
double vy;
char z;

}s

int main() {
return O;

}

The indicated line is the source of our compiler error - we've doubly-defined struct MyStruct. To solve
this problem, you might think that we should simply have a policy of not #inc1lude-ing the same file twice.
In principle this may seem easy, but in a large project where several files each #include each other, it may
be possible for a file to indirectly #include the same file twice. Somehow, we need to prevent this
problem from happening.

The problem we're running into stems from the fact that the preprocessor has no memory about what it
has done in the past. Somehow, we need to give the preprocessor instructions of the form “if you haven't
already done so, #include the contents of this file” For situations like these, the preprocessor supports
conditional expressions. Just as a C++ program can use if .. else if .. else to change program flow
based on variables, the preprocessor can use a set of preprocessor directives to conditionally include a
section of code based on #defined values.

There are several conditional structures built into the preprocessor, the most versatile of which are #if,
#elif, #else, and #endif. Asyou might expect, you use these directives according to the pattern

#if statement
#elif.énother—statement
#elié'}et—another—statement
#elsé..

#endif

There are two details we need to consider here. First, what sorts of expressions can these preprocessor
directives evaluate? Because the preprocessor operates before the rest of the code has been compiled,



-62- Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

preprocessor directives can only refer to #defined constants, integer values, and arithmetic and logical
expressions of those values. Here are some examples, supposing that some constant MY CONSTANT is
defined to 42:

#1f MY CONSTANT > 137 // Legal

#if MY CONSTANT * 42 == MY CONSTANT // Legal

#1f sqrt (MY CONSTANT) < 4 // Illegal, cannot call function sqgrt
#1f MY CONSTANT == 3.14 // Illegal, can only use integral values

In addition to the above expressions, you can use the defined predicate, which takes as a parameter the
name of a value that may have previously been #defined. If the constant has been #defined, defined
evaluates to 1; otherwise it evaluates to 0. For example, if MY CONSTANT has been previously #defined
and OTHER CONSTANT has not, then the following expressions are all legal:

#if defined (MY CONSTANT) // Evaluates to true.
#if defined (OTHER CONSTANT) // Evaluates to false.
#if !defined (MY CONSTANT) // Evaluates to false.

Now that we've seen what sorts of expressions we can use in preprocessor conditional expressions, what
is the effect of these constructs? Unlike regular if statements, which change control flow at execution,
preprocessor conditional expressions determine whether pieces of code are included in the resulting
source file. For example, consider the following code:

#if defined (A)
cout << "A is defined." << endl;
#elif defined (B)
cout << "B is defined." << endl;
#elif defined(C)
cout << "C is defined." << endl;
felse
cout << "None of A, B, or C is defined." << endl;
#endif

Here, when the preprocessor encounters these directives, whichever of the conditional expressions
evaluates to true will have its corresponding code block included in the final program, and the rest will be
ignored. For example, if A is defined, this entire code block will reduce down to

cout << "A is defined." << endl;
And the rest of the code will be ignored.

One interesting use of the #if ... #endif construct is to comment out blocks of code. Since C++
interprets all nonzero values as true and zero as false, surrounding a block of code ina #if 0 .. #endif
block causes the preprocessor to eliminate that block. Moreover, unlike the traditional /* .. */ comment
type, preprocessor directives can be nested, so removing a block of code using #if 0 .. #endif doesn't
run into the same problems as commenting the code out with /* ... */.

In addition to the above conditional directives, C++ provides two shorthand directives, #ifdef and
#ifndef. #ifdef (if defined) is a directive that takes as an argument a symbol and evaluates to true if the
symbol has been #defined. Thus the directive #ifdef symbol is completely equivalent to
#if defined (symbol). C++ also provides #ifndef (if not defined), which acts as the opposite of
#ifdef; #ifndef symbol is equivalent to #if !defined(symbol). Although these directives are
strictly weaker than the more generic #if, it is far more common in practice to see #ifdef and #ifndef
rather than #if definedand #if !defined, primarily because they are more concise.



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -63-

Using the conditional preprocessor directives, we can solve the problem of double-including header files.
Let's return to our example with #include "mystruct .h" appearing twice in one file. Here is a slightly
modified version of the mystruct .h file that introduces some conditional directives:

File: mystruct.h (version 2)

#ifndef MyStruct Included
#define MyStruct Included

struct MyStruct {
int x;
double y;
char z;

i

#endif

Here, we've surrounded the entire file in a block #ifndef MyStruct Included .. #endif. The specific
name MyFile Included is not particularly important, other than the fact that it is unique to the
myfile.h file. We could have just as easily chosen something like #ifndef sdf39527dkb2 or another
unique name, but the custom is to choose a name determined by the file name. Immediately after this
#ifndef statement, we #define the constant we are considering inside the #ifndef. To see exactly what

effect this has on the code, let's return to our original source file, reprinted below:

#include "mystruct.h"
#include "mystruct.h"™ // #include the same file twice

int main() {
return 0O;

}
With the modified version of mystruct.h, this code expands out to

#ifndef MyStruct Included
#define MyStruct Included

struct MyStruct {
int x;
double vy;
char z;

}s

#endif
#ifndef MyStruct Included
#define MyStruct Included

struct MyStruct {
int x;
double vy;
char z;

b

#endif
int main () {
return 0;

}



-64 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

Now, as the preprocessor begins evaluating the #ifndef statements, the first #ifndef .. #endif block
from the header file will be included since the constant MyStruct Included hasn't been defined yet. The
code then #definesMyStruct Included, so when the program encounters the second #ifndef block,
the code inside the #ifndef .. #endif block will not be included. Effectively, we've ensured that the
contents of a file can only be #included once in a program. The net program thus looks like this:

struct MyStruct {
int x;
double vy;
char z;

}:

int main() {
return 0;

}

Which is exactly what we wanted. This technique, known as an include guard, is used throughout
professional C++ code, and, in fact, the boilerplate #ifndef / #define / #endif structure is found in
virtually every header file in use today. Whenever writing header files, be sure to surround them with the
appropriate preprocessor directives.

Macros

One of the most common and complex uses of the preprocessor is to define macros, compile-time
functions that accepts parameters and output code. Despite the surface similarity, however, preprocessor
macros and C++ functions have little in common. C++ functions represent code that executes at runtime to
manipulate data, while macros expand out into newly-generated C++ code during preprocessing.

To create macros, you use an alternative syntax for #define that specifies a parameter list in addition to
the constant name and expansion. The syntax looks like this:

#define macroname (parameterl, parameter2, ... , parameterN) macro-body’

Now, when the preprocessor encounters a call to a function named macroname, it will replace it with the
text in macro-body. For example, consider the following macro definition:

#define PLUS ONE (x) ((x) + 1)
Now, if we write
int x = PLUS ONE (137);
The preprocessor will expand this code out to
int x = ((137) + 1);
So x will have the value 138.

If you'll notice, unlike C++ functions, preprocessor macros do not have a return value. Macros expand out
into C++ code, so the “return value” of a macro is the result of the expressions it creates. In the case of
PLUS ONE, this is the value of the parameter plus one because the replacement is interpreted as a

* Note that when using #define, the opening parenthesis that starts the argument list must not be preceded by

whitespace. Otherwise, the preprocessor will treat it as part of the replacement phrase for a #defined constant.



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -65-

mathematical expression. However, macros need not act like C++ functions. Consider, for example, the
following macro:

#define MAKE FUNCTION (fnName) void fnName ()

Now, if we write the following C++ code:
MAKE FUNCTION (MyFunction) ({

cout << "This is a function!" << endl;

}
The MAKE FUNCTION macro will convert it into the function definition

void MyFunction () {
cout << "This is a function!" << endl;

}

As you can see, this is entirely different than the PLUS ONE macro demonstrated above. In general, a
macro can be expanded out to any text and that text will be treated as though it were part of the original
C++ source file. This is a mixed blessing. In many cases, as you'll see later in the chapter, it can be
exceptionally useful. However, as with other uses of #define, macros can lead to incredibly subtle bugs
that can be difficult to track down. Perhaps the most famous example of macros gone wrong is this MAX
macro:

#define MAX(a, b) ((a) > (b) ? (a) : (b))

Here, the macro takes in two parameters and uses the ?: operator to choose the larger of the two. If
you're not familiar with the 2 : operator, the syntax is as follows:

expression ? result-if-true : result-if-false

In our case, ((a) > (b) 2 (a) : (b)) evaluates the expression (a) > (b). If the statement is true,
the value of the expression is (a); otherwise itis (b).

At first, this macro might seem innocuous and in fact will work in almost every situation. For example:
int x = MAX (100, 200);
Expands out to
int x = ((100) > (200) 2 (100) =: (200));
Which assigns x the value 200. However, what happens if we write the following?
int x = MAX(MyFnl (), MyFn2());
This expands out to
int x = ((MyFnl()) > (MyFn2()) ? (MyFnl()) : (MyFn2()));

While this will assign x the larger of MyFn1 () and MyFn2 (), it will not evaluate the parameters only once,
as you would expect of a regular C++ function. As you can see from the expansion of the MAX macro, the
functions will be called once during the comparison and possibly twice in the second half of the statement.



- 66 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

If MyFnl () or MyFn2 () are slow, this is inefficient, and if either of the two have side effects (for example,
writing to disk or changing a global variable), the code will be incorrect.

The above example with MAX illustrates an important point when working with the preprocessor - in
general, C++ functions are safer, less error-prone, and more readable than preprocessor macros. If you
ever find yourself wanting to write a macro, see if you can accomplish the task at hand with a regular C++
function. If you can, use the C++ function instead of the macro - you'll save yourself hours of debugging
nightmares.

Inline Functions

One of the motivations behind macros in pure C was program efficiency from inlining. For example,
consider the MAX macro from earlier, which was defined as

#define MAX (a, b) ((a) > (b) ? (a) : (b))

If we call this macro, then the code for selecting the maximum element is directly inserted at the spot
where the macro is used. For example, the following code:

int myInt = MAX (one, two);

Expands out to

int myInt ((one) > (two) ? (one) : (two));

When the compiler sees this code, it will generate machine code that directly performs the test. If we had
instead written MAX as a regular function, the compiler would probably implement the call to MAX as
follows:

1. Call the function called Max (which actually performs the comparison)
2. Store the result in the variable myInt.

This is considerably less efficient than the macro because of the time required to set up the function call.
In computer science jargon, the macro is inlined because the compiler places the contents of the “function”
at the call site instead of inserting an indirect jump to the code for the function. Inlined functions can be
considerably more efficient that their non-inline counterparts, and so for many years macros were the
preferred means for writing utility routines.

Bjarne Stroustrup is particularly opposed to the preprocessor because of its idiosyncrasies and potential
for errors, and to entice programmers to use safer language features developed the inline keyword,
which can be applied to functions to suggest that the compiler automatically inline them. Inline functions
are not treated like macros - they're actual functions and none of the edge cases of macros apply to them -
but the compiler will try to safely inline them if at all possible. For example, the following Max function is
marked inline, so a reasonably good compiler should perform the same optimization on the Max function
that it would on the MAX macro:

inline int Max (int one, int two) {
return one > two ? one : two;

}

The inline keyword is only a suggestion to the compiler and may be ignored if the compiler deems it
either too difficult or too costly to inline the function. However, when writing short functions it sometimes
helps to mark the function inline to improve performance.



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -67 -

A #define Cautionary Tale

#define is a powerful directive that enables you to completely transform C++. However, many C/C++
experts agree that you should not use #define unless it is absolutely necessary. Preprocessor macros and
constants obfuscate code and make it harder to debug, and with a few cryptic #defines veteran C++
programmers will be at a loss to understand your programs. As an example, consider the following code,
which references an external file mydefines.h:

#include "mydefines.h"
Once upon a time a little boy took a walk in a park

He (the child) found a small stone and threw it (the stone) in a pond
The end

Surprisingly, and worryingly, it is possible to make this code compile and run, provided that mydefines.h
contains the proper #defines. For example, here's one possible mydefines.h file that makes the code

compile:

File: mydefines.h

#ifndef mydefines included
#define mydefines included

#include <iostream>
using namespace std;

#define Once

#define upon

#define a

#define time upon

#define little

fdefine boy

#define took upon

#define walk

#define in walk

#define the

#define park a

#define He(n) n MyFunction(n x)
#define child int

#define found {

#define small return
#define stone x;

#define and in

#define threw }

#define it (n) int main() {
fdefine pond cout << MyFunction (137) << endl;
#define end return 0; }
#define The the

#endif

After preprocessing (and some whitespace formatting), this yields the program



-68- Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

#include <iostream>
using namespace std;

int MyFunction (int x) {
return x;

}

int main() {
cout << MyFunction (137) << endl;
return 0;

While this example is admittedly a degenerate case, it should indicate exactly how disastrous it can be for
your programs to misuse #defined symbols. Programmers expect certain structures when reading C++
code, and by obscuring those structures behind walls of #defines you will confuse people who have to
read your code. Worse, if you step away from your code for a short time (say, a week or a month), you may
very well return to it with absolutely no idea how your code operates. Consequently, when working with
#define, always be sure to ask yourself whether or not you are improving the readability of your code.

Advanced Preprocessor Techniques

The previous section ended on a rather grim note, giving an example of preprocessor usage gone awry.
But to entirely eschew the preprocessor in favor of other language features would also be an error. In
several circumstances, the preprocessor can perform tasks that other C++ language features cannot
accomplish. The remainder of this chapter explores where the preprocessor can be an invaluable tool for
solving problems and points out several strengths and weaknesses of preprocessor-based approaches.

Special Preprocessor Values

The preprocessor has access to several special values that contain information about the state of the file
currently being compiled. The values act like #defined constants in that they are replaced whenever
encountered in a program. For example, the values @ DATE and  TIME  contain string
representations of the date and time that the program was compiled. Thus, you can write an
automatically-generated “about this program” function using syntax similar to this:

string GetAboutInformation () {
stringstream result;
result << "This program was compiled on " <<  DATE ;
result << " at time " << _ TIME ;
return result.str();

Similarly, there are two other values, LINE and FILE , which contain the current line number
and the name of the file being compiled. We'll see an example of where LINE and FILE can be
useful later in this chapter.

String Manipulation Functions

While often dangerous, there are times where macros can be more powerful or more useful than regular
C++ functions. Since macros work with source-level text strings instead of at the C++ language level, some
pieces of information are available to macros that are not accessible using other C++ techniques. For
example, let's return to the MAX macro we used in the previous chapter:

#define MAX (a, b) ((a) > (b) 2 (a) : (b))



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 69 -

Here, the arguments a and b to MAX are passed by string - that is, the arguments are passed as the strings
that compose them. For example, MAX (10, 15) passes in the value 10 not as a numeric value ten, but as
the character 1 followed by the character 0. The preprocessor provides two different operators for
manipulating the strings passed in as parameters. First is the stringizing operator, represented by the #
symbol, which returns a quoted, C string representation of the parameter. For example, consider the
following macro:

#define PRINTOUT (n) cout << #n << " has value " << (n) << endl

Here, we take in a single parameter, n. We then use the stringizing operator to print out a string
representation of n, followed by the value of the expression n. For example, given the following code
snippet:

int x = 137;
PRINTOUT (x * 42);

After preprocessing, this yields the C++ code

int x = 137;
cout << "x * 42" << " has value " << (x * 42) << endl;

Note that after the above program has been compiled from C++ to machine code, any notions of the
original variable x or the individual expressions making up the program will have been completely
eliminated, since variables exist only at the C++ level. However, through the stringizing operator, it is
possible to preserve a string version of portions of the C++ source code in the final program, as
demonstrated above. This is useful when writing diagnostic functions, as you'll see later in this chapter.

The second preprocessor string manipulation operator is the string concatenation operator, also known as
the token-pasting operator. This operator, represented by ##, takes the string value of a parameter and
concatenates it with another string. For example, consider the following macro:

#define DECLARE MY VAR (type) type my ##type

The purpose of this macro is to allow the user to specify a type (for example, int), and to automatically
generate a variable declaration of that type whose name is my type, where type is the parameter type.
Here, we use the ## operator to take the name of the type and concatenate it with the string my . Thus,
given the following macro call:

DECLARE MY VAR (int);
The preprocessor would replace it with the code

int my int;
Note that when working with the token-pasting operator, if the result of the concatenation does not form a
single C++ token (a valid operator or name), the behavior is undefined. For example, calling

DECLARE MY VAR (const int) will have undefined behavior, since concatenating the strings my and
const int does notyield a single string (the resultis const int my const int).

Advanced Preprocessor Techniques: The X Macro Trick

Because the preprocessor gives C++ programs access to their own source code at compile-time, it is
possible to harness the preprocessor to do substantial code generation at compile-time. One uncommon



-70 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

programming technique that uses the preprocessor is known as the X Macro trick, a way to specify data in
one format but have it available in several formats.

Before exploring the X Macro trick, we need to cover how to redefine a macro after it has been declared.
Just as you can define a macro by using #define, you can also undefine a macro using #undef. The
#undef preprocessor directive takes in a symbol that has been previously #defined and causes the
preprocessor to ignore the earlier definition. If the symbol was not already defined, the #undef directive
has no effect but is not an error. For example, consider the following code snippet:

#define MY INT 137

int x = MY INT; // MY INT is replaced
#undef MY INT;

int MY INT = 42; // MY _INT not replaced

The preprocessor will rewrite this code as

int x = 137;
int MY INT = 42;

Although My INT was once a #defined constant, after encountering the #undef statement, the
preprocessor stopped treating it as such. Thus, when encountering int MY INT = 42, the preprocessor
made no replacements and the code compiled as written.

To introduce the X Macro trick, let's consider a common programming problem and see how we should go
about solving it. Suppose that we want to write a function that, given as an argument an enumerated type,
returns the string representation of the enumerated value. For example, given the enum

enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

We want to write a function called ColorToString that returns a string representation of the color. For
example, passing in the constant Red should hand back the string "Red", Blue should yield "Blue", etc.
Since the names of enumerated types are lost during compilation, we would normally implement this
function using code similar to the following:

string ColorToString (Color c) {
switch(c) {

case Red: return "Red";
case Blue: return "Blue";
case Green: return "Green";
case Cyan: return "Cyan";
case Magenta: return "Magenta";
case Yellow: return "Yellow";
default: return "<unknown>";

Now, suppose that we want to write a function that, given a color, returns the opposite color.” We'd need
another function, like this one:

* For the purposes of this example, we'll work with additive colors. Thus red is the opposite of cyan, yellow is the

opposite of blue, etc.



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -71-

Color GetOppositeColor (Color c) {
switch (c) {
case Red: return Cyan;
case Blue: return Yellow;
case Green: return Magenta;
case Cyan: return Red;
case Magenta: return Green;
case Yellow: return Blue;
default: return c; // Unknown color, undefined result

These two functions will work correctly, and there's nothing functionally wrong with them as written. The
problem, though, is that these functions are not scalable. If we want to introduce new colors, say, White
and Black, we'd need to change both ColorToString and GetOppositeColor to incorporate these new
colors. If we accidentally forget to change one of the functions, the compiler will give no warning that
something is missing and we will only notice problems during debugging. The problem is that a color
encapsulates more information than can be expressed in an enumerated type. Colors also have names and
opposites, but the C++ enum Color knows only a unique ID for each color and relies on correct
implementations of ColorToString and GetOppositeColor for the other two. Somehow, we'd like to be
able to group all of this information into one place. While we might be able to accomplish this using a set
of C++ struct constants (e.g. defining a color struct and making const instances of these structs for
each color), this approach can be bulky and tedious. Instead, we'll choose a different approach by using X
Macros.

The idea behind X Macros is that we can store all of the information needed above inside of calls to
preprocessor macros. In the case of a color, we need to store a color's name and opposite. Thus, let's
suppose that we have some macro called DEFINE COLOR that takes in two parameters corresponding to
the name and opposite color. We next create a new file, which we'll call color.h, and fill it with calls to
this DEFINE COLOR macro that express all of the colors we know (let's ignore the fact that we haven't
actually defined DEFINE COLOR yet; we'll get there in a moment). This file looks like this:

File: color.h

DEFINE_COLOR(Red, Cyan)
DEFINE_COLOR(Cyan, Red)
DEFINE COLOR (Green, Magenta)
DEFINE COLOR (Magenta, Green)
(
(

DEFINE COLOR (Blue, Yellow)
DEFINE COLOR(Yellow, Blue)

Two things about this file should jump out at you. First, we haven't surrounded the file in the traditional
#ifndef .. #endif boilerplate, so clients can #include this file multiple times. Second, we haven't
provided an implementation for DEFINE COLOR, so if a caller does include this file, it will cause a compile-
time error. For now, don't worry about these problems - you'll see why we've structured the file this way
in a moment.

Let's see how we can use the X Macro trick to rewrite GetOppositeColor, which for convenience is
reprinted below:



-72- Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

Color GetOppositeColor (Color c) {
switch (c) {
case Red: return Cyan;
case Blue: return Yellow;
case Green: return Magenta;
case Cyan: return Red;
case Magenta: return Green;
case Yellow: return Blue;
default: return c; // Unknown color, undefined result

Here, each one of the case labels in this switch statement is written as something of the form
case color: return opposite;

Looking back at our color.h file, notice that each DEFINE COLOR macro has the form
DEFINE COLOR (color, opposite). This suggests that we could somehow convert each of these
DEFINE COLOR statements into case labels by crafting the proper #define. In our case, we'd want the
#define to make the first parameter the argument of the case label and the second parameter the return
value. We can thus write this #define as

#define DEFINE COLOR (color, opposite) case color: return opposite;

Thus, we can rewrite GetOppositeColor using X Macros as

Color GetOppositeColor (Color c) {
switch(c) {
#define DEFINE COLOR(color, opposite) case color: return opposite;
#include "color.h"
#undef DEFINE COLOR
default: return c; // Unknown color, undefined result.

This is pretty cryptic, so let's walk through it one step at a time. First, let's simulate the preprocessor by
replacing the line #include "color.h" with the full contents of color.h:

Color GetOppositeColor (Color c) {
switch(c) {
#define DEFINE COLOR(color, opposite) case color: return opposite;
DEFINE COLOR (Red, Cyan)
DEFINE COLOR (Cyan, Red)
DEFINE COLOR (Green, Magenta)
DEFINE COLOR (Magenta, Green)
DEFINE_COLOR(Blue, Yellow)
DEFINE COLOR(Yellow, Blue)
#undef DEFINE COLOR
default: return c; // Unknown color, undefined result.

Now, we replace each DEFINE COLOR by instantiating the macro, which yields the following:



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -73-

Color GetOppositeColor (Color c) {
switch (c) {
case Red: return Cyan;
case Blue: return Yellow;
case Green: return Magenta;
case Cyan: return Red;
case Magenta: return Green;
case Yellow: return Blue;
#undef DEFINE COLOR
default: return c; // Unknown color, undefined result.

Finally, we #undef the DEFINE COLOR macro, so that the next time we need to provide a definition for
DEFINE COLOR, we don't have to worry about conflicts with the existing declaration. Thus, the final code
for GetOppositeColor, after expanding out the macros, yields

Color GetOppositeColor (Color c) {
switch(c) {
case Red: return Cyan;
case Blue: return Yellow;
case Green: return Magenta;
case Cyan: return Red;
case Magenta: return Green;
case Yellow: return Blue;
default: return c; // Unknown color, undefined result.

Which is exactly what we wanted.

The fundamental idea underlying the X Macros trick is that all of the information we can possibly need
about a color is contained inside of the file color.h. To make that information available to the outside
world, we embed all of this information into calls to some macro whose name and parameters are known.
We do not, however, provide an implementation of this macro inside of color.h because we cannot
anticipate every possible use of the information contained in this file. Instead, we expect that if another
part of the code wants to use the information, it will provide its own implementation of the
DEFINE COLOR macro that extracts and formats the information. The basic idiom for accessing the
information from these macros looks like this:

#define macroname (arguments) /* some use for the arguments */
#include "filename"
#undef macroname

Here, the first line defines the mechanism we will use to extract the data from the macros. The second
includes the file containing the macros, which supplies the macro the data it needs to operate. The final
step clears the macro so that the information is available to other callers. If you'll notice, the above
technique for implementing GetOppositeColor follows this pattern precisely.

We can also use the above pattern to rewrite the ColorToString function. Note that inside of
ColorToString, while we can ignore the second parameter to DEFINE COLOR, the macro we define to
extract the information still needs to have two parameters. To see how to implement ColorToString,
let's first revisit our original implementation:



-74 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

string ColorToString (Color c) {
switch(c) {

case Red: return "Red";
case Blue: return "Blue";
case Green: return "Green";
case Cyan: return "Cyan";
case Magenta: return "Magenta";
case Yellow: return "Yellow";
default: return "<unknown>";

If you'll notice, each of the case labels is written as

case color: return "color";

Thus, using X Macros, we can write ColorToString as

string ColorToString(Color c) {
switch(c) {
/* Convert something of the form DEFINE COLOR (color, opposite)
* into something of the form 'case color: return "color"';
*/
#define DEFINE COLOR (color, opposite) case color: return #color;
#include "color.h"
#undef DEFINE COLOR

default: return "<unknown>";

In this particular implementation of DEFINE COLOR, we use the stringizing operator to convert the color
parameter into a string for the return value. We've used the preprocessor to generate both
GetOppositeColor and ColorToString

There is one final step we need to take, and that's to rewrite the initial enum Color using the X Macro
trick. Otherwise, if we make any changes to color.h, perhaps renaming a color or introducing new
colors, the enum will not reflect these changes and might result in compile-time errors. Let's revisit
enum Color, which is reprinted below:

enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

While in the previous examples of ColorToString and GetOppositeColor there was a reasonably
obvious mapping between DEFINE COLOR macros and case statements, it is less obvious how to generate
this enum using the X Macro trick. However, if we rewrite this enum as follows:

enum Color {
Red,
Green,
Blue,
Cyan,
Magenta,
Yellow



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -75-

[t should be slightly easier to see how to write this enum in terms of X Macros. For each DEFINE COLOR

macro we provide, we'll simply extract the first parameter (the color name) and append a comma. In code,
this looks like

enum Color {
#define DEFINE COLOR (color, opposite) color, // Name followed by comma
#include "color.h"
#undef DEFINE_COLOR

}i

This, in turn, expands out to

enum Color {
#define DEFINE COLOR (color, opposite) color,
DEFINE COLOR (Red, Cyan)
DEFINE_COLOR(Cyan, Red)
DEFINE COLOR (Green, Magenta)
DEFINE COLOR (Magenta, Green)
DEFINE COLOR (Blue, Yellow)
DEFINE7COLOR(Yellow, Blue)
#undef DEFINE COLOR

}i

Which in turn becomes

enum Color {
Red,
Green,
Blue,
Cyan,
Magenta,
Yellow,

bi

Which is exactly what we want. You may have noticed that there is a trailing comma at after the final color
(Yellow), but this is not a problem - it turns out that it's totally legal C++ code.

Analysis of the X Macro Trick

The X Macro-generated functions have several advantages over the hand-written versions. First, the X
macro trick makes the code considerably shorter. By relying on the preprocessor to perform the necessary
expansions, we can express all of the necessary information for an object inside of an X Macro file and only
need to write the syntax necessary to perform some task once. Second, and more importantly, this
approach means that adding or removing Color values is simple. We simply need to add another
DEFINE COLOR definition to color.h and the changes will automatically appear in all of the relevant
functions. Finally, if we need to incorporate more information into the Color object, we can store that
information in one location and let any callers that need it access it without accidentally leaving one out.

That said, X Macros are not a perfect technique. The syntax is considerably trickier and denser than in the
original implementation, and it's less clear to an outside reader how the code works. Remember that
readable code is just as important as correct code, and make sure that you've considered all of your
options before settling on X Macros. If you're ever working in a group and plan on using the X Macro trick,



-76 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

be sure that your other group members are up to speed on the technique and get their approval before
using it.”

More to Explore / Practice Problems

['ve combined the “More to Explore” and “Practice Problems” sections because many of the topics we
didn't cover in great detail in this chapter are best understood by playing around with the material. Here's
a sampling of different preprocessor tricks and techniques, mixed in with some programming puzzles:

1. List three major differences between #define and the const keyword for defining named
constants.

2. Give an example, besides preventing problems from #include-ing the same file twice, where
#ifdef and #1ifndef might be useful. (Hint: What if you're working on a project that must run on
Windows, Mac OS X, and Linux and want to use platform-specific features of each?)

3. Write a regular C++ function called Max that returns the larger of two int values. Explain why it
does not have the same problems as the macro Max covered earlier in this chapter.

4. Give one advantage of the macro Max over the function Max you wrote in the previous problem.
(Hint: What is the value of Max (1.37, 1.24)? Whatis the value of MAX (1.37, 1.24)7)

5. The following C++ code is illegal because the #if directive cannot call functions:

bool IsPositive (int x) {
return x < 0;

}

#if IsPositive (MY CONSTANT) // <-- Error occurs here
#define result true

felse
#define result false

#endif

Given your knowledge of how the preprocessor works, explain why this restriction exists. ¢

6. Compilers rarely inline recursive functions, even if they are explicitly marked inline. Why do you
think this is?

7. Most of the STL algorithms are inlined. Considering the complexity of the implementation of
accumulate from the chapter on STL algorithms, explain why this is.

8. Modify the earlier definition of enum Color such that after all of the colors defined in color.h,
there is a special value, NOT A COLOR, that specifies a nonexistent color. (Hint: Do you actually
need to change color.hto do this?) ¢

* The X Macro trick is a special case of a more general technique known as preprocessor metaprogramming. 1If
you're interested in learning more about preprocessor metaprogramming, consider looking into the Boost
Metaprogramming Library (MPL), a professional C++ package that simplifies common metaprogramming tasks.



Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor -77 -

9.

10.

11.

Using X Macros, write a function StringToColor which takes as a parameter a string and
returns the Color object whose name exactly matches the input string. If there are no colors with
that name, return NOT A COLOR as a sentinel. For example, calling StringToColor ("Green")
would return the value Green, but (calling StringToColor ("green") or
StringToColor ("Olive") should both return NOT A COLOR.

Suppose that you want to make sure that the enumerated values you've made for Color do not
conflict with other enumerated types that might be introduced into your program. Modify the
earlier definition of DEFINE COLOR used to define enum Color so that all of the colors are
prefaced with the identifier eColor . For example, the old value Red should change to
eColor Red, the old Blue would be eColor Blue, etc. Do not change the contents of color.h.
(Hint: Use one of the preprocessor string-manipulation operators)

The #error directive causes a compile-time error if the preprocessor encounters it. This may
sound strange at first, but is an excellent way for detecting problems during preprocessing that
might snowball into larger problems later in the code. For example, if code uses compiler-specific
features (such as the OpenMP library), it might add a check to see that a compiler-specific
#define is in place, using #error to report an error if it isn't. The syntax for #error is #error
message, Where message is a message to the user explaining the problem. Modify color.h so
that if a caller #includes the file without first #define-ing the DEFINE COLOR macro, the
preprocessor reports an error containing a message about how to use the file.



-78 -

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

12. If you're up for a challenge, consider the following problem. Below is a table summarizing various
units of length:

Unit Name #meters / unit Suffix System
Meter 1.0 m Metric
Centimeter 0.01 cm Metric
Kilometer 1000.0 km Metric

Foot 0.3048 ft English

Inch 0.0254 in English

Mile 1609.344 mi English
Astronomical Unit 1.496x 10" AU Astronomical
Light Year 9.461 x 10*° ly Astronomical
Cubit’ 0.55 cubit Archaic

a) Create a file called units.h that uses the X macro trick to encode the above table as calls to a

b)

d)

g)

macro DEFINE UNIT. For example, one entry might be DEFINE UNIT (Meter, 1.0, m,
Metric).

Create an enumerated type, LengthUnit, which uses the suffix of the unit, preceded by
eLengthUnit , asthe name for the unit. For example, a cubitis eLengthUnit cubit, while a
mile would be eLengthUnit mi. Also define an enumerated value eLengthUnit ERROR that
serves as a sentinel indicating that the value is invalid.

Write a function called suffixStringToLengthUnit that accepts a string representation of
a suffix and returns the LengthUnit corresponding to that string. If the string does not
match the suffix, return eLengthUnit ERROR.

Create a struct, Length, that stores a double and a LengthUnit. Write a function
ReadLength that prompts the user for a double and a string representing an amount and a
unit suffix and stores data in a Length. If the string does not correspond to a suffix, reprompt
the user. You can modify the code for GetInteger from the chapter on streams to make an
implementation of GetReal.

Create a function, GetUnitType, that takes in a Length and returns the unit system in which it
occurs (asa string)

Create a function, PrintLength, that prints out a Length in the format
amount suffix (amount unitnames). For example, if a Length stores 104.2 miles, it
would printout 104.2mi (104.2 Miles)

Create a function, ConvertToMeters, which takes in a Length and converts it to an equivalent
length in meters.

Surprisingly, this problem is not particularly long - the main challenge is the user input, not the unit
management!

*

There is no agreed-upon standard for this unit, so this is an approximate average of the various lengths.



Chapter 5: STL Sequence Containers

In October of 1976 I observed that a certain algorithm - parallel reduction - was associated with
monoids: collections of elements with an associative operation. That observation led me to believe
that it is possible to associate every useful algorithm with a mathematical theory and that such
association allows for both widest possible use and meaningful taxonomy. As mathematicians
learned to lift theorems into their most general settings, so | wanted to lift algorithms and data
structures.

- Alex Stepanov, inventor of the STL. [Ste07]

The Standard Template Library (STL) is a programmer's dream. It offers efficient ways to store, access,
manipulate, and view data and is designed for maximum extensibility. Once you've gotten over the initial
syntax hurdles, you will quickly learn to appreciate the STL's sheer power and flexibility.

To give a sense of exactly where we're going, here are a few quick examples of code using the STL:

*  We can create a list of random numbers, sort it, and print it to the console in four lines of code!

vector<int> myVector (NUM INTS) ;

generate (myVector.begin (), myVector.end(), rand);

sort (myVector.begin (), myVector.end());

copy (myVector.begin (), myVector.end(), ostream iterator<int>(cout, "\n"));

*  We can open a file and print its contents in two lines of code!

ifstream input ("my-file.txt");
copy (istreambuf iterator<char>(input), istreambuf iterator<char>(),
ostreambuf iterator<char>(cout));

*  We can convert a string to upper case in one line of code!

transform(s.begin(), s.end(), s.begin(), ::toupper):;

If you aren't already impressed by the possibilities this library entails, keep reading. You will not be
disappointed.

Overview of the STL

The STL is logically divided into six pieces, each consisting of generic components that interoperate with
the rest of the library:

* Containers. At the heart of the STL are a collection of container classes, standard C++'s analog to
the CS106B/X ADTs. For example, you can store an associative collection of key/value pairs in an
STL map, or a growing list of elements in an STL vector.

* Iterators. Each STL container exports iterators, objects that view and modify ranges of stored
data. Iterators have a common interface, allowing you to write code that operates on data stored
in arbitrary containers.

* Algorithms. STL algorithms are functions that operate over ranges of data specified by iterators.
The scope of the STL algorithms is staggering - there are algorithms for searching, sorting,
reordering, permuting, creating, and destroying sets of data.



-80 - Chapter 5: STL Sequence Containers

* Adapters. STL adapters are objects which transform an object from one form into another. For
example, the stack adapter transforms a regular vector or list into a LIFO container, while the
istream iterator transforms a standard C++ stream into an STL iterator.

* Functors. Because so much of the STL relies on user-defined callback functions, the STL provides
facilities for creating and modifying functions at runtime. We will defer our discussion of functors
to much later in this text, as they require a fairly nuanced understanding of C++.

* Allocators. The STL allows clients of the container classes to customize how memory is allocated
and deallocated, either for diagnostic or performance reasons. While allocators are fascinating
and certainly worthy of discussion, they are beyond the scope of this text and we will not cover
them here.

Diagrammatically, these pieces are related as follows:

FUNCTORS

ITERATORS ADAPTERS

I

ALLOCATORS —» CONTAINERS

Here, the containers rely on the allocators for memory and produce iterators. Iterators can then be used
in conjunction with the algorithms. Functors provide special functions for the algorithms, and adapters
can produce functors, iterators, and containers. If this seems a bit confusing now, don't worry, you'll
understand this relationship well by the time you've finished the next few chapters.

Why the STL is Necessary

Up until this point, all of the programs you've encountered have declared a fixed number of variables that
correspond to a fixed number of values. If you declare an int, you get a single variable back. If you need
to create multiple different ints for some reason, you have to declare each of the variables independently.
This has its drawbacks. For starters, it means that you need to know how exactly how much data your
program will be manipulating before the program begins running. Here's a quick programming challenge
for you:

Write a program that reads in three integers from the user, then prints them in sorted order.

How could you go about writing a program to do this? There are two main technical hurdles to overcome.
First, how would we store the numbers the user enters? Second, how do we sort them? Because we know
that the user will be entering three distinct values, we could simply store each of them in their own int
variable. Thus the first step of writing code for this program might look like this:



Chapter 5: STL Sequence Containers -81-

#include <iostream>
#include <sstream>
#include <string>
using namespace std;

int GetInteger(); // From the streams chapter

int main() {
int vall GetInteger () ;
int val2 = GetlInteger();
int val3 = GetlInteger();

/* Sort, then print out. */

We now have our three values; how can we sort them? It turns out that sorting a list of integers is a classic
algorithms question and there are many elegant solutions to the problem. Some algorithms like quicksort
and heapsort run extremely quickly, but are rather difficult to implement. Instead, we'll use a variant
algorithm called selection sort. The idea behind selection sort is as follows. If we want to sort a list of
numbers, we can find the smallest element in the list, then move it to the front of the list. We can then find
the second-smallest value, then put it in the second position, find the third-smallest and put it in the third
position, etc. Amazingly, with just the tools we've seen so far this simple algorithm is extremely hard to
implement. Here's some code for the operation:

int main () {
int vall = GetInteger();
int val2 = GetlInteger();
int val3 GetInteger () ;

/* Three cases: Either vall is the smallest, val2 is the smallest, or
* val3 is the smallest. Whichever ends up being the case, we'll put
* the smallest value into vall. This uses the swap () function, which is
* defined in the <algorithm> header and simply swaps the values of
* two variables.

*/
if (val2 <= vall && val2 <= val3) // val2 is smallest
swap (vall, val2);

else if (val3 <= vall && val3 <= val2) // val3 is smallest

swap (vall, wval3);

// Otherwise, vall is smallest, and can remain at the front.

/* Now, sort val2 and val3. Since there's just two elements, we can do a
* simple comparison to determine which is the smaller of the two.
*/

if (val3 <= val2) // val3 is smaller
swap (val2, val3);
// Otherwise, val2 is smallest and we don't need to do anything.

cout << vall << ' ' << wval?2 << ' ' << wval3 << endl;

This code is incredibly dense. Don't panic if you don't understand it - part of the purpose of this example
is to illustrate how difficult it can be to write good code for this problem without the STL!

But of course, there's another major problem with this code. Let's modify the problem statement a bit by
allowing the user to enter four numbers. If we make this change, using just the techniques we've covered
so far we'll be forced to write code along the following lines:



-82- Chapter 5: STL Sequence Containers

int main() {
int vall = GetlInteger
int val2 = GetInteger
int val3 GetInteger
int vald GetInteger

)
)
)7
)

/* Find the smallest. */

if (val2 <= vall && val2 <= val3 && val2 <= vald4) // val2 is smallest
swap (vall, val2);

else if (val3 <= wvall && val3 <= val2 && val3 <= val4) // val3 is smallest
swap (vall, wval3);

else 1f (vald <= vall && vald <= val2 && vald <= val3) // vald is smallest
swap (vall, wvald);

// Otherwise, vall is smallest, and can remain at the front.

/* Find the second-smallest. */

if (val3 <= val2 && val3 <= vald) // val3 1s smallest
swap (val2, wval3);

else if (vald <= val2 && vald <= val3) // vald is smallest
swap (val2, vald);

// Otherwise, val2 is smallest, and can remain at the front.

/* Find the third-smallest. */
if (vald <= val3) // val4d is smaller
swap (val3, vald);
// Otherwise, val3 is smallest and we don't need to do anything.

cout << vall << ' ' << val2 << " " << vall3d << " ' << vald << endl;

This code is just downright awful! It's cryptic, difficult to read, and not the sort of code you'd like to bring
home to mom and dad. Now imagine what the code would look like if we had five numbers instead of four.
It will keep growing and growing, becoming progressively more impossible to read until eventually we'd
give up in frustration. What's worse, though, is that each of these programs is a special case of a general
problem - read in n integers from the user and print them in sorted order - but the code for each case
bears little to no resemblance to the code for each other case.

Introducing the vector

What's missing from our programming repertoire right now is the ability to create and access a variable
number of objects. Right now, if we want to store a sequence of five integers, we must create five
independent integer variables and have no way of accessing them uniformly. Fortunately, the STL provides
us a versatile tool called the vector that allows us to store sequences of elements using a single variable.
As you'll see, the vector is nothing short of extraordinary and will arise time and again throughout your
programming career.

At a high level, a vector is an object that represents a sequence of elements. This means that you can use
a vector to store a grocery list, a list of Olympic figure skating scores, or a set of files to read. The elements
in a vector are indexed, meaning that they have a well-defined position in the sequence. For example,
given the sequence



Chapter 5: STL Sequence Containers -83-

Value 137 42 2718 3141 410

Index 0 1 2 3 4

The first element (137) is at position zero, the second (42) at position one, etc. Notice that elements in the
sequence appear in the order 0, 1, 2, etc. rather than the more intuitive 1, 2, 3, ... You have seen this
already in your exploration of the string class, so hopefully this notation isn't too startling.

The major difference between the vector and the string is that the vector can be configured to store
elements of any type. That is, you can have a vector of ints, a vector of strings, or even a vector of
vectors of strings. However, while the vector can store elements of any type, any single vector can
only store elements of a single type. It is illegal to create a vector that stores a sequence of many
different types of elements, meaning that you can't represent the list 0, Apple, 2.71828 because each of the
list elements has a different type. This may seem like a rather arbitrary restriction - theoretically
speaking, there's no reason that you shouldn't be able to have lists of all sorts of elements - but fortunately
in most cases this restriction does not pose too much of a problem.

Because vectors can only store elements of a fixed type, when you create a vector in your programs you
will need to explicitly indicate to the compiler what type of elements you aim to store in the vector. Asan
example, to create a vector of ints, you would write

vector<int> myVector;

Here, we declare a local variable called myvector that has type vector<int>. The type inside of the
angle brackets is called a template argument and indicates to C++ what type of elements are stored in the
vector. Here, the type is int, but it's legal to put pretty much whatever type you would like in the
brackets. For example, all of the following declarations are legal:

vector<int> intVector; // Stores ints
vector<string> strVector; // Stores strings
vector<double> realVector; // Stores real numbers

It is also perfectly legal to store your own custom structs in a vector, as seen here:

struct MyStruct {
int myInt;
double myDouble;
string myString;
}i

vector<MyStruct> myStructVector; // Stores MyStructs

In order to use the vector type, you will need to #include <vector> at the top of your program. As we
explore some of the other STL containers, this pattern will also apply.

We now know how to create vectors, but how do we use them? To give you a feel for how the vector
works, let's return to our previous example of reading in numbers and printing them out in sorted order.
Using a vector, this can be accomplished very elegantly. We'll begin by defining a constant, kNumvalues,
which will represent the number of elements to read in. This is shown here:



-84 - Chapter 5: STL Sequence Containers

#include <iostream>

#include <vector> // Necessary to use vector
#include <string>

#include <sstream>

using namespace std;

string GetLine(); // As defined in the previous chapter
int GetInteger(); // As defined in the previous chapter

const int kNumValues = 10;
int main () {
/* ... still more work to come ... */

}

Now, we'll show to how to read in kNumvalues values from the user and store them inside a vector.
First, we'll have to create the vector, as shown here:

int main() {
vector<int> values;

/* oo %/

A freshly-constructed vector, like a freshly-constructed string, is initially empty. Consequently, we'll
need to get some values from the user, then store them inside the vector. Reading the values is fairly
easy; we simply sit in a for loop reading data from the user. But how do we store them in the vector?
There are several ways to do this, of which the simplest is the push back function. The push back
function can be invoked on a vector to add a new element to the end of vector's sequence. For example,
given a vector managing the following sequence:

Value 1 2 (9 10

Index 0 1 2 3

Then calling push_back on the vector to store the value fifteen would cause the vector to manage the new
sequence

Value 1 2 6 10 15

Index 0 1 2 3 4

Syntactically, push back can be used as follows:

int main () {
vector<int> wvalues;

for (int 1 = 0; 1 < kNumValues; ++1) {
cout << "Enter another value: ";

int val = GetlInteger();

values.push back(val);



Chapter 5: STL Sequence Containers -85-

Notice that we write values.push back(val) to append the number val to the sequence stored inside
the vector.

Now that we have read in our sequence of values, let's work on the next part of the program, sorting the
elements in the vector and printing them to the user. For this we'll still use the selection sort algorithm, but
it will be miraculously easier to follow when implemented on top of the vector. Recall that the general
description of the selection sort algorithm is as follows:

¢ Find the smallest element of the list.
¢ Put that element at the front of the list.
* Repeat until all elements are in place.

Let's see how to implement this function. We'll begin simply by writing out the function signature, which
looks like this:

void SelectionSort (vector<int>& v) {
/* ... */
}

This function is named SelectionSort and takes as a parameter a vector<int> by reference. There are
two key points to note here. First, we still have to explicitly indicate what type of elements are stored in
the vector parameter. That is, it's illegal to write code of this sort:

void SelectionSort (vector& v) { // Error: What kind of vector?
/x L. %/
}

As a general rule, you will never see vector unless it's immediately followed with a type in angle brackets.
The reason is simple - every vector can only store one type of element, and unless you explicitly indicate
what that type is the compiler will have no way of knowing.

The other important detail about this function is that it takes its parameter by reference. We will be
sorting the vector in-place, meaning that we will be reordering the elements of the vector rather than
creating a new vector containing a sorted copy of the input.

We now have the function prototype set up, so let's get into the meat of the algorithm. To implement
selection sort, we'll need to find the smallest element and put it in front, the the second-smallest element
and put it in the second position, etc. The code for this is as follows:

void SelectionSort (vector<int>& v) {
for (size t 1 = 0; 1 < v.size(); ++1) {
size t smallestIndex = GetSmallestIndex(v, 1); // We'll write this
// function momentarily
swap (v[i], v[smallestIndex]);

This code is fairly dense and introduces some syntax you have not yet seen before, so let's take a few
moments to walk through exactly how it works. The first detail that might have caught your eye is this
one:

for (size t i = 0; i < v.size(); ++i)



- 86 - Chapter 5: STL Sequence Containers

This for loop looks strange for two reasons. First, instead of creating an int variable for the iteration, we
create a variable of type size t. A size tisa special type of variable that can hold values that represent
sizes of things (size t stands for “size type”). In many aspects size t is like a regular int - it holds an
integer value, can be incremented with ++, compared using the relational operators, etc. However, unlike
regular ints, size ts cannot store negative values. The intuition behind this idea is that no collection of
elements can have a negative size. You may have a list of no elements, or a list of billions of elements, but
you'll never encounter a list with -1 elements in it. Consequently, when iterating over an STL container, it
is customary to use the special type size t to explicitly indicate that your iteration variable should
always be nonnegative. The other detail of this for loop is that the loop iterates from 0 to v.size (). The
size () member function on the STL vector returns the number of elements stored in the sequence, just
like the size () and length () functions on the standard string class. In this particular case we could
have iterated from 0 to kNumValues, since we're guaranteed that the main function will produce a vector
of that many elements, but in general when iterating over a vector it's probably a wise idea to use the
vector's size as an upper bound so that the code works for vectors of arbitrarily many elements.

Let's continue onward through the code. The body of the loop is this code here:

size t smallestIndex = GetSmallestIndex (v, 1);
swap (v[i], v[smallestIndex]);

This calls some function called GetSmallestIndex (which we have not yet defined) which takes in the
vector and the current index. We will implement this function shortly, and its job will be to return the
index of the smallest element in the vector occurring no earlier than position i. We then use the swap
function to exchange the values stored in at positions i and smallestIndex of the vector. Notice that, as
with the standard string class, the syntax v[i] means “the element in vector v at position i.” Let's take a
minute to think about how this code works. The variable i counts up from 0 to v.size () - 1 and visits
every element of the vector exactly once. On each iteration, the code finds the smallest element in the
vector occurring no earlier than position i, then exchanges it with the element at position i. This means
that the code will

1. Find the smallest element of the vector and put it in position 0.
2. Find the smallest element of the remainder of the vector and put it in position 1.
3. Find the smallest element of the remainder of the vector and put it in position 2.

This is precisely what we set out to do, and so the code will work marvelously. Of course, this assumes
that we have a function called GetSmallestIndex which returns the index of the smallest element in the
vector occurring no earlier than position i. To finalize our implementation of SelectionSort, let's go
implement this function. Again, we'll start with the prototype, which is shown here:

size t GetSmallestIndex(vector<int>& v, size t startlIndex) {
VA
}

This function accepts as input a vector<int> by reference and a size t containing the start index, then
returns a size t containing the result. There's an important but subtle detail to note here. At a high
level, the GetSmallestIndex function has no business modifying the vector it takes as input. Its task is
to find the smallest element and return it, no more. So why exactly does this function take the
vector<int> parameter by reference? The answer is efficiency. In C++, if you pass a parameter to a
function by value, then whenever that function is called C++ will make a full copy of the argument. When
working with the STL containers, which can contain thousands (if not millions or tens of millions) of
elements, the cost of copying the container can be staggering. Consequently, it is considered good



Chapter 5: STL Sequence Containers -87 -

programming practice to pass STL containers into functions by reference rather than by value, since this
avoids an expensive copy.’

The implementation of this function is rather straightforward:

size t GetSmallestIndex (vector<int>& v, size t startIndex) {

size t bestIndex = startIndex;
for (size t 1 = startlIndex; 1 < v.size(); ++1i)
if (v[i] < v[bestIndex])
bestIndex = i;

return bestIndex;

This function iterates over the elements of the vector starting with position i, checking whether the
element at the current position is less than the smallest element we've seen so far. If so, the function
updates where in the vector that element appears. At the end of the function, once we've looked at every
element in range, the bestIndex variable will hold the index of the smallest element in vector v
occurring no earlier than startIndex, and so we return the value. We've implemented the
GetSmallestIndex function, meaning that we have a working implementation of SelectionSort.

To finalize our program, let's update the main function to print out the sorted vector. This is shown here:

int main() {
vector<int> values;

for (int 1 = 0; 1 < kNumValues; ++1i) {
cout << "Enter another wvalue: ";
int val = GetInteger();
values.push back(val);

}
SelectionSort (values) ;

for (size t i = 0; i < kNumValues; ++1)
cout << wvalues[i] << endl;

}

Compare this implementation of the program to the previous version, which did not have the luxury of
using vector. As you can see, the code in this program is significantly clearer than before. Moreover, it's
much more scalable. If we want to read in a different number of values from the user, we can do so simply
by adjusting the value of the kNumvalues constant, and the rest of the code will update automatically.

An Alternative Implementation

In the previous section, we wrote a program which reads in some number of values from the user, sorts
them, and then prints them out. Of course, the program we wrote was just one method for solving the
problem. In particular, there is another implementation strategy we could have considered that lends
itself to a substantially shorter implementation. Notice that in the above program, we read in a list of
values from the user and blindly added them to the end of the list we wanted to sort. These values weren't
necessarily in sorted order, and so we had to run a postprocessing step to sort the vector before displaying

* In practice you would almost certainly pass the parameter by reference-to-const, which indicates that the
parameter cannot be modified. We will take this issue up in a later chapter, but for now pass-by-reference should
be good enough for our purposes.



-88 - Chapter 5: STL Sequence Containers

it to the user. But what if we opt for a different approach? In particular, suppose that whenever we read a
value from the user, instead of putting that value at the end of the sequence, we find where in the vector the
element should go, then insert the value at that point? For example, suppose that the user has entered the
following four values:

Value 100 200 300 400

Index 0 1 2 3

Now suppose that she enters the number 137. If we append 137 to the vector, then the numbers will not
all be in sorted order. Instead, we'll find the location where 137 should go in the sorted vector, then
insert it directly into that location. This is shown here:

Value 100 137 200 300 400

Index 0 1 2 3 4

This strategy ends up being a bit simpler to implement than our previous program, which relied on
selection sort. Of course, to implement the program using the above strategy, we need to answer two
questions. First, how do we find out where in the vector the user's element should go? Second, how do
we insert an element into a vector directly at that position? This first question is algorithmic; the second
is simply a question of what operations are legal on the vector. Consequently, we'll begin our discussion
with how to find the insertion point, and will then see how to add an element to a vector at a particular
point.

Suppose that we are given a sorted list of integers and some value to insert into the list. We are curious to
find at what index the new value should go. This is an interesting algorithmic challenge, since there are
many valid solutions. However, there's one particular simple way to find where the element should go. In
order for a list to be in sorted order, every element has to be smaller than the element that comes one
position after it. Therefore, if we find the first element in the vector that is bigger than the element we
want to insert, we know that the element we want to insert must come directly before that element. This
suggests the following algorithm:

/* Watch out! This code contains a bug! */
size t InsertionIndex(vector<int>& v, int tolnsert) {
for(size t 1 = 0; 1 < v.size(); ++1i)
if (toInsert < vI[i])
return i;

This code is mostly correct, but contains a pretty significant flaw. In particular, what happens if the
element we want to insert is bigger than every element in the vector? In that case, the if statement inside
of the for loop will never evaluate to true, and so the function will not return a value. If a function finishes
without returning a value, the program has undefined behavior. This means that the function might return
zero, it might return garbage, or your program might immediately crash outright. This certainly isn't what
we want to have happen, so how can we go about fixing it? Notice that the only way that the above
function never returns a value is if the element to be inserted is at least as big as every element in the
vector. In that case, the correct behavior should be to put the element on the end of the vector. We'll
signal this by having the function return v.size () if the element is bigger than every element in the
sequence. This is shown here:



Chapter 5: STL Sequence Containers -89 -

size t InsertionIndex(vector<int>& v, int tolInsert) {
for(size t i = 0; 1 < v.size(); ++1i)
if (toInsert < v[i])
return i;
return v.size();

All that's left to do now is use this function to build a sleek implementation of the program. But before we
can do that, we have to see how to insert an element into a vector at an arbitrary position. The good
news is that the vector supports this operation naturally, and in fact you can insert an element into a
vector at any position. The bad news is that the syntax for doing so is nothing short of cryptic and
without an understanding of STL iterators will look entirely alien. We'll talk about iterators more next
chapter, but in the meantime you can just take it for granted that the following syntax is legal. Given a
vector v and an element e, to insert e into v at position n, we use the syntax

v.insert (v.begin() + n, e);
For example, to insert the element 137 at position zero in the vector, you would write

v.insert (v.begin (), 137);

Similarly, to insert the element 42 at position five, we could write

v.insert (v.begin() + 5, 42);

One of the trickier parts of the insert function is determining exactly where the element will be inserted.
Recall that vectors are zero-indexed, the above statement will insert the number 42 as the sixth element
of the sequence, not the fifth. When an element is inserted at a position, all of the elements after it are
shuffled down one spot to make room, so calling insert will never overwrite a value.

Given this syntax and the above implementation of InsertionIndex, we can write a program to read in a
list of values and print them out in sorted order as follows:

int main() {
vector<int> values;

/* Read the values. */

for (int 1 = 0; 1 < kNumValues; ++1i) {
cout << "Enter an integer: ";
int val = GetlInteger();

/* Insert the element at the correct position. */
values.insert (values.begin() + InsertionIndex(values, val), val);

}
/* Print out the sorted list. */

for (size t i = 0; i < values.size(); ++i)
cout << values[i] << endl;

This code is much shorter than before, even when you factor in the code for InsertionIndex.



-90 - Chapter 5: STL Sequence Containers

Additional vector Operations

The previous section on sorting numbers with the vector showcased many of operations that can be
performed on a vector, but was by no means a complete survey of what the vector can do. While some
vector operations require a nuanced understanding of iterators, which we will cover next chapter, there
are a few common operations on the vector that we will address in this section before moving on to other
container classes.

One of the key distinctions between the vector and other data types we've seen so far is that the vector
has a variable size. It can contain no elements, dozens of elements, or even millions of elements. In the
preceding examples, we explored two ways to change the number of elements in the vector: push back,
which appends new elements to the back of the vector, and insert, which adds an element to the
vector at an arbitrary position. However, there are several more ways to add and remove elements from
the vector, some of which are discussed here.

When creating a new vector to represent a list of values, by default C++ will make the vector store an
empty list. That is, a newly-created vector is by default empty. However, at times you might want to
initialize the vector to a certain size. C++ allows you to do this by specifying the starting size of the
vector at the point where the vector is created. For example, to create a vector of integers that initially
holds fifteen elements, you could write this as

vector<int> myVector (15);

That is, you declare the vector as normal, and put the default size in parentheses afterwards. Note that
this only changes the starting size of the vector, and you are free to add additional elements to the
vector later in your program.

When creating a vector that holds primitive types, such as int or double, the elements in the vector
will default to zero (or false in the case of bools). This means that the above line of code means “create a
vector of integers called myVector that initially holds fifteen entries, all zero.” Similarly, this line of code:

vector<string> myStringVector (10) ;
Will create a vector of strings that initially holds ten copies of the empty string.

In some cases, you may want to initialize the vector to a certain size where each element holds a value
other than zero. You may wish, for example, to construct a vector<string> holding five copies of the
string “ (none),” or a vector<double> holding twenty copies of the value 137. In these cases, C++ lets
you specify both the number and default value for the elements in the vector using the following syntax:

vector<double> myReals (20, 137.0);
vector<string> myStrings (5, " (none)");

Notice that we've enclosed in parentheses both the number of starting elements in the vector and the value
of these starting elements.

An important detail is that this syntax is only legal when initially creating a vector. If you have an
existing vector and try to use this syntax, you will get a compile-time error. That is, the following code is
illegal:

vector<double> myReals;
myReals (20, 137.0); // Error: Only legal to do this when the object is created



Chapter 5: STL Sequence Containers -91-

If you want to change the number of elements in a vector after it has already been created, you can
always use the push back and insert member functions. However, if you'd like to make an abrupt
change in the number of elements in the vector (perhaps by adding or deleting a large number of
elements all at once), you can use the vector's resize member function. The resize function is very
similar to the syntax we've just encountered: you can specify either a number of elements or a number of
elements and a value, and the vector will be resized to hold that many elements. However, resize
behaves somewhat differently from the previous construct because when using resize, the vector might
already contain elements. Consequently, resize works by adding or removing elements from the end of
the vector until the desired size is reached. To get a better feel for how resize works, let's suppose that
we have a function called printvector thatlooks like this:

void PrintVector (vector<int>& elems) {
for (size t i = 0; i < elems.size(); ++1i)
cout << elems[i] << ' ';
cout << endl;

This function takes in a vector<int>, then prints out the elements in the vector one at a time, followed
by a newline. Given this function, consider the following code snippet:

vector<int> myVector; // Defaults to empty vector

PrintVector (myVector) ; // Output: [nothing]

myVector.resize (10); // Grow the vector, setting new elements to 0
PrintVector (myVector) ; // Output: 00 0 00O 00O O0OO0O

myVector.resize (5); // Shrink the vector

PrintVector (myVector) ; // Output: 0 0 0 0 O

myVector.resize (7, 1); // Grow the vector, setting new elements to 1
PrintVector (myVector) ; // Output: 0 0 0 0 0 1 1

myVector.resize (1, 7); // The second parameter is effectively ignored.
PrintVector (myVector) ; // Output: O

In the first line, we construct a new vector, which is by default empty. Consequently, the call to
PrintVector will produce no output. We then invoke resize to add ten elements to the vector. These
elements are added to the end of the vector, and because we did not specify a default value are all
initialized to zero. On our next call to resize, we shrink the vector down to five elements. Next, we use
resize to expand the vector to hold seven elements. Because we specified a default value, the newly-
created elements default to 1, and so the sequence isnow 0, 0,0, 0, 0, 1, 1. Finally, we use resize to trim
the sequence. Because the second argument to resize is only considered if new elements are added, it is
effectively ignored.

We've seen several vector operations so far, but there is a wide class of operations we have not yet
considered - operations which remove elements from the vector. As you saw, the push back and
insert functions can be used to splice new elements into the vector's sequence. These two functions
are balanced by the pop back and erase functions. pop back is the opposite of push back, and
removes the last element from the vector's sequence. erase is the deletion counterpart to insert, and
removes an element at a particular position from the vector. As with insert, the syntax for erase is a
bit tricky. To remove a single element from a random pointin a vector, use the erase method as follows:

myVector.erase (myVector.begin () + n);



-92- Chapter 5: STL Sequence Containers

where n represents the index of the element to erase.

In some cases, you may feel compelled to completely erase the contents of the vector. In that case, you
can use the clear function, which completely erases the vector contents. clear can be invoked as
follows:

myVector.clear();
Summary of vector

The following table lists some of the more common operations that you can perform on a vector. We
have not talked about iterators or the const keyword yet, so don't worry if you're confused by those
terms. This table is designed as a reference for any point in your programming career, so feel free to skip
over entries that look too intimidating.

Constructor: vector<T> () vector<int> myVector;

Constructs an empty vector.

Constructor: vector<T> (size type size) vector<int> myVector (10);

Constructs a vector of the specified size where all elements
use their default values (for integral types, this is zero).

Constructor: vector<T> (size type size, vector<string> myVector (5, "blank");

const T& default)
Constructs a vector of the specified size where each
element is equal to the specified default value.

size type size() const; for(int 1 = 0; i < myVector.size(); ++i) { ... }

Returns the number of elements in the vector.

bool empty () const; while (!myVector.empty()) { ... }

Returns whether the vector is empty.

void clear(); myVector.clear () ;

Erases all the elements in the vector and sets the size to

Zero.
T& operator [] (size type position); myVector[0] = 100;
const T& operator [] (size type position) const; |int x = myVector[O0];
myVector.at (0) = 100;

int x = myVector.at(0);
T& at(size type position);

t Te at(size t it t; e s
cons at({size type position) cons Returns a reference to the element at the specified position.

The bracket notation [] does not do any bounds checking
and has undefined behavior past the end of the data. The at
member function will throw an exception if you try to
access data beyond the end. We will cover exception
handling in a later chapter.




Chapter 5: STL Sequence Containers

-93 -

void resize(size_ type newSize);
vold resize(size type newSize, T fill);

myVector.resize (10);
myVector.resize (10, "default");

Resizes the vector so that it's guaranteed to be the specified
size. In the second version, the vector elements are
initialized to the value specified by the second parameter.
Elements are added to and removed from the end of the
vector, SO you can't use resize to add elements to or remove
elements from the start of the vector.

void push back();

myVector.push back(100) ;

Appends an element to the vector.

T& back();
const T& back() const;

myVector.back() = 5;
int lastElem = myVector.back();

Returns a reference to the last element in the vector.

T& front();
const T& front () const;

myVector.front () = 0;
int firstElem = myVector.front();

Returns a reference to the first element in the vector.

void pop back();

myVector.pop_ back();

Removes the last element from the vector.

iterator begin();
const_iterator begin() const;

vector<int>::iterator itr = myVector.begin();

Returns an iterator that points to the first element in the
vector.

iterator end();
const iterator end() const;

while(itr != myVector.end());

Returns an iterator to the element after the last. The
iterator returned by end does not point to an element in the
vector.

iterator insert (iterator position,
const T& value);
void insert (iterator start,
size type numCopies,
const T& value);

myVector.insert (myVector.begin() + 4, "Hello");
myVector.insert (myVector.begin(), 2, "Yo!");

The first version inserts the specified value into the vector,
and the second inserts numcopies copies of the value into
the vector. Both calls invalidate all outstanding iterators for
the vector.

iterator erase(iterator position);
iterator erase (iterator start,
iterator end);

myVector.erase (myVector.begin());
myVector.erase (startItr, endItr);

The first version erases the element at the position pointed
to by position. The second version erases all elements in the
range [startItr, endItr). Note that this does not erase
the element pointed to by endrtr. All iterators after the
remove point are invalidated. If using this member
function on a deque (see below), all iterators are
invalidated.

deque: A New Kind of Sequence

For most applications where you need to represent a sequence of elements, the vector is an ideal tool. It
is fast, lightweight, and intuitive. However, there are several aspects of the vector that can be troublesome
in certain applications. In particular, the vector is only designed to grow in one direction; calling



-94 - Chapter 5: STL Sequence Containers

push back inserts elements at the end of the vector, and resize always appends elements to the end.
While it's possible to insert elements into other positions of the vector using the insert function, doing
so is fairly inefficient and relying on this functionality can cause a marked slowdown in your program's
performance. For most applications, this is not a problem, but in some situations you will need to manage
a list of elements that will grow and shrink on both ends. Doing this with a vector would be prohibitively
costly, and we will need to introduce a new container class: the deque.

deque is a strange entity. It is pronounced “deck,” as in a deck of cards, and is named as a contraction of
“double-ended queue.” It is similar to the vector in almost every way, but supports a few operations that
the vector has trouble with. Because of its similarity to vector, many C++ programmers don't even
know that the deque exists. In fact, of all of the standard STL containers, deque is probably the least-used.
But this is not to say that it is not useful. The deque packs significant firepower, and in this next section
we'll see some of the basic operations that you can perform on it.

What's interesting about the deque is that all operations supported by vector are also provided by
deque. Thus we can resize a deque, use the bracket syntax to access individual elements, and erase
elements at arbitrary positions. In fact, we can rewrite the number-sorting program to use a deque simply
by replacing all instances of vector with deque. For example:

int main() {
deque<int> values; // Use deque instead of vector

/* Read the values. */

for (int i = 0; 1 < kNumValues; ++1i)
{
cout << "Enter an integer: ";
int val = GetlInteger();

/* Insert the element at the correct position. */
values.insert (values.begin() + InsertionIndex(values, val), val);

}

/* Print out the sorted list. */
for (size t i = 0; i < values.size(); ++1i)
cout << values[i] << endl;

However, deques also support two more functions, push front and pop front, which work like the
vector's push back and pop back except that they insert and remove elements at the front of the
deque. But this raises an interesting question: if deque has strictly more functionality than vector, why
use vector? The main reason is speed. deques and vectors are implemented in two different ways.
Typically, a vector stores its elements in contiguous memory addresses. deques, on the other hand,
maintain a list of different “pages” that store information. This is shown here:



Chapter 5: STL Sequence Containers -95-

vector deque

These different implementations impact the efficiency of the vector and deque operations. In a vector,
because all elements are stored in consecutive locations, it is possible to locate elements through simple
arithmetic: to look up the nth element of a vector, find the address of the first element in the vector, then
jump forward n positions. In a deque this lookup is more complex: the deque has to figure out which page
the element will be stored in, then has to search that page for the proper item. However, inserting
elements at the front of a vector requires the vector to shuffle all existing elements down to make room
for the new element (slow), while doing the same in the deque only requires the deque to rearrange
elements in a single page (fast).

If you're debating about whether to use a vector or a deque in a particular application, you might
appreciate this advice from the C++ ISO Standard (section 23.1.1.2):

vector is the type of sequence that should be used by default.. deque is the data structure of
choice when most insertions and deletions take place at the beginning or at the end of the
sequence.

If you ever find yourself about to use a vector, check to see what you're doing with it. If you need to
optimize for fast access, keep using a vector. If you're going to be inserting or deleting elements at the
beginning or end of the container frequently, consider using a deque instead.

Extended Example: Snake

Few computer games can boast the longevity or addictive power of Snake. Regardless of your background,
chances are that you have played Snake or one of its many variants. The rules are simple - you control a
snake on a two-dimensional grid and try to eat food pellets scattered around the grid. You lose if you crash
into the walls or into your own body. True to Newton's laws, the snake continues moving in a single
direction until you explicitly change its bearing by ninety degrees. Every time the snake eats food, a new
piece of food is randomly placed on the grid and the snake's length increases. Over time, the snake's body
grows so long that it becomes an obstacle, and if the snake collides with itself the player loses.

Here's a screenshot from QBasic Nibbles, a Microsoft implementation of Snake released with MS-DOS
version 5.0. The snake is the long yellow string, and the number 8 is the food:



-96 -

3AMTY—> Lives: 5 2860

Chapter 5: STL Sequence Containers

Because the rules of Snake are so simple, it's possible to implement the entire game in only a few hundred
lines of C++ code. In this extended example, we'll write a Snake program in which the computer controls
the snake according to a simple Al. In the process, we'll gain experience with the STL vector and deque,
the streams library, and a sprinkling of C library functions. Once we've finished, we'll have a rather snazzy
program that can serve as a launching point for further C++ exploration.

Our Version of Snake

There are many variants of Snake, so to avoid confusion we'll explicitly spell out the rules of the game
we're implementing:

el

5.

The snake moves by extending its head in the direction it's moving and pulling its tail in one space.
The snake wins if it eats twenty pieces of food.

The snake loses if it crashes into itself or into a wall.

If the snake eats a piece of food, its length grows by one and a new piece of food is randomly
placed.

There is only one level, the starting level.

While traditionally Snake is played by a human, our Snake will be computer-controlled so that we can
explore some important pieces of the C runtime library. We'll discuss the Al we'll use when we begin
implementing it.

Representing the World

In order to represent the Snake world, we need to keep track of the following information:



Chapter 5: STL Sequence Containers -97 -

1. The size and layout of the world.
2. The location of the snake.
3. How many pieces of food we've consumed.

Let's consider this information one piece at a time. First, how should we represent the world? The world
is two-dimensional, but all of the STL containers we've seen so far only represent lists, which are
inherently one-dimensional. Unfortunately, the STL doesn't have a container class that encapsulates a
multidimensional array, but we can emulate this functionality with an STL vector of vectors. For
example, if we represent each square with an object of type WorldTile, we could use a
vector<vector<WorldTile> >. Note that there is a space between the two closing angle brackets - this
is deliberate and is an unfortunate bug in the C++ specification. If we omit the space, C++ would interpret
the closing braces on vector<vector<Wor1dTile>> as the stream extraction operator >>, as in cin >>
myValue. Although most compilers will accept code that uses two adjacent closing braces, it's bad
practice to write it this way.

While we could use a vector<vector<WorldTile> >,there's actually a simpler option. Since we need to
be able to display the world to the user, we can instead store the world as a vector<string> where each
string encodes one row of the board. This also simplifies displaying the world; given a vector<string>
representing all the world information, we can draw the board by outputting each string on its own line.
Moreover, since we can use the bracket operator [] on both vector and string, we can use the familiar
syntax world[row] [col] to select individual locations. The first brackets select the string out of the
vector and the second the character out of the string.

We'll use the following characters to encode game information:

* Aspace character (' ') represents an empty tile.

* Apound sign (' #') represents a wall.

* Adollarsign ('$') represents food.

* Anasterisk (' *') represents a tile occupied by a snake.

For simplicity, we'll bundle all the game data into a single struct called gameT. This will allow us to pass all
the game information to functions as a single parameter. Based on the above information, we can begin
writing this struct as follows:

struct gameT {
vector<string> world;

}s

We also will need quick access to the dimensions of the playing field, since we will need to be able to check
whether the snake is out of bounds. While we could access this information by checking the dimensions of
the vector and the strings stored in it, for simplicity we'll store this information explicitly in the gameT
struct, as shown here:

struct gameT {
vector<string> world;
int numRows, numCols;

}i

For consistency, we'll access elements in the vector<string> treating the first index as the row and the
second as the column. Thus wor1d[3] [5] is row three, column five (where indices are zero-indexed).



-98 - Chapter 5: STL Sequence Containers

Now, we need to settle on a representation for the snake. The snake lives on a two-dimensional grid and
moves at a certain velocity. Because the grid is discrete, we can represent the snake as a collection of its
points along with its velocity vector. For example, we can represent the following snake:

o 1 2 3 4 5

0 =

2

3

As the points (2, 0), (2, 1), (2, 2), (3, 2), (4, 2), (4, 3) and the velocity vector (-1, 0).

The points comprising the snake body are ordered to determine how the snake moves. When the snake
moves, the first point (the head) moves one step in the direction of the velocity vector. The second piece
then moves into the gap left by the first, the third moves into the gap left by the second piece, etc. This
leaves a gap where the tail used to be. For example, after moving one step, the above snake looks like this:

o 1 2 3 4 5

0 i

3

To represent the snake in memory, we thus need to keep track of its velocity and an ordered list of the
points comprising it. The former can be represented using two ints, one for the Ax component and one
for the Ay component. But how should we represent the latter? We've just learned about the vector and
deque, each of which could represent the snake. To see what the best option is, let's think about how we
might implement snake motion. We can think of snake motion in one of two ways - first, as the head
moving forward a step and the rest of the points shifting down one spot, and second as the snake getting a
new point in front of its current head and losing its tail. The first approach requires us to update every
element in the body and is not particularly efficient. The second approach can easily be implemented with
a deque through an appropriate combination of push front and pop back. We will thus use a deque to
encode the snake body:.

If we want to have a deque of points, we'll first need some way of encoding a point. This can be done with
this struct:



Chapter 5: STL Sequence Containers -99-

struct pointT {
int row, col;

i
Taking these new considerations into account, our new gameT struct looks like this:

struct gameT {
vector<string> world;
int numRows, numCols;

deque<pointT> snake;
int dx, dy;
}i

Finally, we need to keep track of how many pieces of food we've munched so far. That can easily be stored
in an int, yielding this final version of gameT:

struct gameT {
vector<string> world;
int numRows, numCols;

deque<pointT> snake;
int dx, dy;

int numEaten;

}i
The Skeleton Implementation

Now that we've settled on a representation for our game, we can start thinking about how to organize the
program. There are two logical steps - setup and gameplay - leading to the following skeleton
implementation:



-100 - Chapter 5: STL Sequence Containers

#include <iostream>
#include <string>
#include <deque>
#include <vector>
using namespace std;

/* Number of food pellets that must be eaten to win. */
const int kMaxFood = 20;

/* Constants for the different tile types. */
const char kEmptyTile = ' ';

const char kWallTile = '"#';
const char kFoodTile = '$';
const char kSnakeTile = '*';

/* A struct encoding a point in a two-dimensional grid. */
struct pointT ({
int row, col;

}s

/* A struct containing relevant game information. */
struct gameT {

vector<string> world; // The playing field

int numRows, numCols; // Size of the playing field

deque<pointT> snake; // The snake body
int dx, dy; // The snake direction

int numEaten; // How much food we've eaten.
}s

/* The main program. Initializes the world, then runs the simulation. */
int main() {

gameT game;

InitializeGame (game) ;

RunSimulation (game) ;

return 0;

Atop this program are the necessary #includes for the functions and objects we're using, followed by a
list of constants for the game. The pointT and gameT structs are identical to those described above. main
creates a gameT object, passes it into InitializeGame for initialization, and finally hands it to
RunSimulation to play the game.

We'll begin by writing TnitializeGame so that we can get a valid gameT for RunSimulation. But how
should we initialize the game board? Should we use the same board every time, or let the user specify a
level of their choosing? Both of these are resaonable, but for the this extended example we'll choose the
latter. In particular, we'll specify a level file format, then let the user specify which file to load at runtime.

There are many possible file formats to choose from, but each must contain at least enough information to
populate a gameT struct; that is, we need the world dimensions and layout, the starting position of the
snake, and the direction of the snake. While I encourage you to experiment with different structures, we'll
use a simple file format that encodes the world as a list of strings and the rest of the data as integers in a
particular order. Here is one possible file:



Chapter 5: STL Sequence Containers -101 -

File: 1evel. txt

15 15

10

g sasaaadddi
#S S#
# # # #
# # # #
# # S # #
# # # #
# # # #
# * #
# # # #
# # # #
# t S # #
# # # #
# # # #
#S S
g sssaaadddi

The first two numbers encode the number of rows and columns in the file, respectively. The next line
contains the initial snake velocity as Ax, Ay. The remaining lines encode the game board, using the same
characters we settled on for the world vector. We'll assume that the snake is initially of length one and its
position is given by a * character.

There are two steps necessary to let the user choose the level layout. First, we need to prompt the user for
the name of the file to open, reprompting until she chooses an actual file. Second, we need to parse the
contents of the file into a gameT struct. In this example we won't check that the file is formatted correctly,
though in professional code we would certainly need to check this. If you'd like some additional practice
with the streams library, this would be an excellent exercise.

Let's start writing the function responsible for loading the file from disk, InitializeGame. Since we need
to prompt the user for a filename until she enters a valid file, we'll begin writing:

void InitializeGame (gameTé& game) {
ifstream input;
while (true) {

cout << "Enter filename: ";
string filename = GetLine();
/* ... %/

}

VA

}

The while (true) loop will continuously prompt the user until she enters a valid file. Here, we assume
that GetLine () is the version defined in the chapter on streams. Also, since we're now using the
ifstreamtype, we'll need to #include <fstream> atthe top of our program.

Now that the user has given us the a filename, we'll try opening it using the .open () member function. If
the file opens successfully, we'll break out of the loop and start reading level data:



-102 - Chapter 5: STL Sequence Containers

void InitializeGame (gameTé& game) {
ifstream input;
while (true) {
cout << "Enter filename: ";
string filename = GetLine();

input.open(filename.c str()); // See Chapter 3 for info on .c_str().
if (input.is open()) break;

/* oo %/
}
/* oo %/

If the file did not open, however, we need to report this to the user. Additionally, we have to make sure to
reset the stream's error state, since opening a nonexistent file causes the stream to fail. Code for this is
shown here:

void InitializeGame (gameT& game) {
ifstream input;
while (true) {
cout << "Enter filename: ";
string filename = Getline();

input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
if (input.is_open()) break;

cout << "Sorry, I can't find the file " << filename << endl;
input.clear();

}

/* ... */

Now we need to parse the file data into a gameT struct. Since this is rather involved, we'll decompose it
into a helper function called Loadwor1d, then finish TnitializeGame as follows:

void InitializeGame (gameTé& game) {
ifstream input;
while (true) {
cout << "Enter filename: ";
string filename = GetLine();

input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
if (input.is_open()) break;

cout << "Sorry, I can't find the file " << filename << endl;
input.clear () ;

}
LoadWorld (game, input);

Notice that except for the call to LoadWorld, nothing in the code for InitializeGame actually pertains to
our Snake game. In fact, the code we've written is a generic routine for opening a file specified by the user.
We'll thus break this function down into two functions - OpenUserFile, which prompts the user for a
filename, and InitializeGame, which opens the specified file, then hands it off to LoadWorld. This is
shown here:



Chapter 5: STL Sequence Containers -103 -

void OpenUserFile (ifstreamé& input) {
while (true) {
cout << "Enter filename: ";

string filename = GetLine();
input.open (filename.c _str()); // See Chapter 3 for .c_str().
if (input.is open()) return;

cout << "Sorry, I can't find the file " << filename << endl;
input.clear();

}

void InitializeGame (gameT& game) {
ifstream input;
OpenUserFile (input) ;
LoadWorld (game, input);

Let's begin working on LoadWorld. The first line of our file format encodes the number of rows and
columns in the world, and we can read this data directly into the gameT struct, as seen here:

void LoadWorld(gameT& game, ifstream& input) {
input >> game.numRows >> game.numCols;
game.world.resize (game.numRows) ;

/* oo %/

We've also resized the vector to hold game . numRows strings, guaranteeing that we have enough strings
to store the entire world. This simplifies the implementation, as you'll see momentarily.

Next, we'll read the starting velocity for the snake, as shown here:

void LoadWorld(gameT& game, ifstream& input) {
input >> game.numRows >> game.numCols;
game.world.resize (game.numRows) ;

input >> game.dx >> game.dy;

/* oo %/

At this point, we've read in the parameters of the world, and need to start reading in the actual world data.
Since each line of the file contains one row of the grid, we'll use getline for the remaining read
operations. There's a catch, however. Recall that get1ine does not mix well with the stream extraction
operator (>>), which we've used exclusively so far. In particular, the first call to get1line after using the
stream extraction operator will return the empty string because the newline character delimiting the data
is still waiting to be read. To prevent this from gumming up the rest of our input operations, we'll call
getline here on a dummy string to flush out the remaining newline:



-104 - Chapter 5: STL Sequence Containers

void LoadWorld (gameT& game, ifstream& input) {
input >> game.numRows >> game.numCols;
game.world.resize (game.numRows) ;

input >> game.dx >> game.dy;

string dummy;
getline (input, dummy) ;

/* oo %/

Now we're ready to start reading in world data. We'll read in game.numRows lines from the file directly
into the game .world vector. Since earlier we resized the vector, there already are enough strings to
hold all the data we'll read. The reading code is shown below:

void LoadWorld(gameT& game, ifstream& input) {
input >> game.numRows >> game.numCols;
game.world.resize (game.numRows) ;

input >> game.dx >> game.dy;

string dummy;
getline (input, dummy) ;

for(int row = 0; row < game.numRows; ++row) {
getline (input, game.world[row]) ;
VAT

}

VA

Recall that somewhere in the level file is a single * character indicating where the snake begins. To make
sure that we set up the snake correctly, after reading in a line of the world data we'll check to see if it
contains a star and, if so, we'll populate the game.snake deque appropriately. Using the .find()
member function on the string simplifies this task, as shown here:



Chapter 5: STL Sequence Containers -105 -

void LoadWorld (gameT& game, ifstream& input) {
input >> game.numRows >> game.numCols;
game.world.resize (game.numRows) ;

input >> game.dx >> game.dy;

string dummy;
getline (input, dummy) ;

for (int row = 0; row < game.numRows; ++row) {
getline (input, game.world[row])
int col = game.world[row].find(kSnakeTile) ;
if(col != string::npos) {
pointT head;
head.row = row;
head.col = col;

game.snake.push back (head) ;

/* oo %/

The syntax for creating and filling in the pointT data is a bit bulky here. When we cover classes in the
second half of this course you'll see a much better way of creating this pointT. In the meantime, we can
write a helper function to clean this code up, as shown here:

pointT MakePoint(int row, int col) {
pointT result;
result.row = row;
result.col = col;
return result;

void LoadWorld (gameT& game, ifstream& input) {
input >> game.numRows >> game.numCols;
game.world.resize (game.numRows) ;

input >> game.dx >> game.dy;

string dummy;
getline (input, dummy) ;

for(int row = 0; row < game.numRows; ++row) {
getline (input, game.world[row]);
int col = game.world[row].find(kSnakeTile);
if(col !'= string::npos)

game.snake.push back (MakePoint (row, col));

}
VA

There's one last step to take care of, and that's to ensure that we set the numEaten field to zero. This edit
completes LoadWorld and the final version of the code is shown here:



-106 - Chapter 5: STL Sequence Containers

void LoadWorld (gameT& game, ifstream& input) {
input >> game.numRows >> game.numCols;
game.world.resize (game.numRows) ;

input >> game.dx >> game.dy;

string dummy;
getline (input, dummy) ;

for (int row = 0; row < game.numRows; ++row) {
getline (input, game.world[row])
int col = game.world[row].find (kSnakeTile);
if(col != string::npos)

game.snake.push back (MakePoint (row, col));
}

game.numEaten = 0;

Great! We've just finished setup and it's now time to code up the actual game. We'll begin by coding a
skeleton of RunSimulation which displays the current state of the game, runs the Al, and moves the
snake:

void RunSimulation (gameT& game) {
/* Keep looping while we haven't eaten too much. */
while (game.numEaten < kMaxFood) {

PrintWorld (game) ; // Display the board
PerformAI (game) ; // Have the AI choose an action
if (!MoveSnake (game)) // Move the snake and stop if we crashed.
break;
Pause () ; // Pause so we can see what's going on.
}
DisplayResult (game) ; // Tell the user what happened

We'll implement the functions referenced here out of order, starting with the simplest and moving to the
most difficult. First, we'll begin by writing Pause, which stops for a short period of time to make the game
seem more fluid. The particular implementation of Pause we'll use is a busy loop, a while loop that does
nothing until enough time has elapsed. Busy loops are frowned upon in professional code because they
waste CPU power, but for our purposes are perfectly acceptable.

The <ctime> header exports a function called clock () that returns the number of “clock ticks” that have
elapsed since the program began. The duration of a clock tick varies from system to system, so C++
provides the constant CLOCKS PER_SEC to convert clock ticks to seconds. We can use clock to implement
a busy loop as follows:

1. Call clock () to get the current time in clock ticks and store the result.
2. Continuously call clock () and compare the result against the cached value. If enough time has
passed, stop looping.

This can be coded as follows:



Chapter 5: STL Sequence Containers -107 -

const double kWaitTime = 0.1; // Pause 0.1 seconds between frames
void Pause () {
clock t startTime = clock(); // clock t is a type which holds clock ticks.
/* This loop does nothing except loop and check how much time is left.
* Note that we have to typecast startTime from clock t to double so
* that the division is correct. The static cast<double>(...) syntax
* is the preferred C++ way of performing a typecast of this sort;
*

see the chapter on

* inheritance for more information.

*/
while (static cast<double>(clock() - startTime) / CLOCKS PER SEC <
kWaitTime) ;

Next, let's implement the PrintWorld function, which displays the current state of the world. We chose to
represent the world as a vector<string> to simplify this code, and as you can see this design decision
pays off well:

void PrintWorld (gameT& game) {

for (int row = 0; row < game.numRows; ++row)
cout << game.world[row] << endl;
cout << "Food eaten: " << game.numEaten << endl;

This implementation of PrintwWor1d is fine, but every time it executes it adds more text to the console
instead of clearing what's already there. This makes it tricky to see what's happening. Unfortunately,
standard C++ does not export a set of routines for manipulating the console. However, every major
operating system exports its own console manipulation routines, primarily for developers working on a
command line. For example, on a Linux system, typing clear into the console will clear its contents, while
on Windows the command is CLs.

C++ absorbed C's standard library, including the system function (header file <cstdlib>). system
executes an operating system-specific instruction as if you had typed it into your system's command line.
This function can be very dangerous if used incorrectly,” but also greatly expands the power of C++. We
will not cover how to use system in detail since it is platform-specific, but one particular application of
system is to call the appropriate operating system function to clear the console. We can thus upgrade our
implementation of PrintwWorld as follows:

/* The string used to clear the display before printing the game board.
* Windows systems should use "CLS"; Mac OS X or Linux users should use
* "clear" instead.

*/

const string kClearCommand = "CLS";

void PrintWorld (gameT& game) {
system (kClearCommand.c str());
for (int row = 0; row < game.numRows; ++row)
cout << game.world[row] << endl;
cout << "Food eaten: " << game.numEaten << endl;

Because system is from the days of pure C, we have to use .c_str () to convert the string parameter into a
C-style string before we can pass it into the function.

* In particular, calling system without checking that the parameters have been sanitized can let malicious users

completely compromise your system. Take CS155 for more information on what sorts of attacks are possible.



-108 - Chapter 5: STL Sequence Containers

The final quick function we'll write is DisplayResult, which is called after the game has ended to report
whether the computer won or lost. This function is shown here:

void DisplayResult (gameT& game) {
PrintWorld (game) ;
if (game.numEaten == kMaxFood)
cout << "The snake ate enough food and wins!" << endl;
else
cout << "Oh no! The snake crashed!" << endl;

Now, on to the two tricky functions - PerformAI, which determines the snake's next move, and
MoveSnake, which moves the snake and processes collisions. We'll begin with PerformaI.

Designing an Al that plays Snake intelligently is far beyond the scope of this class. However, it is feasible to
build a rudimentary Al that plays reasonably well. Our particular Al works as follows: if the snake is about
to collide with an object, the Al will turn the snake out of danger. Otherwise, the snake will continue on its
current path, but has a percent chance to randomly change direction.

Let's begin by writing the code to check whether the snake will turn; that is, whether we're about to hit a
wall or if the snake randomly decides to veer in a direction. We'll write a skeletal implementation of this
code, then will implement the requisite functions. Our initial code is

const double kTurnRate = 0.2; // 20% chance to turn each step.
void PerformAI (gameT& game) {
/* Figure out where we will be after we move this turn. */
pointT nextHead = GetNextPosition (game) ;

/* If that hits a wall or we randomly decide to, turn the snake. */
if (Crashed (nextHead, game) || RandomChance (kTurnRate)) {

/* ... */
}

Here we're calling three functions we haven't written yet - GetNextPosition, which computes the
position of the head on the next iteration; Crashed, which returns whether the snake would crash if its
head was in the given position; and RandomChance; which returns true with probability equal to the
parameter. Before implementing the rest of Performal, let's knock these functions out so we can focus on
the rest of the task at hand. We begin by implementing GetNextPosition. This function accepts as input
the game state and returns the point that we will occupy on the next frame if we continue moving in our
current direction. This function isn't particularly complex and is shown here:

pointT GetNextPosition (gameT& game) {
/* Get the head position. */
pointT result = game.snake.front();

/* Increment the head position by the current direction. */
result.row += game.dy;

result.col += game.dx;

return result;

The implementation of Crashed is similarly straightforward. The snake has crashed if it has gone out of
bounds or if its head is on top of a wall or another part of the snake:



Chapter 5: STL Sequence Containers -109 -

bool Crashed(pointT headPos, gameT& game) {
return !InWorld(headPos, game) ||
game.world[headPos.row] [headPos.col] == kSnakeTile ||
game .world[headPos.row] [headPos.col] == kWallTile;

Here, InWorld returns whether the point is in bounds and is defined as

bool InWorld(pointTé& pt, gameT& game) {
return pt.col >= 0 &&
pt.row >= 0 &&
pt.col < game.numCols &&
pt.row < game.numRows;

Next, we need to implement RandomChance. In CS106B/X we provide you a header file, random.h, that
exports this function. However, random.h is not a standard C++ header file and thus we will not use it
here. Instead, we will use C++'s rand and srand functions, also exported by <cstdlib>, to implement
RandomChance. rand () returns a pseudorandom number in the range [0, RAND MaAX], where RAND MAX is
usually 2" - 1. srand seeds the random number generator with a value that determines which values are
returned by rand. One common technique is to use the time function, which returns the current system
time, as the seed for srand since different runs of the program will yield different random seeds.
Traditionally, you will only call srand once per program, preferably during initialization. We'll thus
modify TnitializeGame so thatit calls srand in addition to its other functionality:

void InitializeGame (gameTé& game) {
/* Seed the randomizer. The static cast converts the result of time (NULL)
* from time t to the unsigned int required by srand. This line 1is
* idiomatic C++.
*/
srand (static cast<unsigned int>(time (NULL))) ;

ifstream input;
OpenUserFile (input) ;
LoadWorld (game, input);

Now, let's implement RandomChance. To write this function, we'll call rand to obtain a value in the range
[0, RaND_ MAX], then divide it by RAND MAX + 1.0 to get a value in the range [0, 1). We can then return
whether this value is less than the input probability. This yields true with the specified probability; try
convincing yourself that this works if it doesn't immediately seem obvious. This is a common technique
and in fact is how the CS106B/X RandomChance function is implemented.

RandomChance is shown here:

bool RandomChance (double probability) {
return (rand() / (RAND MAX + 1.0)) < probability;

}

Notice that we added 1.0 to RaND MaX. This both adds the +1 necessary from the above discussion and
implicitly converts the denominator into a double, which is necessary to avoid integer truncation.

Phew! Apologies for the lengthy detour - let's get back to writing the Al! Recall that we've written this
code so far:



-110- Chapter 5: STL Sequence Containers

void PerformAI (gameT& game) {
/* Figure out where we will be after we move this turn. */
pointT nextHead = GetNextPosition (game) ;

/* If that puts us into a wall or we randomly decide to, turn the snake.

if (Crashed (nextHead, game) || RandomChance (kTurnRate)) {
VAT
}

We now need to implement the logic for turning the snake left or right. First, we'll figure out in what
positions the snake's head would be if we turned left or right. Then, based on which of these positions are
safe, we'll pick a direction to turn. To avoid code duplication, we'll modify our implementation of
GetNextPosition so that the caller can specify the direction of motion, rather than relying on the

gameT's stored direction. The modified version of GetNextPosition is shown here:

pointT GetNextPosition (gameT& game, int dx, int dy) {
/* Get the head position. */
gameT result = game.snake.front();

/* Increment the head position by the specified direction. */
result.row += dy;

result.col += dx;

return result;

We'll need to modify PerformAT to pass in the proper parameters to GetNextPosition, as shown here:

void PerformAI (gameT& game) {
/* Figure out where we will be after we move this turn. */
pointT nextHead = GetNextPosition (game, game.dx, game.dy);

/* If that puts us into a wall or we randomly decide to, turn the snake.

if (Crashed (nextHead, game) || RandomChance (kTurnRate)) {
/* ... */
}
}

Now, let's write the rest of this code. Given that the snake's velocity is (game.dx, game.dy), what
velocities would we move at if we were heading ninety degrees to the left or right? Using some basic
linear algebra,” if our current heading is along dx and dy, then the headings after turning left and right

from our current heading are be given by

dXer = -dy
dyleft = dX
eright = dy
dYright = 'dX

Using these equalities, we can write the following code, which determines what bearings are available and

whether it's safe to turn left or right:

*  This is the result of multiplying the vector (dx, dy)" by a rotation matrix for either +n/2 or -n/2 radians.



Chapter 5: STL Sequence Containers -111-

void PerformAI (gameT& game) {
/* Figure out where we will be after we move this turn. */
pointT nextHead = GetNextPosition (game, game.dx, game.dy):;

/* If that puts us into a wall or we randomly decide to, turn the snake. */

if (Crashed (nextHead, game) || RandomChance (kTurnRate)) {
int leftDx = -game.dy;
int leftDy = game.dx;
int rightDx = game.dy;
int rightDy = -game.dx;

/* Check if turning left or right will cause us to crash. */

bool canLeft = !Crashed(GetNextPosition (game, leftDx, leftDy),
game) ;

bool canRight = !Crashed(GetNextPosition (game, rightDx, rightDy),
game) ;

/* ... %/

Now, we'll decide which direction to turn. If we can only turn one direction, we will choose that direction.
If we can't turn at all, we will do nothing. Finally, if we can turn either direction, we'll pick a direction
randomly. We will store which direction to turn in a boolean variable called willTurnLeft which is true
if we will turn left and false if we will turn right. This is shown here:

void PerformATI (gameT& game) {
/* Figure out where we will be after we move this turn. */
pointT nextHead = GetNextPosition (game, game.dx, game.dy);

/* If that puts us into a wall or we randomly decide to, turn the snake. */

if (Crashed (nextHead, game) || RandomChance (kTurnRate)) {
int leftDx = -game.dy;
int leftDy = game.dx;
int rightDx = game.dy;
int rightDy = -game.dx;

/* Check if turning left or right will cause us to crash. */

bool canleft = !Crashed(GetNextPosition (game, leftDx, leftDy),
game) ;

bool canRight = !Crashed (GetNextPosition (game, rightDx, rightDy),
game) ;

bool willTurnLeft = false;
if(!canlLeft && !canRight)
return; // If we can't turn, don't turn.
else if (canlLeft && !canRight)
willTurnLeft = true; // If we must turn left, do so.
else if (!canlLeft && canRight)
willTurnLeft = false; // If we must turn right, do so.
else
willTurnLeft

RandomChance (0.5); // Else pick randomly

/* oo %/



-112 - Chapter 5: STL Sequence Containers

Finally, we'll update our direction vector based on our choice:

void PerformATI (gameT& game) {
/* Figure out where we will be after we move this turn. */
pointT nextHead = GetNextPosition (game, game.dx, game.dy);

/* If that puts us into a wall or we randomly decide to, turn the snake.

if (Crashed (nextHead, game) || RandomChance (kTurnRate)) {
int leftDx = -game.dy;
int leftDy = game.dx;
int rightDx = game.dy;
int rightDy = -game.dx;

/* Check if turning left or right will cause us to crash.

bool canLeft = !Crashed(GetNextPosition (game, leftDx,
game) ;

bool canRight = !Crashed(GetNextPosition (game, rightDx,
game) ;

bool willTurnLeft = false;
if (!canLeft && !'canRight)
return; // If we can't turn, don't turn.
else if (canLeft && !canRight)
willTurnLeft = true; // If we must turn left, do so.
else if(!canlLeft && canRight)

willTurnLeft = false; // If we must turn right, do so.

else

willTurnLeft

game.dx = willTurnLeft? leftDx : rightDx;
game.dy = willTurnLeft? leftDy : rightDy;

If you're not familiar with the 2 : operator, the syntax is as follows:

expression ? result-if-true : result-if-false

Here, this means that we'll set game .dx to leftDx if willTurnLeft is true and to rightDx otherwise.

rightDy),

RandomChance (0.5); // Else pick randomly

*/

We now have a working version of PerformAI. Our resulting implementation is not particularly dense,

and most of the work is factored out into the helper functions.

There is one task left - implementing MoveSnake. Recall that MoveSnake moves the snake one step
forward on its path. If the snake crashes, the function returns false to indicate that the game is over.

Otherwise, the function returns true.

The first thing to do in MoveSnake is to figure out where the snake's head will be after taking a step.

Thanks to GetNextPosition, this has already been taken care of for us:

bool MoveSnake (gameT& game) {
pointT nextHead = GetNextPosition (game, game.dx, game.dy);

/* oo %/



Chapter 5: STL Sequence Containers -113 -

Now, if we crashed into something (either by falling off the map or by hitting an object), we'll return false
so that the main loop can terminate:

bool MoveSnake (gameT& game) {
pointT nextHead = GetNextPosition (game, game.dx, game.dy);
if (Crashed (nextHead, game))
return false;

/* oo %/

Next, we need to check to see if we ate some food. We'll store this in a bool variable for now, since the
logic for processing food will come a bit later:

bool MoveSnake (gameT& game) {
pointT nextHead = GetNextPosition (game, game.dx, game.dy);
if (Crashed (nextHead, game))
return false;

bool isFood = (game.world[nextHead.row] [nextHead.col] == kFoodTile);

/* oo %/

Now, let's update the snake's head. We need to update the world vector so that the user can see that the
snake's head is in a new square, and also need to update the snake deque so that the snake's head is now
given by the new position. This is shown here:

bool MoveSnake (gameT& game) {
pointT nextHead = GetNextPosition (game, game.dx, game.dy);
if (Crashed (nextHead, game))
return false;

bool isFood = (game.world[nextHead.row] [nextHead.col] == kFoodTile);

game .world[nextHead.row] [nextHead.col] = kSnakeTile;
game.snake.push front (nextHead) ;

/* e %/

Finally, it's time to move the snake's tail forward one step. However, if we've eaten any food, we will leave
the tail as-is so that the snake grows by one tile. We'll also put food someplace else on the map so the
snake has a new objective. The code for this is shown here:



-114 - Chapter 5: STL Sequence Containers

bool MoveSnake (gameT& game) {
pointT nextHead = GetNextPosition (game, game.dx, game.dy);

if (Crashed (nextHead, game))
return false;

bool isFood = (game.world[nextHead.row] [nextHead.col] == kFoodTile);

game.world[nextHead.row] [nextHead.col] = kSnakeTile;
game.snake.push front (nextHead) ;

if (!isFood) {

game.world[game.snake.back() .row] [game.snake.back () .col] = kEmptyTile;
game.snake.pop back() ;
} else {

++game.numkEaten;
PlaceFood (game) ;
}

return true;

We're nearing the home stretch - all that's left to do is to implement PlaceFood and we're done! This
function is simple - we'll just sit in a loop picking random locations on the board until we find an empty
spot, then will put a piece of food there. To generate a random location on the board, we'll scale rand ()
down to the proper range using the modulus (%) operator. For example, on a world with four rows and ten

columns, we'd pick as a row rand() % 4 and as a column col () % 10. The code for this function is
shown here:

void PlaceFood (gameT& game) {
while (true) {
int row = rand() % game.numRows;
int col rand () % game.numCols;

/* If the specified position is empty, place the food there. */
if (game.world[row] [col] == kEmptyTile) {

game.world[row] [col] = kFoodTile;

return;



Chapter 5: STL Sequence Containers -115-

More To Explore

There's so much to explore with the STL that we could easily fill the rest of the course reader with STL
content. If you're interested in some more advanced topics relating to this material and the STL in general,
consider reading on these topics:

1.

stack and queue: The vector and deque pack a lot of firepower and can solve a wide array of
problems. However, in some cases, you may want to use a container with a more restricted set of
operations. For these purposes, the STL exports two container adapters, containers that export
functionality similar to a vector or deque but with a slight reduction in power. The first of these
is the stack, which only lets you view the final element of a sequence; the second is the queue,
which is similar to line at a ticket counter. If you plan on pursuing C++ more seriously, you should
take the time to look over what these container adapters have to offer.

valarray: The valarray class is similar to a vector in that it's a managed array that can hold
elements of any type. However, unlike vector, valarray is designed for numerical computations.
valarrays are fixed-size and have intrinsic support for mathematical operators. For example, you
can use the syntax myvalArray *= 2 to multiply all of the entries in a valarray by two. If you're
interested in numeric or computational programming, consider looking into the valarray.

There's an excellent article online comparing the performances of the vector and deque
containers. If you're interested, you can see it at
http://www.codeproject.com/vcpp/stl/vector vs deque.asp.

Practice Problems

1.

List two differences between the vector's push back and resize member functions.

What header files do you need to #include to use vector? deque?

How do you tell how many elements are in a vector? Ina deque?

How do you remove the first element from a vector? From a deque?

Write a function called LinesFromFile which takes in a string containing a filename and returns a
vector<string> containing all of the lines of text in the file in the order in which they appear. If
the file does not exist, you can return an empty vector. (Hint: look at the code for reading the

world file in the Snake example and see if you can modify it appropriately)

Update the code for the sorting program so that it sorts elements in descending order instead of
ascending order.

One use for the deque container is to create a ring buffer. Unlike the linear vector and deque
containers you saw in this chapter; a ring buffer is circular. Here's an illustration of a ring buffer:


http://www.codeproject.com/vcpp/stl/vector_vs_deque.asp

-116 - Chapter 5: STL Sequence Containers

A ring buffer consists of a circular ring of elements with a cursor which selects some particular
element out of the buffer. The four main operations on a ring buffer are as follows:

o Rotate the ring clockwise

o Rotate the ring counterclockwise
o Read the value at the cursor.

o Write the value at the cursor.

For example, given the above ring buffer, the result of rotating the ring clockwise would be

S5 e

If we then wrote the value 5 to the location specified by the cursor, the buffer would look like this:

H <: Cursor



Chapter 5: STL Sequence Containers -117 -

There is a particularly elegant construction which enables us to build a ring buffer out of a deque.
The basic idea is to “unroll” the ring buffer into a linear sequence, then use a combination of
push front, pop front, push back, and pop_back to simulate moving the cursor to the left or
to the right. This technique of simulating one data structure using another is ubiquitous in
computer science, and many important results in computability theory use constructions of this
form.

To see exactly how the construction works, suppose that we have the following ring buffer:

\ o/
H (= cursor
Tes

We can then represent this using a deque as follows:

e
H @ cursor
‘6

3/4/ 56/ 7 8/9/1011/0 1 2

That is, the first element of the deque is the element under the cursor, and the rest of the elements
in the deque are the elements in the ring buffer formed by walking clockwise around the ring
buffer. Given this construction, we can simulate rotating the ring one position clockwise by moving
the last element of the deque onto the front, as shown here:



-118- Chapter 5: STL Sequence Containers

IR

2/3/4/5 6|7 8 91011 0 1

Similarly, to move the cursor one step counterclockwise, we move the element at the end of the
deque onto the front, as shown here:

PN

3/ 4 5

8910110 1 2

Write a pair of functions CursorClockwise and CursorCounterClockwise which take in a
deque representing a ring buffer and update the deque by simulating a cursor move in either
direction. Then write functions CursorRead and CursorWrite which read and write the element
stored at the cursor. You've just shown how to represent one data structure using another!




Chapter 5: STL Sequence Containers -119-

8. As mentioned earlier, the deque outperforms the vector when inserting and removing elements at
the end of the container. However, the vector has a useful member function called reserve that
can be used to increase its performance against the deque in certain circumstances. The reserve
function accepts an integer as a parameter and acts as a sort of “size hint” to the vector. Behind
the scenes, reserve works by allocating additional storage space for the vector elements,
reducing the number of times that the vector has to ask for more storage space. Once you have
called reserve, as long as the size of the vector is less than the number of elements you have
reserved, calls to push back and insert on the vector will execute more quickly than normal.
Once the vector hits the size you reserved, these operations revert to their original speed.”

Write a program that uses push back to insert a large number of strings into two different
vectors - one which has had reserve called on it and one which hasn't - as well as a deque. The
exact number and content of strings is up to you, but large numbers of long strings will give the
most impressive results. Use the clock () function exported by <ctime> to compute how long it
takes to finish inserting the strings. Now repeat this trial, but insert the elements at the
beginning of the container rather than the end. Did calling reserve help to make the vector
more competitive against the deque?

9. In this next problem we'll explore a simple encryption algorithm called the Vigenére cipher and
how to implement it using the STL containers.

One of the oldest known ciphers is the Caesar cipher, named for Julius Caesar, who allegedly
employed it. The idea is simple. We pick a secret number between 1 and 26, inclusive, then
encrypt the input string by replacing each letter with the letter that comes that many spaces after
it. If this pushes us off the end of the alphabet, we wrap around to the start of the alphabet. For
example, if we were given the string “The cookies are in the fridge” and picked the number 1, we
would end up with the resulting string “Uif dppljft bsf jo uif gsjehf” To decrypt the string, we
simply need to push each letter backwards by one spot.

The Caesar cipher is an extremely weak form of encryption; it was broken in the ninth century by
the Arab polymath al-Kindi. The problem is that the cipher preserves the relative frequencies of
each of the letters in the source text. Not all letters appear in English with equal frequency - e and
t are far more common than q or w, for example - and by looking at the relative letter frequencies
in the encrypted text it is possible to determine which letter in the encrypted text corresponds to a
letter in the source text and to recover the key.

The problem with the Caesar cipher is that it preserves letter frequencies because each letter is
transformed using the same key. But what if we were to use multiple keys while encrypting the
message? That is, we might encrypt the first letter with one key, the second with another, the third
with yet another, etc. One way of doing this is to pick a sequence of numbers, then cycle through
them while encrypting the text. For example, let's suppose that we want to encrypt the above
message using the key string 1, 3, 7. Then we would do the following:

T H/E C|O|O|K|T|E|S/A/R|E|T | N T/ H E|F| R|I|D|G]|E
3713|713 ,7|1,3|7}13|71,3|7|1]|3
u K/ L DR/ VL L|L|T D Y| F L U U K|L G|U P E|]J|L

Notice that the letters KIE from COOKIES are all mapped to the letter L, making cryptanalysis much
more difficult. This particular encryption system is the Vigenére cipher.

* Calling push back n times always takes O(n) time, whether or not you call reserve. However, calling reserve

reduces the constant term in the big-O to a smaller value, meaning that the overall execution time is lower.



-120 -

Chapter 5: STL Sequence Containers

Now, let's consider what would happen if we wanted to implement this algorithm in C++ to work
on arbitrary strings. Strings in C++ are composed of individual chars, which can take on (typically)
one of 256 different values. If we had a list of integer keys, we could encrypt a string using the
Vigenere cipher by simply cycling through those keys and incrementing the appropriate letters of
the string. In fact, the algorithm is quite simple. We iterate over the characters of the string, at
each point incrementing the character by the current key and then rotating the keys one cycle.

a. Suppose that we want to represent a list of integer keys that can easily be cycled; that is, we
want to efficiently support moving the first element of the list to the back. Of the containers
covered in this chapter (vector and deque), which have the best support for this operation? ¢

b. Based on your decision, implement a function VigenereEncrypt that accepts a string and a
list of int Kkeys stored in the container of your choice, then encrypts the string using the
Vigenére cipher. ¢



Chapter 6: STL Associative Containers and Iterators

In the previous chapter, we explored two of the STL's sequence containers, the vector and deque. These
containers are ideally suited for situations where we need to keep track of an ordered list of elements,
such as an itinerary, shopping list, or mathematical vector. However, representing data in ordered lists is
not optimal in many applications. For example, when keeping track of what merchandise is sold in a
particular store, it does not make sense to think of the products as an ordered list. Storing merchandise in
a list would imply that the merchandise could be ordered as “this is the first item being sold, this is the
second item being sold, etc” Instead, it makes more sense to treat the collection of merchandise as an
unordered collection, where membership rather than ordering is the defining characteristic. That is, we are
more interested in answers to the question “is item X being sold here?” than answers to the question
“where in the sequence is the element X?” Another scenario in which ordered lists are suboptimal arises
when trying to represent relationships between sets of data. For example, we may want to encode a
mapping from street addresses to buildings, or from email addresses to names. In this setup, the main
question we are interested in answering is “what value is associated with X?,” not “where in the sequence
is element X?”

In this chapter, we will explore four new STL container classes - map, set, multimap, and multiset - that
provide new abstractions for storing data. These containers will represent allow us to ask different
questions of our data sets and will make it possible to write programs to solve increasingly complex
problems. As we explore those containers, we will introduce STL iterators, tools that will pave the way for
more advanced STL techniques.

Storing Unordered Collections with set

To motivate the STL set container, let's consider a simple probability question. Recall from last chapter's
Snake example that the C++ rand () function can be used to generate a pseudorandom integer in the range
[0, RanD_MAX]. (Recall that the notation [a, b] represents all real numbers between a and b, inclusive).
Commonly, we are interested not in values from zero to RAND MAX, but instead values from 0 to some set
upper bound k. To get values in this range, we can use the value of

rand() % (k + 1)
This computes the remainder when dividing rand () by k + 1, which must be in the range [0, k]."

Now, consider the following question. Suppose that we have a six-sided die. We roll the die, then record
what number we rolled. We then keep rolling the die and record what number came up, and keep
repeating this process. The question is as follows: how many times, on average, will we roll the die before
the same number comes up twice? This is actually a special case of a more general problem: if we
continuously generate random integers in the range [0, k], how many numbers should we expect to
generate before we generate some number twice? With some fairly advanced probability theory, this
value can be calculated exactly. However, this is a textbook on C++ programming, not probability theory,
and so we'll write a short program that will simulate this process and report the average number of die
rolls.

* This process will not always yield uniformly-distributed values, because RAND MAX will not always be a multiple
of k. For a fun math exercise, think about why this is.



-122 - Chapter 6: STL Associative Containers and Iterators

There are many ways that we can write this program. In the interest of simplicity, we'll break the program
into two separate tasks. First, we'll write a function that rolls the die over and over again, then reports
how many die rolls occurred before some number came up twice. Second, we'll write our main function to
call this function multiple times to get a good sample, then will have it print out the average.

Let's think about how we can write a function that rolls a die until the same number comes up twice. Ata
high level, this function needs to generate a random number from 1 to 6, then check if it has been
generated before. If so, it should stop and report the number of dice rolled. Otherwise, it should
remember that this number has been rolled, then generate a new number. A key step of this process is
remembering what numbers have come up before, and using the techniques we've covered so far we could
do this using either a vector or a deque. For simplicity, we'll use a vector. One implementation of this
function looks like this:

/* Rolls a six-sided die and returns the number that came up. */
int DieRoll () {
/* rand() % 6 gives back a value between 0 and 5, inclusive. Adding one to
* this gives us a valid number for a die roll.
*/
return (rand() % 6) + 1;

}

/* Rolls the dice until a number appears twice, then reports the number of die
* rolls.
*/
size t RunProcess() {
vector<int> generated;

while (true) {
/* Roll the die. */
int nextValue = DieRoll () ;

/* See if this value has come up before. If so, return the number of
* rolls required. This is equal to the number of dice that have been
* rolled up to this point, plus one for this new roll.

*/

for (size t k = 0; k < generated.size(); ++k)

if (generated[k] == nextValue)
return generated.size() + 1;

/* Otherwise, remember this die roll. */
generated.push back (nextValue);

Now that we have the RunProcess function written, we can run through one simulation of this process.
However, it would be silly to give an estimate based on just one iteration. To get a good estimate, we'll
need to run this process multiple times to control for randomness. Consequently, we can write the
following main function, which runs the process multiple times and reports the average value:



Chapter 6: STL Associative Containers and Iterators -123-

const size t kNumIterations = 10000; // Number of iterations to run
int main () {
/* Seed the randomizer. See the last chapter for more information on this
* line.
*/
srand(static_cast<unsigned>(time (NULL)));

size t total = 0; // Total number of dice rolled

/* Run the process kNumlIterations times, accumulating the result into
* total.
*/
for (size t k = 0; k < kNumIterations; ++k)
total += RunProcess{();

/* Finally, report the result. */

cout << "Average number of steps: "
<< double (total) / kNumIterations << endl;

If you compile and run this program, you'll see output that looks something like this:

Average number of steps: 3.7873

You might see a different number displayed on your system, since the program involves a fundamentally
random process.

Now, let's make a small tweak to this program. Suppose that instead of rolling a six-sided die, we roll a
twenty-sided die.” How many steps should we expect this to take now? If we change our implementation
of DieRo11 to the following:

int DieRoll () {

return (rand() % 20) + 1;

}

Then running the program will produce output along the following lines:

Average number of steps: 6.2806

This is interesting - we more than tripled the number of sides on the die (from six to twenty), but the total
number of expected rolls increased by less than a factor of two! Is this a coincidence, or is there some
fundamental law of probability at work here? To find out, let's assume that we're now rolling a die with
365 sides (i.e. one side for every day of the year). This means our new implementation of DieRol1 is

int DieRoll () {

return (rand() % 365) + 1;
}

Running this program produces output that looks like this:

Average number of steps: 24.6795

* Ifyou haven't seen a twenty-sided die (or D20 in gamer-speak), you're really missing out. They're very fun to play

with.



-124 - Chapter 6: STL Associative Containers and Iterators

Now that’s weird! In increasing the number of sides on the die from 20 to 365, we increased the number
of sides on the die by a factor of (roughly) eighteen. However, the number of expected rolls went up only
by a factor of four! But more importantly, think about what this result means. If you have a roomful of
people with twenty-five people, then you should expect at least two people in that room to have the same
birthday! This is sometimes called the birthday paradox, since it seems counterintuitive that such a small
sample of people would cause this to occur. The more general result, for those of you who are interested,
is that you will need to roll an n sided die roughly Vn times before the same number will come up twice.

This has been a fun diversion into the realm of probability theory, but what does it have to do with C++
programming? The answer lies in the implementation of the RunProcess function. The heart of this
function is a for loop that checks whether a particular value is contained inside of a vector. This loop is
reprinted here for simplicity:

for (size t k = 0; k < generated.size(); ++k)
if (generated[k] == nextValue)
return generated.size () + 1;

Notice that there is a disparity between the high-level operation being modeled here (“check if the number
has already been generated”) and the actual implementation (“loop over the vector, checking, for each
element, whether that element is equal to the most-recently generated number”). There is a tension here
between what the code accomplishes and the way in which it accomplishes it. The reason for this is that
we're using the wrong abstraction. Intuitively, a vector maintains an ordered sequence of elements. The
main operations on a vector maintain that sequence by adding and removing elements from that
sequence, looking up elements at particular positions in that sequence, etc. For this application, we want
to store a collection of numbers that is unordered. We don't care when the elements were added to the
vector or what position they occupy. Instead, we are interested what elements are in the vector, and in
particular whether a given element is in the vector atall.

For situations like these, where the contents of a collection of elements are more important than the actual
sequence those elements are in, the STL provides a special container called the set. The set container
represents an arbitrary, unordered collection of elements and has good support for the following
operations:

* Adding elements to the collection.
* Removing elements from the collection.
* Determining whether a particular element is in the collection.

To see the set in action, let's consider a modified version of the RunProcess function which uses a set
instead of a vector to store its elements. This code is shown here (though you'll need to #include
<set> for it to compile):

size t RunProcess() {
set<int> generated;

while (true) {
int nextValue = DieRoll();

/* Check if this value has been rolled before. */
if (generated.count (nextValue)) return generated.size() + 1;

/* Otherwise, add this value to the set. */
generated.insert (nextValue) ;



Chapter 6: STL Associative Containers and Iterators -125-

Take a look at the changes we made to this code. To determine whether the most-recently-generated
number has already been produced, we can use the simple syntax generated. count (nextvalue) rather
than the clunkier for loop from before. Also notice that to insert the new element into the set, we used
the insert function rather than push back.

The names of the functions on the set are indicative of the differences between the set and the vector
and deque. When inserting an element into a vector or deque, we needed to specify where to put that
element: at the end using push_back, at the beginning with push front, or at some arbitrary position
using insert. The set has only one function for adding elements - insert - which does not require us to
specify where in the set the element should go. This makes sense, since the set is an inherently
unordered collection of elements. Additionally, the set has no way to query elements at specific positions,
since the elements of a set don't have positions. However, we can check whether an element exists in a
set very simply using the count function, which returns t rue if the element exists and false otherwise.’

If you rerun this program using the updated code, you'll find that the program produces almost identical
output (the randomness will mean that you're unlikely to get the same output twice). The only difference
between the old code and the new code is the internal structure. Using the set, the code is easier to read
and understand. In the next section, we'll probe the set in more detail and explore some of its other uses.

A Primer on set

The STL set container represents an unordered collection of elements that does not permit duplicates.
Logically, a set is a collection of unique values that efficiently supports inserting and removing elements,
as well as checking whether a particular element is contained in the set. Like the vector and deque, the
set is a parameterized class. Thus we can speak of a set<int>, a set<double>, set<string>, etc. As
with vector and deque, sets can only hold one type of element, so you cannot have a set that mixes and
matches between ints and strings, for example. However, unlike the vector or deque, set can only
store objects that can be compared using the < operator. This means that you can store all primitive types
in a set, along with strings and other STL containers. However, you cannot store custom structs inside
of an STL set. For example, the following is illegal:

struct Point {
double x, vy;
}i

set<Point> mySet; // Illegal, Point cannot be compared with <

This may seem like a somewhat arbitrary restriction. Logically, we could be able to gather up anything
into an unordered collection. Why does it matter that those elements be comparable using <? The answer
has to do with how the set is implemented behind the scenes. Internally, the set is layered on top of a
balanced binary tree, a special data structure that naturally supports the set's main operations. However,
balanced binary trees can only be constructed on data sets where elements can be compared to one
another, hence the restriction. Later in this text we'll see how to use a technique called operator
overloading to make it possible to store objects of any type in an STL set, but for now you will need to
confine yourself to primitives and other STL containers.

As we saw in the previous example, one of the most basic set operations is insertion using the insert
function. Unlike the deque and vector insert functions, you do not need to specify a location for the
new element. After all, a set represents an unordered collection, and specifying where an element should
go in a set does not make any sense. Here is some sample code using insert:

* Technically speaking, count returns 1 if the element exists and 0 otherwise. For most purposes, though, it's safe
to treat the function as though it returns a boolean true or false.



-126 - Chapter 6: STL Associative Containers and Iterators

set<int> mySet;

mySet.insert (137); // Now contains: 137
mySet.insert (42); // Now contains: 42 137
mySet.insert (137); // Now contains: 42 137

Notice in this last line that inserting a second copy of 137 into the set did not change the contents of the
set. sets do not allow for duplicate elements.

To check whether a particular element is contained in an STL set, you can also use the count function,
which returns 1 if the element is contained in the set and 0 otherwise. Using C++'s automatic conversion
of nonzero values into true and zero values to false, you usually do not need to explicitly check whether
count yields a one or zero and can rely on implicit conversions instead. For example:

if (mySet.count (137))
cout << "137 is in the set." << endl; // Printed
if (!mySet.count (500))
cout << "500 is not in the set." << endl; // Printed

To remove an element from a set, you use the erase function. erase is a mirror to insert, and the two
have very similar syntax. For example:

mySet.erase (137); // Removes 137, if it exists.

The STL set also supports several operations common to all STL containers. You can remove all elements
from a set using clear, check how many elements are present using size, etc. A full table of all set
operations is presented later in this chapter.

Traversing Containers with Iterators

One of the most common operations we've seen in the course of working with the STL containers is
iteration, traversing the contents of a container and performing some task on every element. For example,
the following loop iterates over the contents of a vector, printing each element:

for (size t h = 0; h < myVector.size(); ++h)
cout << myVector[h] << endl;

We can similarly iterate over a degue as follows:

for (size t h = 0; h < myDeque.size(); ++h)
cout << myDeque[h] << endl;

The reason that we can use this convenient syntax to traverse the contents of the vector and deque is
because the vector and deque represent linear sequences, and so it is possible to enumerate all possible
indices in the container using the standard for loop. That is, we can iterate so easily over a vector or
deque because we can look up the zeroth element, then the first element, then the second, etc.
Unfortunately, this logic does not work on the STL set. Because the set does not have an ordering on its
elements, it does not make sense to speak of the “zeroth element of a set,” nor the “first element of a set,”
etc. To traverse the elements of a set, we will need to use a new concept, the iterator.

Every STL container presents a different means of storing data. vector and deque store data in an
ordered list. set stores its data as an unordered collection. As you'll soon see, map encodes data as a
collection of key/value pairs. But while each container stores its data in a different format, fundamentally,
each container still stores data. Iterators provide a clean, consistent mechanism for accessing data stored
in containers, irrespective of how that data may be stored. That is, the syntax for looking at vector data



Chapter 6: STL Associative Containers and Iterators -127 -

with iterators is almost identical to the syntax for examining set and deque data with iterators. This fact
is extremely important. For starters, it implies that once you've learned how to use iterators to traverse
any container, you can use them to traverse all containers. Also, as you'll see, because iterators can
traverse data stored in any container, they can be used to specify a collection of values in a way that masks
how those values are stored behind-the-scenes.

So what exactly is an iterator? At a high level, an iterator is like a cursor in a text editor. Like a cursor, an
iterator has a well-defined position inside a container, and can move from one character to the next. Also
like a cursor, an iterator can be used to read or write a range of data one element at a time.

It's difficult to get a good feel for how iterators work without having a sense of how all the pieces fit
together. Therefore, we'll get our first taste of iterators by jumping head-first into the idiomatic “loop over
the elements of a container” for loop, then will clarify all of the pieces individually. Here is a sample piece
of code that will traverse the elements of a vector<int>, printing each element out on its own line:

vector<int> myVector = /* ... some initialization ... */
for (vector<int>::iterator itr = myVector.begin();
itr != myVector.end(); ++itr)

cout << *itr << endl;

This code is perhaps the densest C++ we've encountered yet, so let's take a few minutes to dissect exactly
what's going on here. The first part of the for loop is the statement

vector<int>::iterator itr = myVector.begin();

This line of code creates an object of type vector<int>::iterator, an iterator variable named itr that
can traverse a vector<int>. Note thata vector<int>::iterator can only iterate over a vector<int>.
If we wanted to iterate over a vector<string>, we would need to use a vector<string>::iterator,
and if we wanted to traverse a set<int> we would have to use a set<int>::iterator. We then
initialize the iterator to myVector.begin(). Every STL container class exports a member function
begin () which yields an iterator pointing to the first element of that container. By initializing the iterator
to myVector.begin (), we indicate to the C++ compiler that the itr iterator will be traversing elements
of the container myvVector.

Inside the body of the for loop, we have the line

cout << *itr << endl;

The strange-looking entity *itr is known as an iterator dereference and means “the element being
iterated over by itr.” As itr traverses the elements of the vector, it will proceed from one element to
the next in sequence until all of the elements of the vector have been visited. At each step, the element
being iterated over can be yielded by prepending a star to the name of the iterator. In the above context,
we dereference the iterator to yield the current element of myvector being traversed, then print it out.
We will discuss the nuances of iterator dereferences in more detail shortly.

Returning up to the for loop itself, notice that after each iteration we execute

++itr;

When applied to ints, the ++ operator is the increment operator; writing ++myInt means “increment the
value of the myInt variable” When applied to iterators, the ++ operator means “advance the iterator one
step forward.” Because the step condition of the for loop is ++itr, this means that each iteration of the
for loop will advance the iterator to the next element in the container, and eventually all elements will be



-128 - Chapter 6: STL Associative Containers and Iterators

visited. Of course, at some point, we will have visited all of the elements in the vector and will need to
stop iterating. To detect when an iterator has visited all of the elements, we loop on the condition that

itr !'= myVector.end();

Each STL container exports a special function called end () that returns an iterator to the element one past
the end of the container. For example, consider the following vector:

137 42 2718 3141 6266 6023

In this case, the iterators returned by that vector's begin () and end () functions would point to the
following locations:

begin () end ()
1 !
137 42 2718 3141 6266 6023

Notice that the begin () iterator points to the first element of the vector, while the end () iterator points
to the slot one position past the end of the vector. This may seem strange at first, but is actually an
excellent design decision. Recall the for loop from above, which iterates over the elements of a vector.
This is reprinted below:

for (vector<int>::iterator itr = myVector.begin();
itr !'= myVector.end(); ++itr)
cout << *itr << endl;

Compare this to the more traditional loop you're used to, which also iterates over a vector:

for (size t h = 0; h < myVector.size(); ++h)
cout << myVector[h] << endl;

Because the vector is zero-indexed, if you were to look up the element in the vector at position
myVector.size (), you would be reading a value not actually contained in the vector. For example, in a
vector of five elements, the elements are stored at positions 0, 1, 2, 3, and 4. There is no element at
position five, and trying to read an element there will result in undefined behavior. However, in the for
loop to iterate over the contents of the vector, we still use the value of myvector.size () as the upper
bound for the iteration, since the loop will cut off as soon as the iteration index reaches the value
myVector.size (). This is identical to the behavior of the end () iterator in the iterator-based for loop.
myVector.end () is never a valid iterator, but we use it as the loop upper bound because as soon as the
itr iterator reaches myvector.end () the loop will terminate.

Part of the beauty of iterators is that the above for loop for iterating over the contents of a vector can
trivially be adapted to iterate over just about any STL container class. For instance, if we want to iterate
over the contents of a deque<int>, we could do so as follows:

deque<int> myDeque = /* ... some initialization ... */
for (deque<int>::iterator itr = myDeque.begin(); itr != myDeque.end(); ++itr)
cout << *itr << endl;



Chapter 6: STL Associative Containers and Iterators -129 -

This is exactly the same loop structure, though some of the types have changed (i.e. we've replaced
vector<int>::iterator with deque<int>::iterator). However, the behavior is identical. This loop
will traverse the contents of the deque in sequence, printing each element out as it goes.

Of course, at this point iterators may seem like a mere curiosity. Sure, we can use them to iterate over a
vector or deque, but we already could do that using a more standard for loop. The beauty of iterators is
that they work on any STL container, including the set. If we have a set of elements we wish to traverse,
we can do so using the following syntax:

set<int> mySet = /* ... some initialization ... */
for (set<int>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
cout << *itr << endl;

Again, notice that the structure of the loop is the same as before. Only the types have changed.

One crucial detail we've ignored up to this point is in what order the elements of a set will be traversed.
When using the vector or deque there is a natural iteration order (from the start of the sequence to the
end), but when using the STL set the idea of ordering is a bit more vague. However, iteration order over a
set is well-specified. When traversing set elements via an iterator, the elements will be visited in sorted
order, starting with the smallest element and ending with the largest. This is in part why the STL set can
only store elements comparable using the less-than operator: there is no well-defined “smallest” or
“biggest” element of a set if the elements cannot be compared. To see this in action, consider the
following code snippet:

/* Generate ten random numbers */

set<int> randomNumbers;

for (size t k = 0; k < 10; ++k)
randomNumbers.insert (rand()) ;

/* Print them in sorted order. */
for (set<int>::iterator itr = randomNumbers.begin () ;
itr != randomNumbers.end(); ++itr)
cout << *itr << endl;

This will print different outputs on each run, since the program generates and stores random numbers.
However, the values will always be in sorted order. For example:

137 2718 3141 4103 5422 6321 8938 10299 12003 16554
Spotlight on Iterators

As you just saw, there are three major operations on iterators:

* Dereferencing the iterator to read a value.
* Advancing the iterator from one position to the next.
* Comparing two iterators for equality.

[terator dereferencing is a particularly important operation, and so before moving on we'll take a few
minutes to explore this in more detail.

As you've seen so far, iterators can be used to read the values of a container indirectly. However, iterators
can also be used to write the values of a container indirectly as well. For example, here is a simple for
loop to set all of the elements of a vector<int>to 137:



-130 - Chapter 6: STL Associative Containers and Iterators

for (vector<int>::iterator itr = myVector.begin();
itr !'= myVector.end(); ++itr)
*itr = 137;

This is your first glimpse of the true power of iterators. Because iterators give a means for reading and
writing container elements indirectly, it is possible to write functions that operate on data from any
container class by manipulating iterators from that container class. These functions are called STL
algorithms and will be discussed in more detail next chapter.

Up to this point, when working with iterators, we have restricted ourselves to STL containers that hold
primitive types. That is, we've talked about vector<int> and set<int>, but not, say, vector<string>.
All of the syntax that we have seen so far for containers holding primitive types are applicable to
containers holding objects. For example, this loop will correctly print out all of the strings in a
set<string>:

for (set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
cout << *itr << endl;

However, let's suppose that we want to iterate over a set<string> printing out the lengths of the
stringsinthat set. Unfortunately, the following syntax will not work:

for (set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
cout << *itr.length() << endl; // Error: Incorrect syntax!

The problem with this code is that the C++ compiler interprets it as

*(itr.length())

Instead of

(*itr) .length ()

That is, the compiler tries to call the nonexistent length () function on the iterator and to dereference
that, rather than dereferencing the iterator and then invoking the length () function on the resulting
value. This is a subtle yet important difference, so make sure that you take some time to think it through
before moving on.

To fix this problem, all STL iterators support and operator called the arrow operator that allows you to
invoke member functions on the element currently being iterated over. For example, to print out the
lengths of all of the strings in a set<string>, the proper syntax is

for (set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
cout << itr->length() << endl;

We will certainly encounter the arrow operator more as we continue our treatment of the material, so
make sure that you understand its usage before moving on.

Defining Ranges with Iterators

Recall for a moment the standard “loop over a container” for loop:

set<int> mySet = /* ... some initialization ... */
for (set<int>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
cout << *itr << endl;



Chapter 6: STL Associative Containers and Iterators -131-

If you'll notice, this loop is bounded by two iterators - mySet .begin (), which specifies the first element
to iterate over, and mySet .end (), which defines the element one past the end of the iteration range. This
raises an interesting point about the duality of iterators. A single iterator points to a single position in a
container class and represents a way to read or write that value indirectly. A pair of iterators defines two
positions and consequently defines a range of elements. In particular, given two iterators start and stop,
these iterators define the range of elements beginning with start and ending one position before stop.
Using mathematical notation, the range of elements defined by start and stop spans [start, stop).

So far, the only ranges we've considered have been those of the form [begin (), end () ) consisting of all of
the elements of a container. However, as we begin moving on to progressively more complicated
programs, we will frequently work on ranges that do not span all of a container. For example, we might be
interested in iterating over only the first half of a container, or perhaps just a slice of elements in a
container meeting some property.

If you'll recall, the STL set stores its elements in sorted order, a property that guarantees efficient lookup
and insertion. Serendipitously, this allows us to efficiently iterate over a slice out of a set whose values
are bounded between some known limits. The set exports two functions, lower bound and
upper bound, that can be used to iterate over the elements in a set that are within a certain range.
lower bound accepts a value, then returns an iterator to the first element in the set greater than or equal
to that value. upper bound similarly accepts a value and returns an iterator to the first element in the
set that is strictly greater than the specified element. Given a closed range [lower, upper], we can iterate
over that range by using lower bound to get an iterator to the first element no less than lower and
iterating until we reach the value returned by upper bound, the first element strictly greater than upper.
For example, the following loop iterates over all elements in the set in the range [10, 100]:

set<int>::iterator stop = mySet.upper bound(100);
for (set<int>::iterator itr = mySet.lower bound(10); itr != stop; ++itr)
/* ... perform tasks... */

Part of the beauty of upper bound and lower bound is that it doesn't matter whether the elements
specified as arguments to the functions actually exist in the set. For example, suppose that we run the
above for loop on a set containing all the odd numbers between 3 and 137. In this case, neither 10 nor
100 are contained in the set. However, the code will still work correctly. The lower bound function
returns an iterator to the first element at least as large as its argument, and in the set of odd numbers
would return an iterator to the element 11. Similarly, upper bound returns an iterator to the first
element strictly greater than its argument, and so would return an iterator to the element 101.

Summary of set

The following table lists some of the most important set functions. Again, we haven't covered const yet,
so for now it's safe to ignore it. We also haven't covered const_iterators, but for now you can just treat
them as iterators that can't write any values.

Constructor: set<T> () set<int> mySet;

Constructs an empty set.

Constructor: set<T> (const set<T>& other) [sSet<int> myOtherSet = mySet;

Constructs a set that's a copy of another set.




-132 -

Chapter 6: STL Associative Containers and Iterators

Constructor: set<T> (InputIterator start,
InputIterator stop)

set<int> mySet (myVec.begin (), myVec.end());
Constructs a set containing copies of the elements in the range
[start, stop). Any duplicates are discarded, and the elements
are sorted. Note that this function accepts iterators from any
source.

size type size() const int numEntries = mySet.size();
Returns the number of elements contained in the set.
bool empty () const if (mySet.empty()) { ... }

Returns whether the set is empty.

void clear ()

mySet.clear () ;

Removes all elements from the set.

iterator begin()

const iterator begin() const

set<int>::iterator itr = mySet.begin();

Returns an iterator to the start of the set. Be careful when

modifying elements in-place.

iterator end()
const iterator end()

while(itr != mySet.end()) { ... }

Returns an iterator to the element one past the end of the final
element of the set.

pair<iterator, bool>
insert (const T& value)
void insert (Inputlterator begin,
InputIterator end)

mySet.insert (4);
mySet.insert (myVec.begin (),

myVec.end());

The first version inserts the specified value into the set. The
return type is a pair containing an iterator to the element and a
bool indicating whether the element was inserted successfully
(true) or if it already existed (false). The second version
inserts the specified range of elements into the set, ignoring
duplicates.

iterator find(const T& element)
const iterator

find(const T& element) const

if (mySet.find(0) != mySet.end()) { ... }

Returns an iterator to the specified element if it exists, and end
otherwise.

size type count(const T& item) const

if (mySet.count(0)) { ... }

Returns 1 if the specified element is contained in the set, and 0
otherwise.

size type erase(const T& element)

vold erase(iterator itr);

void erase (iterator start,
iterator stop);

{...} // 0 was erased
mySet.erase (mySet.begin());

(
mySet.erase (mySet.begin (),

if (mySet.erase (0))

mySet.end()) ;

Removes an element from the set. In the first version, the
specified element is removed if found, and the function returns 1
if the element was removed and 0 if it wasn't in the set. The
second version removes the element pointed to by itr. The final
version erases elements in the range [start, stop).




Chapter 6: STL Associative Containers and Iterators -133-

iterator lower bound(const T& value) itr = mySet.lower bound(5);

Returns an iterator to the first element that is greater than or
equal to the specified value. This function is useful for obtaining
iterators to a range of elements, especially in conjunction with
upper bound.

iterator upper bound(const T& value) itr = mySet.upper bound(100);

Returns an iterator to the first element that is greater than the
specified value. Because this element must be strictly greater
than the specified value, you can iterate over a range until the
iterator is equal to upper bound to obtain all elements less than
or equal to the parameter.

A Useful Helper: pair

We have just finished our treatment of the set and are about to move on to one of the STL's most useful
containers, the map. However, before we can cover the map in any detail, we must first make a quick
diversion to a useful helper class, the pair.

pair is a parameterized class that simply holds two values of arbitrary type. pair, defined in <utility>,
accepts two template arguments and is declared as

pair<TypeOne, TypeTwo>

pair has two fields, named first and second, which store the values of the two elements of the pair;
first is a variable of type TypeOne, second of type TypeTwo. For example, to make a pair that can hold
an int and a string, we could write

pair<int, string> myPair;
We could then access the pair's contents as follows

pair<int, string> myPair;
myPair.first = 137;
myPair.second = "C++ 1is awesome!";

In some instances, you will need to create a pair on-the-fly to pass as a parameter (especially to the map's
insert). You can therefore use the make pair function as follows:

pair<int, string> myPair = make pair (137, "string!");

Interestingly, even though we didn't specify what type of pair to create, the make pair function was able
to deduce the type of the pair from the types of the elements. This has to do with how C++ handles
function templates and we'll explore this in more detail later.

Representing Relationships with map

One of the most important data structures in modern computer programming is the map, a way of tagging
information with some other piece of data. The inherent idea of a mapping should not come as a surprise
to you. Almost any entity in the real world has extra information associated with it. For example, days of
the year have associated events, items in your refrigerator have associated expiration dates, and people
you know have associated titles and nicknames. The map STL container manages a relationship between a



-134 - Chapter 6: STL Associative Containers and Iterators

set of keys and a set of values. For example, the keys in the map might be email addresses, and the values
the names of the people who own those email addresses. Alternatively, the keys might be
longitude/latitude pairs, and the values the name of the city that resides at those coordinates.

Data in a map is stored in key/value pairs. Like the set, these elements are unordered. Also like the set, it
is possible to query the map for whether a particular key exists in the map (note that the check is “does key
X exist?” rather than “does key/value pair X exist?”). Unlike the set, however, the map also allows clients to
ask “what is the value associated with key X?” For example, in a map from longitude/latitude pairs to city
names, it is possible to give a properly-constructed pair of coordinates to the map, then get back which
city is at the indicated location (if such a city exists).

The map is unusual as an STL container because unlike the vector, deque, and set, the map is
parameterized over two types, the type of the key and the type of the value. For example, to create a map
from strings to ints, you would use the syntax

map<string, int> myMap;

Like the STL set, behind the scenes the map is implemented using a balanced binary tree. This means that
the keys in the map must be comparable using the less-than operator. Consequently, you won't be able to
use your own custom structs as keys in an STL map. However, the values in the map needn't be
comparable, so it's perfectly fine to map from strings to custom struct types. Again, when we cover
operator overloading later in this text, you will see how to store arbitrary types as keys in an STL map.

The map supports many different operations, of which four are key:

* Inserting a new key/value pair.

*  Checking whether a particular key exists.

*  Querying which value is associated with a given key.
* Removing an existing key/value pair.

We will address each of these in turn.

In order for a map to be useful, we will need to populate it with a collection of key/value pairs. There are
two ways to insert key/value pairs into the map. The simplest way to insert key/value pairs into a map is
to user the element selection operator (square brackets) to implicitly add the pair, as shown here:

map<string, int> numberMap;
numberMap|["zero"] = 0;

numberMap ["one"] =
numberMap ["two"] =
/* ... etc. ... */

1;

2;

This code creates a new map from strings to ints. It then inserts the key "zero™ which maps to the
number zero, the key "one" which maps to the number one, etc. Notice that this is a major way in which
the map differs from the vector. Indexing into a vector into a nonexistent position will cause undefined
behavior, likely a full program crash. Indexing into a map into a nonexistent key implicitly creates a
key/value pair.

The square brackets can be used both to insert new elements into the map and to query the map for the
values associated with a particular key. For example, assuming that numberMap has been populated as
above, consider the following code snippet:



Chapter 6: STL Associative Containers and Iterators -135-

cout << numberMap["zero"] << endl;
cout << numberMap["two"] * numberMap|["two"] << endl;

The output of this program is

0
4

On the first line, we query the numberMap map for the value associated with the key "zero", which is the
number zero. The second line looks up the value associated with the key "two" and multiplies it with
itself. Since "two" maps to the number two, the output is four.

Because the square brackets both query and create key/value pairs, you should use care when looking
values up with square brackets. For example, given the above number map, consider this code:

cout << numberMap|["xyzzy"] << endl;

Because "xyzzy" is not a key in the map, this implicitly creates a key/value pair with "xyzzy" as the key
and zero as the value. (Like the vector and deque, the map will zero-initialize any primitive types used as
values). Consequently, this code will output

0

and will change the numberMap map so that it now has "xyzzy" as a key. If you want to look up a
key/value pair without accidentally adding a new key/value pair to the map, you can use the map's find
member function. find takes in a key, then returns an iterator that points to the key/value pair that has
the specified key. If the key does not exist, find returns the map's end () iterator as a sentinel. For
example:

map<string, int>::iterator itr = numberMap.find("xyzzy");

if (itr == numberMap.end())

cout << "Key does not exist." << endl;
else

/* oo K/

When working with an STL vector, deque, or set, iterators simply iterated over the contents of the
container. That is, a vector<int>::iterator can be dereferenced to yield an int, while a
set<string>::iterator dereferences to a string. map iterators are slightly more complicated because
they dereference to a key/value pair. In particular, if you have a map<keyType, ValueType>, then the
iterator will dereference to a value of type

pair<const KeyType, ValueType>

This is a pair of an immutable key and a mutable value. We have not talked about the const keyword yet,
but it means that keys in a map cannot be changed after they are set (though they can be removed). The
values associated with a key, on the other hand, can be modified.

Because map iterators dereference to a pair, you can access the keys and values from an iterator as
follows:



-136 - Chapter 6: STL Associative Containers and Iterators

map<string, int>::iterator itr = numberMap.find("xyzzy");
if (itr == numberMap.end())
cout << "Key does not exist." << endl;
else
cout << "Key " << itr->first << " has value " << itr->second << endl;

That is, to access the key from a map iterator, you use the arrow operator to select the first field of the
pair. The value is stored in the second field. This naturally segues into the stereotypical “iterate over the
elements of a map loop,” which looks like this:

for (map<string, int>::iterator itr = myMap.begin(); itr != myMap.end(); ++itr)
cout << itr->first << ": " << itr->second << endl;

When iterating over a map, the key/value pairs will be produced sorted by key from lowest to highest. This
means that if we were to iterate over the numberMap map from above printing out key/value pairs, the
output would be

one: 1
two: 2
zero: 0

Since the keys are strings which are sorted in alphabetical order.

You've now seen how to insert, query, and iterate over key/value pairs. Removing key/value pairs from a
map is also fairly straightforward. To do so, you use the erase function as follows:

myMap.erase ("key") ;

That is, the erase function accepts a key, then removes the key/value pair from the map that has that key (if
it exists).

As with all STL containers, you can remove all key/value pairs from a map using the clear function,
determine the number of key/value pairs using the size function, etc. There are a few additional
operations on a map beyond these basic operations, some of which are covered in the next section.

insert and How to Avoid It

As seen above, you can use the square brackets operator to insert and update key/value pairs in the map.
However, there is another mechanism for inserting key/value pairs: insert. Like the set's insert
function, you need only specify what to insert, since the map, like the set, does not store values in a
particular order. However, because the map stores elements as key/value pairs, the parameter to the
insert function should be a pair object containing the key and the value. For example, the following
code is an alternative means of populating the numbe rMap map:

map<string, int> numberMap;
numberMap.insert (make pair ("zero", 0));
numberMap.insert (make pair ("one", 1));
numberMap.insert (make pair ("two", 2));

/* oo %/

There is one key difference between the insert function and the square brackets. Consider the following
two code snippets:



Chapter 6: STL Associative Containers and Iterators -137 -

/* Populate a map using [ ] */
map<string, string> one;
one["C++"] = "sad";

one["C++"] = "happy";

/* Populate a map using insert */
map<string, string> two;
two.insert (make pair ("C++", "sad"));
two.insert (make pair ("C++", "happy")):;

In the first code snippet, we create a map from strings to strings called one. We first create a key/value
pair mapping "C++" to "sad", and then overwrite the value associated with "C++" to "happy". After this
code executes, the map will map the key "C++" to the value "happy", since in the second line the value was
overwritten. In the second code snippet, we call insert twice, once inserting the key "c++" with the
value "sad" and once inserting the key "c++" with the value "happy". When this code executes, the map
will end up holding one key/value pair: "Cc++" mapping to "sad". Why is this the case?

Like the STL set, the map stores a unique set of keys. While multiple keys may map to the same value,
there can only be one key/value pair for any given key. When inserting and updating keys with the square
brackets, any updates made to the map are persistent; writing code to the effect of myMap [key] = value
ensures that the map contains the key key mapping to value value. However, the insert function is not
as forgiving. If you try to insert a key/value pair into a map using the insert function and the key already
exists, the map will not insert the key/value pair, nor will it update the value associated with the existing
key. To mitigate this, the map's insert function returns a value of type pair<iterator, bool>. The
bool value in the pair indicates whether the insert operation succeeded; a result of true means that
the key/value pair was added, while a result of false means that the key already existed. The iterator
returned by the insert function points to the key/value pair in the map. If the key/value pair was newly-
added, this iterator points to the newly-inserted value, and if a key/value pair already exists the iterator
points to the existing key/value pair that prevented the operation from succeeding. If you want to use
insert to insert key/value pairs, you can write code to the following effect:

/* Try to insert normally. */
pair<map<string, int>::iterator, bool> result =
myMap.insert (make pair ("STL", 137));

/* If insertion failed, manually set the value. */
if (!result.second)
result.first->second = 137;

In the last line, the expression result.first->second is the value of the existing entry, since
result.first yields an iterator pointing to the entry, so result. first->second is the value field of the
iterator to the entry. As you can see, the pair can make for tricky, unintuitive code.

If insert is so inconvenient, why even bother with it? Usually, you won't, and will use the square brackets
operator instead. However, when working on an existing codebase, you are extremely likely to run into the
insert function, and being aware of its somewhat counterintuitive semantics will save you many hours of
frustrating debugging.



-138-

map Summary

Chapter 6: STL Associative Containers and Iterators

The following table summarizes the most important functions on the STL map container. Feel free to
ignore const and const_iterators; we haven't covered them yet.

Constructor: map<kK, V> ()

map<int, string> myMap;

Constructs an empty map.

Constructor: map<k, V> (const map<K, V>& other)

map<int, string> myOtherMap = myMap;

Constructs a map that's a copy of another map.

Constructor: map<K, V> (InputIterator start,
InputIterator stop)

map<string, int> myMap (myVec.begin (),
myVec.end());

Constructs a map containing copies of the elements in the
range [start,stop). Any duplicates are discarded, and
the elements are sorted. Note that this function accepts
iterators from any source, but they must be iterators over
pairs of keys and values.

size type size() const

int numEntries = myMap.size();

Returns the number of elements contained in the map.

bool empty() const

if (myMap.empty ()) { ... }

Returns whether the map is empty.

void clear ()

myMap.clear () ;

Removes all elements from the map.

iterator begin()
const iterator begin() const

map<int>::iterator itr = myMap.begin();

Returns an iterator to the start of the map. Remember that
iterators iterate over pairs of keys and values.

iterator end()
const _iterator end()

while(itr != myMap.end()) { ... }

Returns an iterator to the element one past the end of the
final element of the map.

pair<iterator, bool>
insert (const pair<const K, V>& value)
void insert (InputlIterator begin,
InputIterator end)

myMap.insert(make_pair("STL", 137));
myMap.insert (myVec.begin (), myVec.end());

The first version inserts the specified key/value pair into
the map. The return type is a pair containing an iterator
to the element and a bool indicating whether the element
was inserted successfully (true) or if it already existed
(false). The second version inserts the specified range of
elements into the map, ignoring duplicates.

V& operator[] (const K& key)

myMap["STL"] = "is awesome";

Returns the value associated with the specified key, if it exists.
If not, a new key/value pair will be created and the value
initialized to zero (if it is a primitive type) or the default value
(for non-primitive types).




Chapter 6: STL Associative Containers and Iterators

-139-

iterator find(const K& element)
const iterator find(const K& element)

const

if (myMap.find(0) != myMap.end()) { ... }

Returns an iterator to the key/value pair having the
specified key if it exists, and end otherwise.

size type count (const K& item)

const

if (myMap.count(0)) { ... }

Returns 1 if some key/value pair in the map has specified
key and 0 otherwise.

size_type erase (const K& element)

void erase (iterator itr);

void erase(iterator start,
iterator stop);

if (myMap .erase(0)) {...}
myMap.erase (myMap.begin()) ;
myMap.erase (myMap.begin(), myMap.end());

Removes a key/value pair from the map. In the first
version, the key/value pair having the specified key is
removed if found, and the function returns 1 if a pair was
removed and 0 otherwise. The second version removes
the element pointed to by itr. The final version erases
elements in the range [start, stop).

iterator lower bound(const K& value)

itr = myMap.lower bound(5);

Returns an iterator to the first key/value pair whose key is
greater than or equal to the specified value. This function
is useful for obtaining iterators to a range of elements,
especially in conjunction with upper bound.

iterator upper bound(const K& value)

itr = myMap.upper bound(100);

Returns an iterator to the first key/value pair whose key is
greater than the specified value. Because this element
must be strictly greater than the specified value, you can
iterate over a range until the iterator is equal to
upper bound to obtain all elements less than or equal to
the parameter.

Extended Example: Keyword Counter

To give you a better sense for how map and set can be used in practice, let's build a simple application that
brings them together: a keyword counter. C++, like most programming languages, has a set of reserved
words, keywords that have a specific meaning to the compiler. For example, the keywords for the primitive
types int and double are reserved words, as are the switch, for, while, do, and if keywords used for
control flow. For your edification, here's a complete list of the reserved words in C++:

and
and eq
asm
auto
bitand
bitor
bool
break
case
catch
char
class
compl
const
const cast

continue
default
delete
do
double
dynamic cast
else
enum
explicit
export
extern
false
float
for
friend

goto public try
if register typedef
inline reinterpret cast typeid
int return typename
long short union
mutable signed unsigned
namespace sizeof using
new static virtual
not static_cast void
not eq struct volatile
operator switch wchar t
or template while
or_eq this xor
private throw xXor_eq

protected true



- 140 - Chapter 6: STL Associative Containers and Iterators

We are interested in answering the following question: given a C++ source file, how many times does each
reserved word come up? This by itself might not be particularly enlightening, but in some cases it's
interesting to see how often (or infrequently) the keywords come up in production code.

We will suppose that we are given a file called keywords. txt containing all of C++'s reserved words. This
file is structured such that every line of the file contains one of C++'s reserved words. Here's the first few
lines:

File: keywords. txt

and
and eq
asm
auto
bitand
bitor
bool
break

Given this file, let's write a program that prompts the user for a filename, loads the file, then reports the
frequency of each keyword in that file. For readability, we'll only print out a report on the keywords that
actually occurred in the file. To avoid a major parsing headache, we'll count keywords wherever they
appear, even if they're in comments or contained inside of a string.

Let's begin writing this program. We'll use a top-down approach, breaking the task up into smaller
subtasks which we will implement later on. Here is one possible implementation of the main function:

#include <iostream>
#include <string>
#include <fstream>
#include <map>
using namespace std;

/* Function: OpenUserFile (ifstream& fileStream);

* Usage: OpenUserFile (myStream) ;

K e

* Prompts the user for a filename until a valid filename

* is entered, then sets fileStream to read from that file.
*/

void OpenUserFile(ifstream& fileStream);

/* Function: GetFileContents (ifstream& file);

* Usage: string contents = GetFileContents (ifstream& file);

K e ——_—_—_———————————————————————

* Returns a string containing the contents of the file passed
* in as a parameter.

*/

string GetFileContents (ifstream& file);

/* Function: GenerateKeywordReport (string text);
* Usage: map<string, size t> keywords = GenerateKeywordReport (contents);

* Returns a map from keywords to the frequency at which those keywords

* appear in the input text string. Keywords not contained in the text will
* not appear in the map.

*/

map<string, size t> GenerateKeywordReport (string contents);




Chapter 6: STL Associative Containers and Iterators -141-

int main() {
/* Prompt the user for a valid file and open it as a stream. */
ifstream input;
OpenUserFile (input) ;

/* Generate the report based on the contents of the file. */
map<string, size t> report = GenerateKeywordReport (GetFileContents (input));

/* Print a summary. */
for (map<string, size t>::iterator itr = report.begin();
itr != report.end(); ++itr)
cout << "Keyword " << itr->first << " occurred "
<< itr->second << " times." << endl;

The breakdown of this program is as follows. First, we prompt the user for a file using the OpenUserFile
function. We then obtain the file contents as a string and pass it into GenerateKeywordReport, which
builds us a map from strings of the keywords to size tsrepresenting the frequencies. Finally, we print
out the contents of the map in a human-readable format. Of course, we haven't implemented any of the
major functions that this program will use, so this program won't link, but at least it gives a sense of where
the program is going.

Let's begin implementing this code by writing the OpenUserFile function. Fortunately, we've already
written this function last chapter in the Snake example. The code for this function is reprinted below:

void OpenUserFile(ifstreamé& input) {
while (true) {
cout << "Enter filename: ";
string filename = GetLine();

input.open(filename.c_str()); // See Chapter 3 for .c_str().
if (input.is_open()) return;

cout << "Sorry, I can't find the file " << filename << endl;
input.clear();

Here, the GetLine () function is from the chapter on streams, and is implemented as

string GetLine () {
string line;
getline (input, line);
return line;

Let's move on to the next task, reading the file contents into a string. This can be done in a few lines of
code using the streams library. The idea is simple: we'll maintain a string containing all of the file
contents encountered so far, and continuously concatenate on the next line of the file (which we'll read
with the streams library's handy get1line function). This is shown here:



-142 - Chapter 6: STL Associative Containers and Iterators

string GetFileContents (ifstreamé& input) {
/* String which will hold the file contents. */
string result;

/* Keep reading a line of the file until no data remains. *
string line;
while (getline (input, line))
result += line + "\n"; // Add the newline character; getline removes it

return result;

All that remains at this point is the GenerateKeywordReport function, which ends up being most of the
work. The basic idea behind this function is as follows:

* Load in the list of keywords.

*  For each word in the file:
o Ifit's a keyword, increment the keyword count appropriately.
o Otherwise, ignore it.

We'll take this one step at a time. First, let's load in the list of keywords. But how should we store those
keywords? We'll be iterating over words from the user's file, checking at each step whether the given
word is a keyword. This means that we will want to store the keywords in a way where we can easily
query whether a string is or is not contained in the list of keywords. This is an ideal spot for a set, which
is optimized for these operations. We can therefore write a function that looks like this to read the
reserved words list into a set:

set<string> LoadKeywords () {
ifstream input ("keywords.txt"); // No error checking for brevity's sake
set<string> result;

/* Keep reading strings out of the file until we cannot read any more.
* After reading each string, store it in the result set. We can either
* use getline or the stream extraction operator here, but the stream
* extraction operator is a bit more general.
*/
string keyword;
while (input >> keyword)
result.insert (keyword) ;

return result;

}

We now have a way to read in the set of keywords, and can move on to our next task: reading all of the
words out of the file and checking whether any of them are reserved words. This is surprisingly tricky. We
are given a string, a continuous sequence of characters, and from this string want to identify where each
“word” is. How are we to do this? There are many options at our disposal (we'll see a heavy-duty way to
do this at the end of the chapter), but one particularly elegant method is to harness a stringstream. If
you'll recall, the stringstream class is a stream object that can build and parse strings using standard
stream operations. Further recall that when reading string data out of a stream using the stream
extraction operator, the read operation will proceed up until it encounters whitespace or the end of the
stream. That is, if we had a stream containing the text

This, dear reader, is a string.



Chapter 6: STL Associative Containers and Iterators -143 -

If we were to read data from the stream one string at a time, we would get back the strings

This,
dear
reader,
is

a
string.

In that order. As you can see, the input is broken apart at whitespace boundaries, rather than word
boundaries. However, whenever we encounter a word that does not have punctuation immediately on
either side, the string is parsed correctly. This suggests a particularly clever trick. We will modify the full
text of the file by replacing all punctuation characters with whitespace characters. Having performed this
manipulation, if we parse the file contents using a stringstream, each string handed back to us will be a
complete word.

Let's write a function, PreprocessString, which accepts as input a string by reference, then replaces
all punctuation characters in that string with the space character. To help us out, we have the <cctype>
header, which exports the ispunct function. ispunct takes in a single character, then returns whether or
not it is a punctuation character. Unfortunately, ispunct treats underscores as punctuation, which will
cause problems for some reserved words (for example, static_cast), and so we'll need to special-case it.
The PreprocessString function is as follows:

void PreprocessString(string& text) {

for (size t k = 0; k < text.size(); ++k)
if (ispunct(text[k]) && text[k] != ' ') // If we need to change it...
text[k] =" '; // ... replace it with a space.

Combining this function with TLoadKeywords gives wus this partial implementation of
GenerateKeywordReport

map<string, size t> GenerateKeywordReport (string fileContents) {
/* Load the set of keywords from disk. */
set<string> keywords = LoadKeywords () ;

/* Preprocess the string to allow for easier parsing. */
PreprocessString (fileContents);

/* ... need to fill this in ... */

All that's left to do now is tokenize the string into individual words, then build up a frequency map of each
keyword. To do this, we'll funnel the preprocessed file contents into a stringstream and use the
prototypical stream reading loop to break it apart into individual words. This can be done as follows:



-144 - Chapter 6: STL Associative Containers and Iterators

map<string, size t> GenerateKeywordReport (string fileContents) {
/* Load the set of keywords from disk. */
set<string> keywords = LoadKeywords () ;

/* Preprocess the string to allow for easier parsing. */
PreprocessString (fileContents);

/* Populate a stringstream with the file contents. */
stringstream tokenizer;
tokenizer << fileContents;

/* Loop over the words in the file, building up the report. */
map<string, size t> result;

string word;
while (tokenizer >> word)
/* ... process word here ... */

Now that we have a loop for extracting single words from the input, we simply need to check whether each
word is a reserved word and, if so, to make a note of it. This is done here:

map<string, size t> GenerateKeywordReport (string fileContents) {
/* Load the set of keywords from disk. */
set<string> keywords = LoadKeywords() ;

/* Preprocess the string to allow for easier parsing. */
PreprocessString(fileContents) ;

/* Populate a stringstream with the file contents. */
stringstream tokenizer;
tokenizer << fileContents;

/* Loop over the words in the file, building up the report. */
map<string, size t> result;

string word;
while (tokenizer >> word)
if (keywords.count (word))
++ result[word];

return result;

Let's take a closer look at what this code is doing. First, we check whether the current word is a keyword
by using the set's count function. If so, we increment the count of that keyword in the file by writing
++result[word]. This is a surprisingly compact line of code. If the keyword has not been counted
before, then ++result [word] will implicitly create a new key/value pair using that keyword as the key
and initializing the associated value to zero. The ++ operator then kicks in, incrementing the value by one.
Otherwise, if the key already existed in the map, the line of code will retrieve the value, then increment it
by one. Either way, the count is updated appropriately, and the map will be populated correctly.

We now have a working implementation of the GenerateKeywordReport function, and, combined with
the rest of the code we've written, we now have a working implementation of the keyword counting
program. As an amusing test, the result of running this program on itself is as follows:



Chapter 6: STL Associative Containers and Iterators

Keyword for occurred 3 times.
Keyword if occurred 3 times.
Keyword int occurred 1 times.
Keyword namespace occurred 1 times.
Keyword return occurred 6 times.
Keyword true occurred 1 times.
Keyword using occurred 1 times.
Keyword void occurred 2 times.
Keyword while occurred 4 times.

- 145 -

How does this compare to production code? For reference, here is the output of the program when run on
the monster source file nsCSSFrameConstructor.cpp, an 11,000+ line file from the Mozilla Firefox
source code:’

Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword
Keyword

and occurred 268 times.
auto occurred 2 times.
break occurred 58 times.
case occurred 66 times.
catch occurred 2 times.
char occurred 4 times.
class occurred 10 times.
const occurred 149 times.
continue occurred 11 times.
default occurred 8 times.
delete occurred 6 times.
do occurred 99 times.

else occurred 135 times.
enum occurred 1 times.
explicit occurred 4 times.
extern occurred 4 times.
false occurred 12 times.
float occurred 15 times.
for occurred 292 times.
friend occurred 3 times.
if occurred 983 times.
inline occurred 86 times.
long occurred 5 times.
namespace occurred 5 times.
new occurred 59 times.

not occurred 145 times.
operator occurred 1 times.
or occurred 108 times.
private occurred 2 times.
protected occurred 1 times.
public occurred 5 times.
return occurred 452 times.
sizeof occurred 3 times.
static occurred 118 times.
static_cast occurred 20 times.
struct occurred 8 times.
switch occurred 4 times.
this occurred 205 times.
true occurred 14 times.
try occurred 10 times.
using occurred 6 times.
virtual occurred 1 times.
void occurred 82 times.
while occurred 53 times.

As you can see, we have quite a lot of C++ ground to cover - just look at all those keywords we haven't

covered yet!

*

As of April 12,2010



-146 - Chapter 6: STL Associative Containers and Iterators

Multicontainers

The STL provides two special “multicontainer” classes, multimap and multiset, that act as maps and
sets except that the values and keys they store are not necessarily unique. That is, a multiset could
contain several copies of the same value, while a multimap might have duplicate keys associated with
different values.

multimap and multiset (declared in <map> and <set>, respectively) have identical syntax to map and
set, except that some of the functions work slightly differently. For example, the count function will
return the number of copies of an element an a multicontainer, not just a binary zero or one. Also, while
find will still return an iterator to an element if it exists, the element it points to is not guaranteed to be
the only copy of that element in the multicontainer. Finally, the erase function will erase all copies of the
specified key or element, not just the first it encounters.

One important distinction between the multimap and regular map is the lack of square brackets. On a
standard STL map, you can use the syntax myMap[key] = value to add or update a key/value pair.
However, this operation only makes sense because keys in a map are unique. When writing myMap [key],
there is only one possible key/value pair that could be meant. However, in a multimap this is not the case,
because there may be multiple key/value pairs with the same key. Consequently, to insert key/value pairs
into a multimap, you will need to use the insert function. Fortunately, the semantics of the multimap
insert function are much simpler than the map's insert function, since insertions never fail in a
multimap. If you try to insert a key/value pair into a multimap for which the key already exists in the
multimap, the new key/value pair will be inserted without any fuss. After all, multimap exists to allow
single keys to map to multiple values!

One function that's quite useful for the multicontainers is equal range. equal range returns a
pair<iterator, iterator> that represents the span of entries equal to the specified value. For
example, given a multimap<string, int>, you could use the following code to iterate over all entries
with key “STL":

/* Store the result of the equal range */
pair<multimap<string, int>::iterator, multimap<string, int>::iterator>
myPair = myMultiMap.equal range ("STL");

/* Iterate over it! */
for (multimap<string, int>::iterator itr = myPair.first;
itr !'= myPair.second; ++itr)
cout << itr->first << ": " << itr->second << endl;

The multicontainers are fairly uncommon in practice partially because they can easily be emulated using
the regular map or set. For example, a multimap<string, int> behaves similarly to a map<string,
vector<int> > since both act as a map from strings to some number of ints. However, in many cases
the multicontainers are exactly the tool for the job; we'll see them used later in this chapter.

Extended Example: Finite Automata

Computer science is often equated with programming and software engineering. Many a computer
science student has to deal with the occasional “Oh, you're a computer science major! Can you make me a
website?” or “Computer science, eh? Why isn't my Internet working?” This is hardly the case and
computer science is a much broader discipline that encompasses many fields, such as artificial
intelligence, graphics, and biocomputation.



Chapter 6: STL Associative Containers and Iterators -147 -

One particular subdiscipline of computer science is computability theory. Since computer science involves
so much programming, a good question is exactly what we can command a computer to do. What sorts of
problems can we solve? How efficiently? What problems can't we solve and why not? Many of the most
important results in computer science, such as the undecidability of the halting problem, arise from
computability theory.

But how exactly can we determine what can be computed with a computer? Modern computers are
phenomenally complex machines. For example, here is a high-level model of the chipset for a mobile Intel
processor: [Intel]

Intel® Core™2 Duo
Processor for Mobile
Intel® 965 Express
Chipset Family

FSB
533/B00 MHz

Mobile Intel® 965

Express Chipset

Intek® Turbo
Memory

Intel” 82801

ntele 82566MM N
Gigabit o
Network Connection

10 Ports

ntel® Wireless

WiFi Link
4965AGN

Controller Link 1

PCI

Fower
Management ISMBUS 2.0
GPIO

Modeling each of these components is exceptionally tricky, and trying to devise any sort of proof about the
capabilities of such a machine would be all but impossible. Instead, one approach is to work with
automata, abstract mathematical models of computing machines (the singular of automata is the plural of
automaton). Some types of automata are realizable in the physical world (for example, deterministic and
nondeterministic finite automata, as you'll see below), while others are not. For example, the Turing
machine, which computer scientists use as an overapproximation of modern computers, requires infinite
storage space, as does the weaker pushdown automaton.

Although much of automata theory is purely theoretical, many automata have direct applications to
software engineering. For example, most production compilers simulate two particular types of automata
(called pushdown automata and nondeterministic finite automata) to analyze and convert source code into
a form readable by the compiler's semantic analyzer and code generator. Regular expression matchers,
which search through text strings in search of patterned input, are also frequently implemented using an
automaton called a deterministic finite automaton.

In this extended example, we will introduce two types of automata, deterministic finite automata and
nondeterministic finite automata, then explore how to represent them in C++. We'll also explore how these
automata can be used to simplify difficult string-matching problems.



-148 - Chapter 6: STL Associative Containers and Iterators

Deterministic Finite Automata

Perhaps the simplest form of an automaton is a deterministic finite automaton, or DFA. At a high-level, a
DFA is similar to a flowchart - it has a collection of states joined by various transitions that represent how
the DFA should react to a given input. For example, consider the following DFA:

This DFA has four states, labeled qo, q1, 92, and g3, and a set of labeled transitions between those states. For
example, the state qo has a transition labeled 0 to q; and a transition labeled 1 to q,. Some states have
transitions to themselves; for example, q, transitions to itself on a 1, while gs transitions to itself on either
a 0 or 1. Note that as shorthand, the transition labeled 0, 1 indicates two different transitions, one labeled
with a 0 and one labeled with a 1. The DFA has a designated state state, in this case qo, which is indicated
by the arrow labeled start.

Notice that the state g3 has two rings around it. This indicates that qs is an accepting state, which will have
significance in a moment when we discuss how the DFA processes input.

Since all of the transitions in this DFA are labeled either 0 or 1, this DFA is said to have an alphabet of {0,
1}. A DFA can use any nonempty set of symbols as an alphabet; for example, the Latin or Greek alphabets
are perfectly acceptable for use as alphabets in a DFA, as is the set of integers between 42 and 137. By
definition, every state in a DFA is required to have a transition for each symbol in its alphabet. For
example, in the above DFA, each state has exactly two transitions, one labeled with a 0 and the other with a
1. Notice that state g3 has only one transition explicitly drawn, but because the transition is labeled with
two symbols we treat it as two different transitions.

The DFA is a simple computing machine that accepts as input a string of characters formed from its
alphabet, processes the string, and then halts by either accepting the string or rejecting it. In essence, the
DFA is a device for discriminating between two types of input - input for which some criterion is true and
input for which it is false. The DFA starts in its designated start state, then processes its input character-
by-character by transitioning from its current state to the state indicated by the transition. Once the DFA
has finished consuming its input, it accepts the string if it ends in an accepting state; otherwise it rejects
the input.

To see exactly how a DFA processes input, let us consider the above DFA simulated on the input 0011.
Initially, we begin in the start state, as shown here:

Since the first character of our string is a 0, we follow the transition to state qi, as shown here:



Chapter 6: STL Associative Containers and Iterators - 149 -

The second character of input is also a 0, so we follow the transition labeled with a 0 and end up back in
state qi, leaving us in this state:

Next, we consume the next input character, a 1, which causes us to follow the transition labeled 1 to state
Qs:

The final character of input is also a 1, so we follow the transition labeled 1 and end back up in gs:

We are now done with our input, and since we have ended in an accepting state, the DFA accepts this
input.

We can similarly consider the action of this DFA on the string 111. Initially the machine will start in state
go, then transition to state q; on the first input. The next two inputs each cause the DFA to transition back
to state g, so once the input is exhausted the DFA ends in state q, so the DFA rejects the input. We will
not prove it here, but this DFA accepts all strings that have at least one 0 and at least one 1.

Two important details regarding DFAs deserve some mention. First, it is possible for a DFA to have
multiple accepting states, as is the case in this DFA:

As with the previous DFA, this DFA has four states, but notice that three of them are marked as accepting.
This leads into the second important detail regarding DFAs - the DFA only accepts its input if the DFA ends
in an accepting state when it runs out of input. Simply transitioning into an accepting state does not cause
the DFA to accept. For example, consider the effect of running this DFA on the input 0101. We begin in the
start state, as shown here:



-150 - Chapter 6: STL Associative Containers and Iterators

We first consume a 0, sending us to state qi:

The next input is a 0, sending us to qa:

Finally, we read in a 1, sending us back to qo:

Since we are out of input and are not in an accepting state, this DFA rejects its input, even though we
transitioned through every single accepting state. If you want a fun challenge, convince yourself that this
DFA accepts all strings that contain an odd number of 0s or an odd number of 1s (inclusive OR).

Representing a DFA



Chapter 6: STL Associative Containers and Iterators -151-

A DFA is a simple model of computation that can easily be implemented in software or hardware. For any
DFA, we need to store five pieces of information:”

The set of states used by the DFA.
The DFA's alphabet.

The start state.

The state transitions.

The set of accepting states.

Al e

Of these five, the one that deserves the most attention is the fourth, the set of state transitions. Visually,
we have displayed these transitions as arrows between circles in the graph. However, another way to treat
state transitions is as a table with states along one axis and symbols of the alphabet along the other. For
example, here is a transition table for the DFA described above:

State |0 1

o g Q2
q: Qo Qs
qz B Qo
gs qz  qQu

To determine the state to transition to given a current state and an input symbol, we look up the row for
the current state, then look at the state specified in the column for the current input.

If we want to implement a program that simulates a DFA, we can represent almost all of the necessary
information simply by storing the transition table. The two axes encode all of the states and alphabet
symbols, and the entries of the table represent the transitions. The information not stored in this table is
the set of accepting states and the designated start state, so provided that we bundle this information with
the table we have a full description of a DFA.

To concretely model a DFA using the STL, we must think of an optimal way to model the transition table.
Since transitions are associated with pairs of states and symbols, one option would be to model the table
as an STL map mapping a state-symbol pair to a new state. If we represent each symbol as a char and each
state as an int (i.e. qo is 0, q1 is 1, etc.), this leads to a state transition table stored as a map<pair<int,
char>, int>. If we also track the set of accepting states as a set<int>, we can encode a DFA as follows:

struct DFA {
map<pair<int, char>, int> transitions;
set<int> acceptingStates;
int startState;

bi

For the purposes of this example, assume that we have a function which fills this DFa struct will relevant
data. Now, let's think about how we might go about simulating the DFA. To do this, we'll write a function
SimulateDFA which accepts as input a DFA struct and a string representing the input, simulates the DFA
when run on the given input, and then returns whether the input was accepted. We'll begin with the
following:

bool SimulateDFA (DFA& d, string input) {

* In formal literature, a DFA is often characterized as a quintuple (Q, Z, qq, 6, F) of the states, alphabet, start state,
transition table, and set of accepting states, respectively. Take CS154 if you're interested in learning more about
these wonderful automata, or CS143 if you're interested in their applications.



-152 - Chapter 6: STL Associative Containers and Iterators

/* oo %/

We need to maintain the state we're currently in, which we can do by storing it in an int. We'll initialize
the current state to the starting state, as shown here:

bool SimulateDFA(DFA& d, string input) {
int currState = d.startState;

/* oo %/

Now, we need to iterate over the string, following transitions from state to state. Since the transition table
is represented as a map from pair<int, char>s, we can look up the next state by using make pair to
construct a pair of the current state and the next input, then looking up its corresponding value in the map.
As a simplifying assumption, we'll assume that the input string is composed only of characters from the
DFA's alphabet.

This leads to the following code:

bool SimulateDFA (DFA& d, string input) {
int currState = d.startState;

for (string::iterator itr = input.begin(); itr != input.end(); ++itr)
currState = d.transitions[make pair (currState, *itr)];
/* .. */

You may be wondering how we're iterating over the contents of a string using iterators. Surprisingly, the
string is specially designed like the STL container classes, and so it's possible to use all of the iterator
tricks you've learned on the STL containers directly on the string.

Once we've consumed all the input, we need to check whether we ended in an accepting state. We can do
this by looking up whether the currsState variable is contained in the acceptingStates set in the DFA
struct, as shown here:



Chapter 6: STL Associative Containers and Iterators -153 -

bool SimulateDFA (DFA& d, string input) {
int currState = d.startState;

for (string::iterator itr = input.begin(); itr != input.end(); ++itr)
currState = d.transitions[make pair(currState, *itr)];
return d.acceptingStates.find(currState) != d.acceptingStates.end();

This function is remarkably simple but correctly simulates the DFA run on some input. As you'll see in the
next section on applications of DFAs, the simplicity of this implementation lets us harness DFAs to solve a
suite of problems surprisingly efficiently.

Applications of DFAs

The C++ string class exports a handful of searching functions (find, find first of,
find last not of, etc.) that are useful for locating specific strings or characters. However, it's
surprisingly tricky to search strings for specific patterns of characters. The canonical example is searching
for email addresses in a string of text. All email addresses have the same structure - a name field followed
by an at sign (@) and a domain name. For example, htiek@cs.stanford.edu and
this.is.not.my.real.address@example.com are valid email addresses. In general, we can specify the
formatting of an email address as follows:"

* The name field, which consists of nonempty alphanumeric strings separated by periods. Periods
can only occur between alphanumeric strings, never before or after Thus
hello.world@example.com and cpp.is.really.cool@example.com are legal but .oops@example.com,
oops.@example.com, and oops..oops@example.com are not.

* The host field, which is structured similarly to the above except that there must be at least two
sequences separated by a dot.

Now, suppose that we want to determine whether a string is a valid email address. Using the searching
functions exported by the string class this would be difficult, but the problem is easily solved using a
DFA. In particular, we can design a DFA over a suitable alphabet that accepts a string if and only if the
string has the above formatting.

The first question to consider is what alphabet this DFA should be over. While we could potentially have
the DFA operate over the entire ASCII alphabet, it's easier if we instead group together related characters
and use a simplified alphabet. For example, since email addresses don't distinguish between letters and
numbers, we can have a single symbol in our alphabet that encodes any alphanumeric character. We
would need to maintain the period and at-sign in the alphabet since they have semantic significance. Thus
our alphabet will be {a, ., @}, where a represents alphanumeric characters, . is the period character, and @
is an at-sign.

Given this alphabet, we can represent all email addresses using the following DFA:

* This is a simplified version of the formatting of email addresses. For a full specification, refer to RFCs 5321 and

5322,



-154 - Chapter 6: STL Associative Containers and Iterators

This DFA is considerably trickier than the ones we've encountered previously, so let's take some time to go
over what's happening here. The machine starts in state qo, which represents the beginning of input.
Since all email addresses have to have a nonempty name field, this state represents the beginning of the
first string in the name. The first character of an email address must be an alphanumeric character, which
if read in state go cause us to transition to state q;. States q; and q: check that the start of the input is
something appropriately formed from alphanumeric characters separated by periods. Reading an
alphanumeric character while in state q; keeps the machine there (this represents a continuation of the
current word), and reading a dot transitions the machine to q,. In g, reading anything other than an
alphanumeric character puts the machine into the “trap state,” state q7, which represents that the input is
invalid. Note that once the machine reaches state q- no input can get the machine out of that state and that
g- isn't accepting. Thus any input that gets the machine into state q; will be rejected.

State g3 represents the state of having read the at-sign in the email address. Here reading anything other
than an alphanumeric character causes the machine to enter the trap state.

States q. and gs are designed to help catch the name of the destination server. Like qi, q. represents a state
where we're reading a “word” of alphanumeric characters and gs is the state transitioned to on a dot.
Finally, state qs represents the state where we've read at least one word followed by a dot, which is the
accepting state. As an exercise, trace the action of this machine on the inputs valid.address@email.com
and invalid@not.com@ouch.

Now, how can we use this DFA in code? Suppose that we have some way to populate a DFA struct with the
information for this DFA. Then we could check if a string contains an email address by converting each
character in the string into its appropriate character in the DFA alphabet, then simulating the DFA on the
input. If the DFA rejects the input or the string contains an invalid character, we can signal that the string
is invalid, but otherwise the string is a valid email address.

This can be implemented as follows:



Chapter 6: STL Associative Containers and Iterators -155-

bool IsEmailAddress(string input) {
DFA emailChecker = LoadEmailDFA(); // Implemented elsewhere

/* Transform the string one character at a time. */
for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
/* isalnum is exported by <cctype> and checks if the input is an
* alphanumeric character.
*/
if (isalnum(*itr))
*itr = 'a';
/* If we don't have alphanumeric data, we have to be a dot or at-sign
* or the input is invalid.
*/
else if (*itr != '.' && *itr != '@")
return false;

}

return SimulateDFA (emailChecker, input);

This code is remarkably concise, and provided that we have an implementation of LoadEmailDFA the
function will work correctly. I've left out the implementation of LoadEmailDFA since it's somewhat
tedious, but if you're determined to see that this actually works feel free to try your hand at implementing
it.

Nondeterministic Finite Automata

A generalization of the DFA is the nondeterministic finite automaton, or NFA. At a high level, DFAs and
NFAs are quite similar - they both consist of a set of states connected by labeled transitions, of which some
states are designated as accepting and others as rejecting. However, NFAs differ from DFAs in that a state
in an NFA can have any number of transitions on a given input, including zero. For example, consider the
following NFA:

Here, the start state is qo and accepting states are q; and qs. Notice that the start state qo has two
transitions on 0 - one to q; and one to itself - and two transitions on 1. Also, note that qs has no defined
transitions on 0, and states q; and g4 have no transitions at all.

There are several ways to interpret a state having multiple transitions. The first is to view the automaton
as choosing one of the paths nondeterministically (hence the name), then accepting the input if some set of
choices results in the automaton ending in an accepting state. Another, more intuitive way for modeling
multiple transitions is to view the NFA as being in several different states simultaneously, at each step
following every transition with the appropriate label in each of its current states. To see this, let's consider
what happens when we run the above NFA on the input 0011. As with a DFA, we begin in the start state,
as shown here:

We now process the first character of input (0) and find that there are two transitions to follow - the first
to qo and the second to q;. The NFA thus ends up in both of these states simultaneously, as shown here:



-156 - Chapter 6: STL Associative Containers and Iterators

Next, we process the second character (0). From state qo, we transition into qo and qi, and from state q; we
transition into q.. We thus end up in states qo, qi1, and gz, as shown here:

We now process the third character of input, which is a 1. From state qo we transition to states qo and qs.
We are also currently in states q; and q, but neither of these states has a transition on a 1. When this
happens, we simply drop the states from the set of current states. Consequently, we end up in states qo
and g3, leaving us in the following configuration:

Finally, we process the last character, a 1. State qo transitions to qo and q;, and state q; transitions to state
gs. We thus end up in this final configuration:

Since the NFA ends in a configuration where at least one of the active states is an accepting state (q4), the
NFA accepts this input. Again as an exercise, you might want to convince yourself that this NFA accepts all
and only the strings that end in either 00 or 11.

Implementing an NFA

Recall from above the definition of the DFa struct:

struct DFA {
map<pair<int, char>, int> transitions;
set<int> acceptingStates;
int startState;

bi



Chapter 6: STL Associative Containers and Iterators -157 -

Here, the transition table was encoded as a map<pair<int, char>, int> since for every combination of
a state and an alphabet symbol there was exactly one transition. To generalize this to represent an NFA,
we need to be able to associate an arbitrary number of possible transitions. This is an ideal spot for an
STL multimap, which allows for duplicate key/value pairs. This leaves us with the following definition for
an NFA type:

struct NFA {
multimap<pair<int, char>, int> transitions;
set<int> acceptingStates;
int startState;

bi

How would we go about simulating this NFA? At any given time, we need to track the set of states that we
are currently in, and on each input need to transition from the current set of states to some other set of
states. A natural representation of the current set of states is (hopefully unsurprisingly) as a set<int>.
Initially, we start with this set of states just containing the start state. This is shown here:

bool SimulateNFA (NFA& nfa, string input) {
/* Track our set of states. We begin in the start state. */
set<int> currStates;
currStates.insert (nfa.startState);

/* oo %/

Next, we need to iterate over the string we've received as input, following transitions where appropriate.
This at least requires a simple for loop, which we'll write here:

bool SimulateNFA (NFA& nfa, string input) {
/* Track our set of states. We begin in the start state. */
set<int> currStates;
currStates.insert (nfa.startState);

for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
VA
}

/* oo %/

Now, for each character of input in the string, we need to compute the set of next states (if any) to which
we should transition. To simplify the implementation of this function, we'll create a second set<int>
corresponding to the next set of states the machine will be in. This eliminates problems caused by adding
elements to our set of states as we're iterating over the set and updating it. We thus have

bool SimulateNFA (NFA& nfa, string input) {
/* Track our set of states. We begin in the start state. */
set<int> currStates;
currStates.insert (nfa.startState);

for (string::iterator itr = input.begin(); itr != input.end(); ++itr) {
set<int> nextStates;

/* oo %/



-158- Chapter 6: STL Associative Containers and Iterators

/* oo %/

Now that we have space to put the next set of machine states, we need to figure out what states to
transition to. Since we may be in multiple different states, we need to iterate over the set of current states,
computing which states they transition into. This is shown here:

bool SimulateNFA (NFA& nfa, string input) {
/* Track our set of states. We begin in the start state. */
set<int> currStates;
currStates.insert (nfa.startState);

for (string::iterator itr = input.begin(); itr != input.end(); ++itr) {
set<int> nextStates;
for (set<int>::iterator state = currStates.begin();
state != currStates.end(); ++state) {
/* ... */
}
}
VA

Given the state being iterated over by state and the current input character, we now want to transition to
each state indicated by the multimap stored in the NFA struct. If you'll recall, the STL multimap exports a
function called equal range which returns a pair of iterators into the multimap that delineate the range
of elements with the specified key. This function is exactly what we need to determine the set of new
states we'll be entering for each given state - we simply query the multimap for all elements whose key is
the pair of the specified state and the current input, then add all of the destination states to our next set of
states. This is shown here:



Chapter 6: STL Associative Containers and Iterators -159 -

bool SimulateNFA (NFA& nfa, string input) {
/* Track our set of states. We begin in the start state. */
set<int> currStates;
currStates.insert (nfa.startState) ;

for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
set<int> nextStates;
for (set<int>::iterator state = currStates.begin();
state != currStates.end(); ++state) {

/* Get all states that we transition to from this current state. */
pair<multimap<pair<int, char>, int>::iterator,

multimap<pair<int, char>, int>::iterator>
transitions = nfa.transitions.equal range (make pair (*state, *itr));

/* Add these new states to the nextStates set. */

for(; transitions.first != transitions.second; ++transitions.first)
/* transitions.first is the current iterator, and its second
* field is the value (new state) in the STL multimap.
*/

nextStates.insert (transitions.first->second) ;

/* oo %/

Finally, once we've consumed all input, we need to check whether the set of states contains any states that
are also in the set of accepting states. We can do this by simply iterating over the set of current states, then
checking if any of them are in the accepting set. This is shown here and completes the implementation of
the function:



-160 - Chapter 6: STL Associative Containers and Iterators

bool SimulateNFA (NFA& nfa, string input) {
/* Track our set of states. We begin in the start state. */
set<int> currStates;
currStates.insert (nfa.startState) ;

for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
set<int> nextStates;
for (set<int>::iterator state = currStates.begin();
state != currStates.end(); ++state) {

/* Get all states that we transition to from this current state. */
pair<multimap<pair<int, char>, int>::iterator,

multimap<pair<int, char>, int>::iterator>
transitions = nfa.transitions.equal range (make pair(*state, *itr));

/* Add these new states to the nextStates set. */

for(; transitions.first != transitions.second; ++transitions.first)
/* transitions.first is the current iterator, and its second
* field is the value (new state) in the STL multimap.
*/

nextStates.insert (transitions.first->second);

}

for (set<int>::iterator itr = currStates.begin();
itr !'= currStates.end(); ++itr)
if (nfa.acceptingStates.count (*itr)) return true;

return false;

Compare this function to the implementation of the DFA simulation. There is substantially more code
here, since we have to track multiple different states rather than just a single state. However, this extra
complexity is counterbalanced by the simplicity of designing NFAs compared to DFAs. Building a DFA to
match a given pattern can be much trickier than building an equivalent NFA because it's difficult to model
“guessing” behavior with a DFA. However, both functions are a useful addition to your programming
arsenal, so it's good to see how they're implemented.

More to Explore

In this chapter we covered map and set, which combined with vector and deque are the most commonly-
used STL containers. However, there are several others we didn't cover, a few of which might be worth
looking into. Here are some topics you might want to read up on:

1. 1list: vector and deque are sequential containers that mimic built-in arrays. The 1ist container,
however, models a sequence of elements without indices. 1ist supports several nifty operations,
such as merging, sorting, and splicing, and has quick insertions at almost any point. If you're
planning on using a linked list for an operation, the 1ist container is perfect for you.

2. The Boost Containers: The Boost C++ Libraries are a collection of functions and classes
developed to augment C++'s native library support. Boost offers several new container classes
that might be worth looking into. For example, multi array is a container class that acts as a
Grid in any number of dimensions. Also, the unordered set and unordered map act as
replacements to the set and map that use hashing instead of tree structures to store their data. If
you're interested in exploring these containers, head on over to www.boost.org.


http://www.boost.org/

Chapter 6: STL Associative Containers and Iterators -161 -

Practice Problems

10.

11.

12.

13.

14.

How do you check whether an element is contained in an STL set?

What is the restriction on what types can be stored in an STL set? Do the vector or deque have
this restriction?

How do you insert an element into a set? How do you remove an element from a set?
How many copies of a single element can existin a set? How aboutamultiset?

How do you iterate over the contents of a set?

How do you check whether a key is contained in an STL map?

List two ways that you can insert key/value pairs into an STL map.

What happens if you look up the value associated with a nonexistent key in an STL map using
square brackets? What if you use the find function?

Recall that when iterating over the contents of an STL multiset, the elements will be visited in
sorted order. Using this property, rewrite the program from last chapter that reads a list of
numbers from the user, then prints them in sorted order. Why is it necessary to use a multiset
instead of a regular set?

The union of two sets is the collection of elements contained in at least one of the sets. For
example, the union of {1, 2, 3,5,8}and {2, 3,5, 7, 11} is {1, 2, 3,5, 7, 8, 11}. Write a function Union
which takes in two set<int>s and returns their union.

The intersection of two sets is the collection of elements contained in both of the sets. For
example, the intersection of {1, 2, 3, 5, 8} and {2, 3, 5, 7, 11} is {2, 3, 5}. Write a function
Intersection that takes in two set<int>s and returns their intersection.

Earlier in this chapter, we wrote a program that rolled dice until the same number was rolled
twice, then printed out the number of rolls made. Rewrite this program so that the same number
must be rolled three times before the process terminates. How many times do you expect this
process to take when rolling twenty-sided dice? (Hint: you will probably want to switch from using
a set to using a multiset. Also, remember the difference between the set's count function and the
multiset's count function).

As mentioned in this chapter, you can use a combination of lower bound and upper bound to
iterate over elements in the closed interval [min, max]. What combination of these two functions
could you use to iterate over the interval [min, max)? What about (min, max] and (min, max)?

Write a function NumberDuplicateEntries that accepts a map<string, string> and returns
the number of duplicate values in the map (that is, the number of key/value pairs in the map with
the same value).



-162 -

15.

16.

17.

Chapter 6: STL Associative Containers and Iterators

Write a function InvertMap that accepts as input a map<string, string> and returns a
multimap<string, string> where each pair (key, value) in the source map is represented by
(value, key) in the generated multimap. Why is it necessary to use a multimap here? How could
you use the NumberDuplicateEntries function from the previous question to determine
whether it is possible to invert the map into another map?

Suppose that we have two map<string, string>s called one and two. We can define the
composition of one and two (denoted two o one) as follows: for any string r, if one[r] is s and
two[s] is t, then (two o one)[r] = t. Thatis, looking up an element x in the composition of
the maps is equivalent to looking up the value associated with x in one and then looking up its
associated value in two. If one does not contain r as a key or if one [r] is not a key in two, then
(two o one)[r] is undefined.

Write a function ComposeMaps that takes in two map<string, string>s and returns a
map<string, string> containing their composition.

(Challenge problem!) Write a function PrintMatchingPrefixes that accepts a set<string>and
a string containing a prefix and prints out all of the entries of the set that begin with that prefix.
Your function should only iterate over the entires it finally prints out. You can assume the prefix is
nonempty, consists only of alphanumeric characters, and should treat prefixes case-sensitively.
(Hint: In a set<string>, strings are sorted lexicographically, so all strings that start with “abc” will
come before all strings that start with “abd.”)



Chapter 7: STL Algorithms

Consider the following problem: suppose that we want to write a program that reads in a list of integers
from a file (perhaps representing grades on an assignment), then prints out the average of those values.
For simplicity, let's assume that this data is stored in a file called data.txt with one integer per line. For
example:

File: data. txt

100
95
92
98
87
88
100

Here is one simple program that reads in the contents of the file, stores them in an STL multiset,
computes the average, then prints it out:

#include <iostream>
#include <fstream>
#include <set>
using namespace std;

int main () {
ifstream input ("data.txt");
multiset<int> values;

/* Read the data from the file. */

int currValue;

while (input >> currValue)
values.insert (currValue) ;

/* Compute the average. */
double total = 0.0;
for (multiset<int>::iterator itr = values.begin();

itr !'= values.end(); ++itr)
total += *itr;
cout << "Average is: " << total / values.size() << endl;

As written, this code is perfectly legal and will work as intended. However, there's something slightly odd
about it. If you were to describe what this program needs to do in plain English, it would probably be
something like this:

1. Read the contents of the file.
2. Add the values together.
3. Divide by the number of elements.



-164 - Chapter 7: STL Algorithms

In some sense, the above code matches this template. The first loop of the program reads in the contents
of the file, the second loop sums together the values, and the last line divides by the number of elements.
However, the code we've written is somewhat unsatisfactory. Consider this first loop:

int currValue;
while (input >> currValue)
values.insert (currValue) ;

Although the intuition behind this loop is “read the contents of the file into the multiset,” the way the
code is actually written is “create an integer, and then while it's possible to read another element out of the
file, do so and insert it into the multiset.” This is a very mechanical means for inserting the values into
the multiset. Our English description of this process is “read the file contents into the multiset,” but
the actual code is a step-by-step process for extracting data from the file one step at a time and inserting it
into the multiset.

Similarly, consider this second loop, which sums together the elements of the multiset:

double total = 0.0;
for (multiset<int>::iterator itr = values.begin(); itr != values.end(); ++itr)
total += *itr;

Again, we find ourselves taking a very mechanical view of the operation. Our English description “sum the
elements together” is realized here as “initialize the total to zero, then iterate over the elements of the
multiset, increasing the total by the value of the current element at each step.”

The reason that we must issue commands to the computer in this mechanical fashion is precisely because
the computer is mechanical - it's a machine for efficiently computing functions. The challenge of
programming is finding a way to translate a high-level set of commands into a series of low-level
instructions that control the machine. This is often a chore, as the basic operations exported by the
computer are fairly limited. But programming doesn't have to be this difficult. As you've seen, we can
define new functions in terms of old ones, and can build complex programs out of these increasingly more
powerful subroutines. In theory, you could compile an enormous library containing solutions to all
nontrivial programming problems. With this library in tow, you could easily write programs by just
stitching together these prewritten components.

Unfortunately, there is no one library with the solutions to every programming problem. However, this
hasn't stopped the designers of the STL from trying their best to build one. These are the STL algorithms,
a library of incredibly powerful routines for processing data. The STL algorithms can't do everything, but
what they can do they do fantastically. In fact, using the STL algorithms, it will be possible to rewrite the
program that averages numbers in four lines of code. This chapter details many common STL algorithms,
along with applications. Once you've finished this chapter, you'll have one of the most powerful standard
libraries of any programming language at your disposal, and you'll be ready to take on increasingly bigger
and more impressive software projects.

Your First Algorithm: accumulate

Let's begin our tour of the STL algorithms by jumping in head-first. If you'll recall, the second loop from
the averaging program looks like this:

double total = 0.0;

for (multiset<int>::iterator itr = values.begin(); itr != values.end(); ++itr)
total += *itr;

cout << "Average is: " << total / values.size() << endl;



Chapter 7: STL Algorithms - 165 -

This code is entirely equivalent to the following:

cout << accumulate (values.begin(), values.end(), 0.0) / values.size() << endl;

We've replaced the entire for loop with a single call to accumulate, eliminating about a third of the code
from our original program.

The accumulate function, defined in the <numeric> header, takes three parameters - two iterators that
define a range of elements, and an initial value to use in the summation. It then computes the sum of all of
the elements contained in the range of iterators, plus the base value.” What's beautiful about accumulate
(and the STL algorithms in general) is that accumulate can take in iterators of any type. That is, we can
sum up iterators from a multiset, a vector, or deque. This means that if you ever find yourself needing
to compute the sum of the elements contained in a container, you can pass the begin () and end()
iterators of that container into accumulate to get the sum. Moreover, accumulate can accept any valid
iterator range, not just an iterator range spanning an entire container. For example, if we want to compute
the sum of the elements of the multiset that are between 42 and 137, inclusive, we could write

accumulate (values.lower bound(42), values.upper bound(137), 0);

Behind the scenes, accumulate is implemented as a template function that accepts two iterators and
simply uses a loop to sum together the values. Here's one possible implementation of accumulate:

template <typename InputlIterator, typename Type> inline
Type accumulate (Inputlterator start, Inputlterator stop, Type initial) {

while (start != stop) {
initial += *start;
++start;

}

return initial;

While some of the syntax specifics might be a bit confusing (notably the template header and the inline
keyword), you can still see that the heart of the code is just a standard iterator loop that continuously
advances the start iterator forward until it reaches the destination. There's nothing magic about
accumulate, and the fact that the function call is a single line of code doesn't change that it still uses a
loop to sum all the values together.

If STL algorithms are just functions that use loops behind the scenes, why even bother with them? There
are several reasons, the first of which is simplicity. With STL algorithms, you can leverage off of code that's
already been written for you rather than reinventing the code from scratch. This can be a great time-saver
and also leads into the second reason, correctness. If you had to rewrite all the algorithms from scratch
every time you needed to use them, odds are that at some point you'd slip up and make a mistake. You
might, for example, write a sorting routine that accidentally uses < when you meant > and consequently
does not work at all. Not so with the STL algorithms - they've been thoroughly tested and will work
correctly for any given input. The third reason to use algorithms is speed. In general, you can assume that
if there's an STL algorithm that performs a task, it's going to be faster than most code you could write by
hand. Through advanced techniques like template specialization and template metaprogramming, STL
algorithms are transparently optimized to work as fast as possible. Finally, STL algorithms offer clarity.
With algorithms, you can immediately tell that a call to accumulate adds up numbers in a range. With a
for loop that sums up values, you'd have to read each line in the loop before you understood what the code
did.

* There is also a version of accumulate that accepts four parameters, as you'll see in the chapter on functors.



-166 - Chapter 7: STL Algorithms

Algorithm Naming Conventions

There are over fifty STL algorithms (defined either in <algorithm> or in <numeric>), and memorizing
them all would be a chore, to say the least. Fortunately, many of them have common naming conventions
S0 you can recognize algorithms even if you've never encountered them before.

The suffix if on an algorithm (replace if, count if, etc.) means the algorithm will perform a task on
elements only if they meet a certain criterion. Functions ending in if require you to pass in a predicate
function that accepts an element and returns a boo1 indicating whether the element matches the criterion.
For example consider the count algorithm and its counterpart count if. count accepts a range of
iterators and a value, then returns the number of times that the value appears in that range. If we have a
vector<int> of several integer values, we could print out the number of copies of the number 137 in that
vector as follows:

cout << count (myVec.begin (), myVec.end (), 137) << endl;

count if, on the other hand, accepts a range of iterators and a predicate function, then returns the
number of times the predicate evaluates to true in that range. If we were interested in how number of
even numbers are contained in a vector<int>, we could could obtain the value as follows. First, we write
a predicate function that takes in an int and returns whether it's even, as shown here:

bool IsEven (int wvalue) {
return value % 2 == 0;

}
We could then use count if as follows:

cout << count if (myVec.begin(), myVec.end(), IsEven) << endl;

Algorithms containing the word copy (remove copy, partial sort copy, etc.) will perform some task
on a range of data and store the result in the location pointed at by an extra iterator parameter. With copy
functions, you'll specify all the normal data for the algorithm plus an extra iterator specifying a destination
for the result. We'll cover what this means from a practical standpoint later.

If an algorithm ends in _n (generate n, search n, etc), then it will perform a certain operation n times.
These functions are useful for cases where the number of times you perform an operation is meaningful,
rather than the range over which you perform it. To give you a better feel for what this means, consider
the £i11 and fil1 n algorithms. Each of these algorithms sets a range of elements to some specified
value. For example, we could use £i11 as follows to set every element in a deque to have value 0:

fill (myDeque.begin (), myDeque.end(), 0);

The £i11 n algorithm is similar to £i11, except that instead of accepting a range of iterators, it takes in a
start iterator and a number of elements to write. For instance, we could set the first ten elements of a
deque to be zero by calling

fill n(myDeque.begin(), 10, 0);
Iterator Categories

If you'll recall from the discussion of the vector and deque insert functions, to specify an iterator to the
nth element of a vector, we used the syntax myVector.begin() + n. Although this syntax is legal in
conjunction with vector and deque, it is illegal to use + operator with iterators for other container classes



Chapter 7: STL Algorithms -167 -

like map and set. At first this may seem strange - after all, there's nothing intuitively wrong with moving a
set iterator forward multiple steps, but when you consider how the set is internally structured the
reasons become more obvious. Unlike vector and deque, the elements in a map or set are not stored
sequentially (usually they're kept in a balanced binary tree). Consequently, to advance an iterator n steps
forward, the map or set iterator must take n individual steps forward. Contrast this with a vector
iterator, where advancing forward n steps is a simple addition (since all of the vector's elements are
stored contiguously). Since the runtime complexity of advancing a map or set iterator forward n steps is
linear in the size of the jump, whereas advancing a vector iterator is a constant-time operation, the STL
disallows the + operator for map and set iterators to prevent subtle sources of inefficiency.

Because not all STL iterators can efficiently or legally perform all of the functions of every other iterator,
STL iterators are categorized based on their relative power. At the high end are random-access iterators
that can perform all of the possible iterator functions, and at the bottom are the input and output iterators
which guarantee only a minimum of functionality. There are five different types of iterators, each of which
is discussed in short detail below.

*  Output Iterators. Output iterators are one of the two weakest types of iterators. With an output
iterator, you can write values using the syntax *myItr = value and can advance the iterator
forward one step using the ++ operator. However, you cannot read a value from an output iterator
using the syntax value = *myItr, nor canyou use the += or - operators.

* Input Iterators. Inputiterators are similar to output iterators except that they read values instead
of writing them. That is, you can write code along the lines of value = *myItr, but not
*myItr = value. Moreover, input iterators cannot iterate over the same range twice.

* Forward Iterators. Forward iterators combine the functionality of input and output iterators so
that most intuitive operations are well-defined. With a forward iterator, you can write both
*myItr = value and value = *myItr. Forward iterators, as their name suggests, can only
move forward. Thus ++myItr islegal, but --myTtr is not.

* Bidirectional Iterators. Bidirectional iterators are the iterators exposed by map and set and
encompass all of the functionality of forward iterators. Additionally, they can move backwards
with the decrement operator. Thus it's possible to write --myItr to go back to the last element
you visited, or even to traverse a list in reverse order. However, bidirectional iterators cannot
respond to the + or += operators.

* Random-Access Iterators. Don't get tripped up by the name - random-access iterators don't
move around randomly. Random-access iterators get their name from their ability to move
forward and backward by arbitrary amounts at any point. These are the iterators employed by
vector and deque and represent the maximum possible functionality, including iterator-from-
iterator subtraction, bracket syntax, and incrementation with + and +=.

If you'll notice, each class of iterators is progressively more powerful than the previous one - that is, the
iterators form a functionality hierarchy. This means that when a library function requires a certain class of
iterator, you can provide it any iterator that's at least as powerful. For example, if a function requires a
forward iterator, you can provide either a forward, bidirectional, or random-access iterator. The iterator
hierarchy is illustrated below:



-168 - Chapter 7: STL Algorithms

Random-Access lterators

itr += distance; itr + distance;
itrl < itr2; itr[myIndex];

Bidirectional lterators

==iizieg

Forward lterators

Input lterators Output Iterators
val = *itr; *itr = val;
++itr; ++itr;

Why categorize iterators this way? Why not make them all equally powerful? There are several reasons.
First, in some cases, certain iterator operations cannot be performed efficiently. For instance, the STL map
and set are layered on top of balanced binary trees, a structure in which it is simple to move from one
element to the next but significantly more complex to jump from one position to another arbitrarily. By
disallowing the + operator on map and set iterators, the STL designers prevent subtle sources of
inefficiency where simple code like itr + 5 is unreasonably inefficient. Second, iterator categorization
allows for better classification of the STL algorithms. For example, suppose that an algorithm takes as
input a pair of input iterators. From this, we can tell that the algorithm will not modify the elements being
iterated over, and so can feel free to pass in iterators to data that must not be modified under any
circumstance. Similarly, if an algorithm has a parameter that is labeled as an output iterator, it should be
clear from context that the iterator parameter defines where data generated by the algorithm should be
written.

Reordering Algorithms

There are a large assortment of STL algorithms at your disposal, so for this chapter it's useful to discuss
the different algorithms in terms of their basic functionality. The first major grouping of algorithms we'll
talk about are the reordering algorithms, algorithms that reorder but preserve the elements in a container.

Perhaps the most useful of the reordering algorithms is sort, which sorts elements in a range in
ascending order. For example, the following code will sort a vector<int> from lowest to highest:

sort (myVector.begin (), myVector.end());

sort requires that the iterators you pass in be random-access iterators, so you cannot use sort to sort a
map or set. However, since map and set are always stored in sorted order, this shouldn't be a problem.

By default, sort uses the < operator for whatever element types it's sorting, but you can specify a different
comparison function if you wish. Whenever you write a comparison function for an STL algorithm, it
should accept two parameters representing the elements to compare and return a bool indicating
whether the first element is strictly less than the second element. In other words, your callback should
mimic the < operator. For example, suppose we had a vector<placeT>, where placeT was defined as

struct placeT {
int x;
int y;

bi



Chapter 7: STL Algorithms -169 -

Then we could sort the vector only if we wrote a comparison function for placeTs.” For example:

bool ComparePlaces (placeT one, placeT two) {
if (one.x != two.x)
return one.x < two.Xx;
return one.y < two.y;

sort (myPlaceVector.begin(), myPlaceVector.end(), ComparePlaces);

You can also use custom comparison functions even if a default already exists. For example, here is some
code that sorts a vector<string> by length, ignoring whether the strings are in alphabetical order:

bool CompareStringLength(string one, string two) {
return one.length() < two.length();
}

sort (myVector.begin (), myVector.end(), CompareStringLength);

One last note on comparison functions is that they should either accept the parameters by value or by
“reference to const.” Since we haven't covered const yet, for now your comparison functions should
accept their parameters by value. Otherwise you can get some pretty ferocious compiler errors.

Another useful reordering function is random shuffle, which randomly scrambles the elements of a
container. Because the scrambling is random, there's no need to pass in a comparison function. Here's
some code that uses random shuffle to scramble a vector's elements:

random_ shuffle (myVector.begin(), myVector.end());

As with sort, the iterators must be random-access iterators, so you can't scramble a set or map. Then
again, since they're sorted containers, you shouldn't want to do this in the first place.

Internally, random shuffle uses the built-in rand () function to generate random numbers. Accordingly,
you should use the srand function to seed the randomizer before using random shuffle.

The last major algorithm in this category is rotate, which cycles the elements in a container. For
example, given the input container (0, 1, 2, 3, 4, 5), rotating the container around position 3 would result
in the container (2, 3, 4, 5, 0, 1). The syntax for rotate is anomalous in that it accepts three iterators
delineating the range and the new front, but in the order begin, middle, end. For example, to rotate a
vector around its third position, we would write

rotate (v.begin(), v.begin() + 2, v.end()):;
Searching Algorithms

Commonly you're interested in checking membership in a container. For example, given a vector, you
might want to know whether or not it contains a specific element. While the map and set naturally
support find, vectors and deques lack this functionality. Fortunately, you can use STL algorithms to
correct this problem.

* When we cover operator overloading in the second half of this text, you'll see how to create functions that sort
will use automatically.



-170 - Chapter 7: STL Algorithms

To search for an element in a container, you can use the find function. f£ind accepts two iterators
delineating a range and a value, then returns an iterator to the first element in the range with that value. If
nothing in the range matches, find returns the second iterator as a sentinel. For example:

if (find (myVector.begin (), myVector.end(), 137) != myVector.end())
/* ... vector contains 137 ... */

Although you can legally pass map and set iterators as parameters to £ind, you should avoid doing so. Ifa
container class has a member function with the same name as an STL algorithm, you should use the
member function instead of the algorithm because member functions can use information about the
container's internal data representation to work much more quickly. Algorithms, however, must work for
all iterators and thus can't make any optimizations. As an example, with a set containing one million
elements, the set's find member function can locate elements in around twenty steps using binary
search, while the STL f£ind function could take up to one million steps to linearly iterate over the entire
container. That's a staggering difference and really should hit home how important it is to use member
functions over STL algorithms.

Just as a sorted map and set can use binary search to outperform the linear STL find algorithm, if you
have a sorted linear container (for example, a sorted vector), you can use the STL algorithm
binary search to perform the search in a fraction of the time. For example:

/* Assume myVector is sorted. */

if (binary search(myVector.begin(), myVector.end(), 137)) {
/* ... Found 137 ... */

}

Also, as with sort, if the container is sorted using a special comparison function, you can pass that
function in as a parameter to binary search. However, make sure you're consistent about what
comparison function you use, because if you mix them up binary search might not work correctly.

Note that binary search doesn't return an iterator to the element - it simply checks to see if it's in the
container. If you want to do a binary search in order to get an iterator to an element, you can use the
lower bound algorithm which, like the map and set lower bound functions, returns an iterator to the
first element greater than or equal to the specified value. Note that lower bound might hand back an
iterator to a different element than the one you searched for if the element isn't in the range, so be sure to
check the return value before using it. As with binary search, the container must be in sorted order for
lower bound algorithm to work correctly.

Iterator Adaptors

The algorithms that we've encountered so far do not produce any new data ranges. The sort algorithm
rearranges data without generating new values. binary search and accumulate scan over data ranges,
but yield only a single value. However, there are a great many STL algorithms that take in ranges of data
and produce new data ranges at output. As a simple example, consider the copy algorithm. At a high
level, copy takes in a range of data, then duplicates the values in that range at another location.
Concretely, copy takes in three parameters - two input iterators defining a range of values to copy, and an
output iterator indicating where the data should be written. For example, given the following setup:



Chapter 7: STL Algorithms -171-

start stop
l l
e | 0+ [ 2 | = | & [ 5 | € |
result
l
e e e e e e

After calling copy (start, stop, result),theresultis as follows:

start stop

1 |
0z 2 2 5 ]| i
result

1
TR [ T T BN

When using algorithms like copy that generate a range of data, you must make sure that the destination
has enough space to hold the result. Algorithms that generate data ranges work by overwriting elements
in the range beginning with the specified iterator, and if your output iterator points to a range that doesn't
have enough space the algorithms will write off past the end of the range, resulting in undefined behavior.
But here we reach a wonderful paradox. When running an algorithm that generates a range of data, you
must make sure that sufficient space exists to hold the result. However, in some cases you can't tell how
much data is going to be generated until you actually run the algorithm. That is, the only way to determine
how much space you'll need is to run the algorithm, which might result in undefined behavior because you
didn't allocate enough space.

To break this cycle, we'll need a special set of tools called iterator adaptors. Iterator adaptors (defined in
the <iterator> header) are objects that act like iterators - they can be dereferenced with * and advanced
forward with ++ - but which don't actually point to elements of a container. To give a concrete example,
let's consider the ostream iterator. ostream iterators are objects that look like output iterators.
That is, you can dereference them using the * operator, advance them forward with the ++ operator, etc.
However, ostream iterators don't actually point to elements in a container. Whenever you dereference
an ostream iterator and assign a value to it, that value is printed to a specified output stream, such as
cout or an ofstream. Here's some code showing off an ostream iterator; the paragraph after it
explores how it works in a bit more detail:

/* Declare an ostream iterator that writes ints to cout. */

ostream iterator<int> myItr(cout, " ");

/* Write values to the iterator. These values will be printed to cout. */
*myItr = 137; // Prints 137 to cout

++myItr;

*myIltr = 42; // Prints 42 to cout
++myItr

If you compile and run this code, you will notice that the numbers 137 and 42 get written to the console,
separated by spaces. Although it looks like you're manipulating the contents of a container, you're actually
writing characters to the cout stream.



-172 - Chapter 7: STL Algorithms

Let's consider this code in a bit more detail. If you'll notice, we declared the ostream iterator by
writing

ostream iterator<int> myItr(cout, " ");

There are three important pieces of data in this line of code. First, notice that ostream_iterator is a
parameterized type, much like the vector or set. In the case of ostream iterator, the template
argument indicates what sorts of value will be written to this iterator. That is, an
ostream iterator<int>writes ints into a stream, while an ostream iterator<string> would write
strings. Second, notice that when we created the ostream iterator, we passed it two pieces of
information. First, we gave the ostream iterator a stream to write to, in this case cout. Second, we
gave it a separator string, in our case a string holding a single space. Whenever a value is written to an
ostream iterator, thatvalue is pushed into the specified stream, followed by the separator string.

At this point, iterator adaptors might seem like little more than a curiosity. Sure, we can use an
ostream iterator to write values to cout, but we could already do that directly with cout. So what
makes the iterator adaptors so useful? The key point is that iterator adaptors are iterators, and so they can
be used in conjunction with the STL algorithms. Whenever an STL algorithm expects a regular iterator,
you can supply an iterator adaptor instead to “trick” the algorithm into performing some complex task
when it believes it's just writing values to a range. For example, let's revisit the copy algorithm now that
we have ostream iterators. What happens if we use copy to copy values from a container to an
ostream iterator? Thatis, whatis the output of the following code:

copy (myVector.begin (), myVector.end(), ostream iterator<int>(cout, " "));

This code copies all of the elements from the myvVector container to the range specified by the
ostream iterator. Normally, copy would duplicate the values from myVvector at another location, but
since we've written the values to an ostream iterator, this code will instead print all of the values from
the vector to cout, separated by spaces. This means that this single line of code prints out myvector!

Of course, this is just one of many iterator adaptors. We initially discussed iterator adaptors as a way to
break the “vicious cycle” where algorithms need space to hold their results, but the amount of space
needed can only be calculated by running the algorithm. To resolve this issue, the standard library
provides a collection of special iterator adapters called insert iterators. These are output iterators that,
when written to, insert the value into a container using one of the insert, push back, or push front
functions. As a simple example, let's consider the back insert iterator. back insert iteratoris
an iterator that, when written to, calls push back on a specified STL sequence containers (i.e. vector or
deque) to store the value. For example, consider the following code snippet:

vector<int> myVector; /* Initially empty */

/* Create a back insert iterator that inserts values into myVector. */
back insert iterator< vector<int> > itr (myVector);

for (int 1 = 0; i < 10; ++i) {
*itr = i; // "Write" to the back insert iterator, appending the value.
++itr;

}

/* Print the vector contents; this displays 01 2 34567 89 */
copy (myVector.begin (), myVector.end(), ostream iterator<int>(cout, " "));

This code is fairly dense, so let's go over it in some more detail. The first line simply creates an empty
vector<int>. The nextline is



Chapter 7: STL Algorithms -173 -

back insert iterator< vector<int> > itr (myVector);

This code creates a back insert iterator which inserts into a vector<int>. This syntax might be a
bit strange, since the iterator type is parameterized over the type of the container it inserts into, not the
type of the elements stored in that container. Moreover, notice that we indicated to the iterator that it
should insert into the myVector container by surrounding the container name in parentheses. From this
point, any values written to the back insert iterator will be stored inside of myvector by calling
push back.

We then have the following loop, which indirectly adds elements to the vector:

for (int i = 0; 1 < 10; ++1i) {
*itr = i; // "Write" to the back insert iterator, appending the value.
++itr;

Here, the line *itr = i will implicitly call myvector.push back (i), adding the value to the vector.
Thus, when we encounter the final line:

copy (myVector.begin (), myVector.end(), ostream iterator<int>(cout, " "));
the call to copy will print out the numbers 0 through 9, inclusive, since they've been stored in the vector.

In practice, it is rare to see back insert iterator used like this. This type of iterator is almost
exclusively used as a parameter to STL algorithms that need a place to store a result. For example,
consider the reverse copy algorithm. Like copy, reverse copy takes in three iterators, two delineating
an input range and one specifying a destination, then copies the elements from the input range to the
destination. However, unlike the regular copy algorithm, reverse copy copies the elements in reverse
order. For example, using reverse copy to copy the sequence 0, 1, 2, 3, 4 to a destination would cause
the destination range to hold the sequence 4, 3, 2, 1, 0. Suppose that we are interested in using the
reverse copy algorithm to make a copy of a vector with the elements in reverse order as the original.
Then we could do so as follows:

vector<int> original = /* ... */
vector<int> destination;
reverse copy (original.begin(), original.end(),
back insert iterator< vector<int> >(destination));

The syntax back insert iterator<vector<int> > is admittedly bit clunky, and fortunately there's a
shorthand. To create a back insert iterator thatinserts elements into a particular container, you can
write

back inserter (container);
Thus the above code with reverse_copy could be rewritten as

vector<int> original = /* ... */
vector<int> destination;
reverse copy(original.begin(), original.end(), back inserter (destination));

This is much cleaner than the original and is likely to be what you'll see in practice.

The back inserter is a particularly useful container when you wish to store the result of an operation in
a vector or deque, but cannot be used in conjunction with map or set because those containers do not



-174 - Chapter 7: STL Algorithms

support the push back member function. For those containers, you can use the more general
insert iterator, which insert elements into arbitrary positions in a container. A great example of
insert iterator in action arises when computing the union, intersection, or difference of two sets.
Mathematically speaking, the union of two sets is the set of elements contained in either of the sets, the
intersection of two sets is the set of elements contained in both of the sets, and the difference of two sets is
the set of elements contained in the first set but not in the second. These operations are exported by the
STL algorithms as set union, set intersection, and set difference. These algorithms take in five
parameters — two pairs of iterator ranges defining what ranges to use as the input sets, along with one
final iterator indicating where the result should be written. As with all STL algorithms, the set algorithms
assume that the destination range has enough space to store the result of the operation, and again we run
into a problem because we cannot tell how many elements will be produced by the algorithm. This is an
ideal spot for an insert iterator. Given two sets one and two, we can compute the union of those two
sets as follows:

set<int> result;

set union(setOne.begin(), setOne.end(), // All of the elements in setOne
setTwo.begin (), setTwo.end(), // All of the elements in setTwo
inserter (result, result.begin())); // Store in result.
Notice that the last parameter is inserter (result, result.begin()). This is an insert iterator that

inserts its elements into the result set. For somewhat technical reasons, when inserting elements into a
set, you must specify both the container and the container's begin iterator as parameters, though the
generated elements will be stored in sorted order.

All of the iterator adaptors we've encountered so far have been used to channel the output of an algorithm
to a location other than an existing range of elements. ostream iterator writes values to streams,
back insert iterator invokes push back to make space for its elements, etc. However, there is a
particularly useful iterator adapter, the istream iterator, which is an input iterator. That is,
istream iterators can be used to provide data as inputs to particular STL algorithms. As its name
suggests, istream iterator can be used to read values from a stream as if it were a container of
elements. To illustrate istream iterator, let's return to the example from the start of this chapter. If
you'll recall, we wrote a program that read in a list of numbers from a file, then computed their average. In
this program, we read in the list of numbers using the following while loop:

int currValue;
while (input >> currValue)
values.insert (currvValue);

Here, values is a multiset<int>. This code is equivalent to the following, which uses the STL copy
algorithm in conjunction with an inserter and two istream iterators:

copy (istream iterator<int>(input), istream iterator<int>(),
inserter (values, values.begin());

This is perhaps the densest single line of code we've encountered yet, so let's dissect it to see how it works.
Recall that the copy algorithm copies the values from an iterator range and stores them in the range
specified by the destination iterator. Here, our destination is an inserter that adds elements into the
values multiset. Our inputis the pair of iterators

istream iterator<int>(input), istream iterator<int>()

What exactly does this mean? Whenever a value is read from an istream iterator, the iterator uses the
stream extraction operator >> to read a value of the proper type from the input stream, then returns it.



Chapter 7: STL Algorithms -175 -

Consequently, the iterator istream iterator<int>(input) is an iterator that reads int values out of
the stream input. The second iterator, istream iterator<int> (), is a bit stranger. This is a special
istream iterator called the end-of-stream iterator. When defining ranges with STL iterators, it is
always necessary to specify two iterators, one for the beginning of the range and one that is one past the
end of it. When working with STL containers this is perfectly fine, since the size of the container is known.
However, when working with streams, it's unclear exactly how many elements that stream will contain. If
the stream is an i fstream, the number of elements that can be read depends on the contents of the file. If
the stream is cin, the number of elements that can be read depends on how many values the user decides
to enter. To get around this, the STL designers used a bit of a hack. When reading values from a stream
with an istream iterator, whenever no more data is available in the stream (either because the stream
entered a fail state, or because the end of the file was reached), the istream iterator takes on a special
value which indicates “there is no more data in the stream.” This value can be formed by constructing an
istream iterator without specifying what stream to read from. Thus in the code

copy (istream iterator<int>(input), istream iterator<int>(),
inserter (values, values.begin());

the two istream iterators define the range from the beginning of the input stream up until no more
values can be read from the stream.

The following table lists some of the more common iterator adapters and provides some useful context.
You'll likely refer to this table most when writing code that uses algorithms.

back insert iterator<Container> [back insert iterator<vector<int> >
itr (myVector);

back insert iterator<deque<char> > itr =
back inserter (myDeque) ;

An output iterator that stores elements by calling push back on the
specified container. You can declare back insert iterators explicitly,
or can create them with the function back inserter.

front insert iterator<Container> [front insert iterator<deque<int> >
itr (myIntDeque) ;

front insert iterator<deque<char> > itr =
front inserter (myDeque) ;

An output iterator that stores elements by calling push front on the
specified container. Since the container must have a push front
member function, you cannot use a front insert iterator with a
vector. As with back insert iterator, you can create
front insert iterators with the the front inserter function.

insert iterator<Container> insert iterator<set<int> >
itr (mySet, mySet.begin());
insert iterator<set<int> > itr =
inserter (mySet, mySet.begin());

An output iterator that stores its elements by calling insert on the
specified container to insert elements at the indicated position. You can
use this iterator type to insert into any container, especially set. The
special function inserter generates insert iterators for you.




-176 - Chapter 7: STL Algorithms

ostream iterator<Type> ostream iterator<int> itr(cout, " ");
ostream iterator<char> itr(cout);
ostream iterator<double> itr (myStream, "\n");

An output iterator that writes elements into an output stream. In the
constructor, you must initialize the ostream iterator to point to an
ostream, and can optionally provide a separator string written after
every element.

istream iterator<Type> istream iterator<int> itr(cin); // Reads from cin
istream iterator<int> endItr; // Special end value

An input iterator that reads values from the specified istream when
dereferenced. When istream iterators reach the end of their streams
(for example, when reading from a file), they take on a special “end”
value that you can get by creating an istream iterator with no
parameters. istream iterators are susceptible to stream failures and
should be used with care.

ostreambuf iterator<char> ostreambuf iterator<char> itr (cout); // Write to cout

An output iterator that writes raw character data to an output stream. Unlike
ostream iterator, which can print values of any type,
ostreambuf iterator can only write individual characters.
ostreambuf iterator is usually wused in conjunction with
istreambuf iterator

istreambuf iterator<char> istreambuf iterator<char> itr(cin); // Read data from cin
istreambuf iterator<char> endItr; // Special end value

An input iterator that reads unformatted data from an input stream.
istreambuf iterator always reads in character data and will not skip
over whitespace. Like istream iterator, istreambuf iterators
have a special iterator constructed with no parameters which indicates “end
of stream.” istreambuf iterator is used primarily to read raw data from
a file for processing with the STL algorithms.

Removal Algorithms

The STL provides several algorithms for removing elements from containers. However, removal
algorithms have some idiosyncrasies that can take some time to adjust to.

Despite their name, removal algorithms do not actually remove elements from containers. This is
somewhat counterintuitive but makes sense when you think about how algorithms work. Algorithms
accept iterators, not containers, and thus do not know how to erase elements from containers. Removal
functions work by shuffling down the contents of the container to overwrite all elements that need to be
erased. Once finished, they return iterators to the first element not in the modified range. So for example,
if you have a vector initialized to 0, 1, 2, 3, 3, 3, 4 and then remove all instances of the number 3, the
resulting vector will contain 0, 1, 2, 4, 3, 3, 4 and the function will return an iterator to one spot past the
first 4. If you'll notice, the elements in the iterator range starting at begin and ending with the element
one past the four are the sequence 0, 1, 2, 4 - exactly the range we wanted.

To truly remove elements from a container with the removal algorithms, you can use the container class
member function erase to erase the range of values that aren't in the result. For example, here's a code
snippet that removes all copies of the number 137 from a vector:

myVector.erase (remove (myVector.begin (), myVector.end(), 137), myVector.end()):;



Chapter 7: STL Algorithms -177 -

Note that we're erasing elements in the range [*, end), where * is the value returned by the remove
algorithm.

There is another useful removal function, remove if, that removes all elements from a container that
satisfy a condition specified as the final parameter. For example, using the ispunct function from the
header file <cctype>, we can write a StripPunctuation function that returns a copy of a string with all
the punctuation removed:’

string StripPunctuation(string input) {
input.erase (remove if (input.begin(), input.end(), ispunct), input.end());
return input;

}

(Isn't it amazing how much you can do with a single line of code? That's the real beauty of STL
algorithms.)

If you're shaky about how to actually remove elements in a container using remove, you might want to
consider the remove copy and remove copy if algorithms. These algorithms act just like remove and
remove if, except that instead of modifying the original range of elements, they copy the elements that
aren't removed into another container. While this can be a bit less memory efficient, in some cases it's
exactly what you're looking for.

Other Noteworthy Algorithms

The past few sections have focused on common genera of algorithms, picking out representatives that
illustrate the behavior of particular algorithm classes. However, there are many noteworthy algorithms
that we have not discussed yet. This section covers several of these algorithms, including useful examples.

A surprisingly useful algorithm is transform, which applies a function to a range of elements and stores
the result in the specified destination. transform accepts four parameters — two iterators delineating an
input range, an output iterator specifying a destination, and a callback function, then stores in the output
destination the result of applying the function to each element in the input range. As with other
algorithms, transform assumes that there is sufficient storage space in the range pointed at by the
destination iterator, so make sure that you have sufficient space before transforming a range.

transform is particularly elegant when combined with functors, but even without them is useful for a
whole range of tasks. For example, consider the tolower function, a C library function declared in the
header <cctype> that accepts a char and returns the lowercase representation of that character.
Combined with transform, this lets us write ConvertToLowerCase from strutils.h in two lines of
code, one of which is a return statement:

string ConvertToLowerCase (string text) {
transform(text.begin(), text.end(), text.begin(), tolower);
return text;

Note that after specifying the range text.begin (), text.end () we have another call to text.begin ().
This is because we need to provide an iterator that tells transform where to put its output. Since we
want to overwrite the old contents of our container with the new values, we specify text.begin ()
another time to indicate that transform should start writing elements to the beginning of the string as it
generates them.

* On some compilers, this code will not compile as written. See the later section on compatibility issues for more
information.



-178 - Chapter 7: STL Algorithms

There is no requirement that the function you pass to transform return elements of the same type as
those stored in the container. It's legal to transforma set of strings into a set of doubles, for example.

Most of the algorithms we've seen so far operate on entire ranges of data, but not all algorithms have this
property. One of the most useful (and innocuous-seeming) algorithms is swap, which exchanges the
values of two variables. We first encountered swap two chapters ago when discussing sorting algorithms,
but it's worth repeating. Several advanced C++ techniques hinge on swap's existence, and you will almost
certainly encounter it in your day-to-day programming even if you eschew the rest of the STL.

Two last algorithms worthy of mention are the min element and max element algorithms. These
algorithms accept as input a range of iterators and return an iterator to the largest element in the range.
As with other algorithms, by default the elements are compared by <, but you can provide a binary
comparison function to the algorithms as a final parameter to change the default comparison order.

The following table lists some of the more common STL algorithms. It's by no means an exhaustive list,
and you should consult a reference to get a complete list of all the algorithms available to you.

Type accumulate (InputItr start,
InputItr stop,
Type value)

Returns the sum of the elements in the range [start, stop) plus
the value of value.

bool binary search(RandomItr start,
RandomItr stop,
const Type& value)

Performs binary search on the sorted range specified by
[start, stop) and returns whether it finds the element value. If
the elements are sorted using a special comparison function, you
must specify the function as the final parameter.

OutItr copy(InputlItr start,
InputItr stop,
OutItr outputStart)

Copies the elements in the range [start, stop) into the output
range starting at outputStart. copy returns an iterator to one
past the end of the range written to.

size t count (Inputltr start,
InputItr end,
const Type& value)

Returns the number of elements in the range [start, stop) equal
to value.

size t count if (Inputltr start,
InputItr end,

PredicateFunction fn)

Returns the number of elements in the range [start, stop) for
which £n returns true. Useful for determining how many elements
have a certain property.

bool equal (InputlItr startl,
InputItr stopl,
Inputltr start2)

Returns whether elements contained in the range defined by
[startl, stopl) and the range beginning with start2 are equal. If
you have a special comparison function to compare two elements,
you can specify it as the final parameter.

pair<RandomItr, RandomItr>
equal range (RandomlItr start,
RandomItr stop,

const Typeé& value)

Returns two iterators as a pair that defines the sub-range of
elements in the sorted range [start,stop) that are equal to
value. In other words, every element in the range defined by the
returned iterators is equal to value. You can specify a special
comparison function as a final parameter.

void fill (ForwardItr start,
ForwardItr stop,
const Typeé& value)

Sets every element in the range [start, stop) to value.

void fill n(ForwardItr start,
size t num,
const Typeé& value)

Sets the first num elements, starting at start, to value.

InputItr find(Inputltr start,
InputItr stop,
const Typeé& value)

Returns an iterator to the first element in [start, stop) that is
equal to value, or stop if the value isn't found. The range doesn't
need to be sorted.




Chapter 7: STL Algorithms

-179 -

InputItr find if (InputlItr start,
InputItr stop,
PredicateFunc fn)

Returns an iterator to the first element in [start, stop) for which
fn is true, or stop otherwise.

Function for each (InputlItr start,
InputItr stop,
Function fn)

Calls the function £n on each element in the range [start, stop).

void generate (ForwardItr start,
ForwardItr stop,
Generator fn);

Calls the zero-parameter function fn once for each element in the
range [start, stop), storing the return values in the range.

void generate n (OutputItr start,
size t n,
Generator fn);

Calls the zero-parameter function f£n n times, storing the results in
the range beginning with start.

bool includes (InputlItr
InputItr
InputlItr
InputItr

startl,
stopl,
start2z,
stop2)

Returns whether every element in the sorted range
[start2, stop2) is also in [startl, stopl). If you need to use a
special comparison function, you can specify it as the final
parameter.

Type inner product (Inputltr startl,
InputItr stopl,
InputItr start2,
Type initialValue)

Computes the inner product of the values in the range [startl,
stop1) and [start2, start2 + (stopl - startl)). The inner product is

the value Za,-b,.—i-initialValue, where a; and b; denote the ith
i=1
elements of the first and second range.

bool

lexicographical compare (InputItr sl,

InputlItr s2,
InputlItr t1,
InputItr t2)

Returns whether the range of elements defined by [s1, s2) is
lexicographically less than [t1, t2); that is, if the first range
precedes the second in a “dictionary ordering.”

InputlItr

lower bound(InputItr start,
InputItr stop,
const Typeé& elem)

Returns an iterator to the first element greater than or equal to the
element elemin the sorted range [start, stop). If you need to use
a special comparison function, you can specify it as the final
parameter.

InputItr max element (InputlItr start,
InputItr stop)

Returns an iterator to the largest value in the range [start, stop).
If you need to use a special comparison function, you can specify it
as the final parameter.

InputItr min element (InputlItr start,
InputItr stop)

Returns an iterator to the smallest value in the range
[start, stop). If you need to use a special comparison function,
you can specify it as the final parameter.

bool next permutation(BidirItr start,

BidirItr stop)

Given a range of elements [start, stop), modifies the range to
contain the next lexicographically higher permutation of those
elements. The function then returns whether such a permutation
could be found. It is common to use this algorithm ina do ...
while loop to iterate over all permutations of a range of data, as
shown here:

sort (range.begin (), range.end());
do {
/* ... process ... */
}while (next permutation(range.begin(), range.end()));

bool prev permutation(BidirItr start,

BidirItr stop)

Given a range of elements [start, stop), modifies the range to
contain the next lexicographically lower permutation of those
elements. The function then returns whether such a permutation
could be found.

void random shuffle (RandomItr start,
RandomItr stop)

Randomly reorders the elements in the range [start, stop).




-180 -

Chapter 7: STL Algorithms

ForwardItr remove (ForwardItr start,
ForwardItr stop,
const Typeé& value)

Removes all elements in the range [start, stop) that are equal to
value. This function will not remove elements from a container.
To shrink the container, use the container's erase function to erase
all values in the range [retValue, end () ), where retvalue is the
return value of remove.

ForwardItr

remove_if(ForwardItr start,
ForwardItr stop,
PredicateFunc fn)

Removes all elements in the range [start, stop) for which fn
returns true. See remove for information about how to actually
remove elements from the container.

void replace (ForwardItr start,
ForwardItr stop,
const Type& toReplace,
const Typeé& replaceWith)

Replaces all values in the range [start, stop) that are equal to
toReplace with replaceWith.

void replace if (ForwardItr start,
ForwardItr stop,
PredicateFunction fn,
const Typeé& with)

Replaces all elements in the range [start, stop) for which fn
returns true with the value with.

ForwardItr rotate (ForwardItr start,
ForwardItr middle,
ForwardItr stop)

Rotates the elements of the container such that the sequence
[middle, stop) is at the front and the range [start, middle) goes
from the new middle to the end. rotate returns an iterator to the
new position of start.

ForwardItr search (ForwardItr startl,
ForwardItr stopl,
ForwardItr start2,
ForwardItr stop2)

Returns whether the sequence [start2, stop2) is a subsequence
of the range [startl, stopl). To compare elements by a special
comparison function, specify it as a final parameter.

InputlItr set difference (
InputItr startl,
InputItr stopl,
InputlItr start2,
InputItr stop2,
OutItr dest)

Stores all elements that are in the sorted range [startl, stopl)
but not in the sorted range [start2, stop2) in the destination
pointed to by dest. If the elements are sorted according to a
special comparison function, you can specify the function as the
final parameter.

InputItr set intersection
InputItr startl,
InputItr stopl,
InputlItr start2,
InputItr stop2,
OutItr dest)

Stores all elements that are in both the sorted range
[startl, stopl) and the sorted range [start2, stop2) in the
destination pointed to by dest. If the elements are sorted
according to a special comparison function, you can specify the
function as the final parameter.

InputItr set union(
InputItr startl,
InputItr stopl,
InputlItr start2,
InputItr stop2,
OutItr dest)

Stores all elements that are in either the sorted range
[startl, stopl) or in the sorted range [start2, stop2) in the
destination pointed to by dest. If the elements are sorted
according to a special comparison function, you can specify the
function as the final parameter.

InputlItr set symmetric difference(
InputlItr startl,
InputItr stopl,
InputlItr start2,
InputItr stop2,
OutItr dest)

Stores all elements that are in the sorted range [startl, stopl) or
in the sorted range [start2,stop2), but not both, in the
destination pointed to by dest. If the elements are sorted
according to a special comparison function, you can specify the
function as the final parameter.

void swap (Value& one, Value& two)

Swaps the values of one and two.

ForwardItr

swap_ ranges (ForwardItr startl,
ForwardItr stopl,
ForwardItr start2)

Swaps each element in the range [startl, stopl) with the
correspond elements in the range starting with start2.




Chapter 7: STL Algorithms -181-

OutputItr transform(Inputltr start, Applies the function fn to all of the elements in the range
Inputltr stop, [start, stop) and stores the result in the range beginning with
outputltr dest, |, The ret lue is an iterat t the end of the last
Function f£n) est. The return value is an iterator one past the end of the las

value written.

RandomItr Returns an iterator to the first element in the sorted range
upper_bound (RandomItr start, |[s¢art, stop) that is strictly greater than the value val. If you

RandomItr sto . . . .
P Ineed to specify a special comparison function, you can do so as the
const Type& val) | .
final parameter.

A Word on Compatibility

The STL is ISO-standardized along with the rest of C++. Ideally, this would mean that all STL
implementations are uniform and that C++ code that works on one compiler should work on any other
compiler. Unfortunately, this is not the case. No compilers on the market fully adhere to the standard, and
almost universally compiler writers will make minor changes to the standard that decrease portability.

Consider, for example, the ConvertToLowerCase function from earlier in the section:

string ConvertToLowerCase (string text) {
transform(text.begin(), text.end(), text.begin(), tolower);
return text;

}

This code will compile in Microsoft Visual Studio, but not in Xcode or the popular Linux compiler g++. The
reason is that there are two tolower functions - the original C tolower function exported by <cctype>
and a more modern tolower function exported by the <locale> header. Unfortunately, Xcode and g++
cannot differentiate between the two functions, so the call to transform will result in a compiler error. To
fix the problem, you must explicitly tell C++ which version of tolower you want to call as follows:

string ConvertToLowerCase (string text) {
transform(text.begin(), text.end(), text.begin(), ::tolower);
return text;

Here, the strange-looking :: syntax is the scope-resolution operator and tells C++ that the tolower
function is the original C function rather than the one exported by the <locale> header. Thus, if you're
using Xcode or g++ and want to use the functions from <cctype>, you'll need to add the : :.

Another spot where compatibility issues can lead to trouble arises when using STL algorithms with the
STL set. Consider the following code snippet, which uses £i11 to overwrite all of the elements in an STL
set with the value 137:

fill (mySet.begin(), mySet.end(), 137);

This code will compile in Visual Studio, but will not under g++. Recall from the second chapter on STL
containers that manipulating the contents of an STL set in-place can destroy the set's internal ordering.
Visual Studio's implementation of set will nonetheless let you modify set contents, even in situations like
the above where doing so is unsafe. g++, however, uses an STL implementation that treats all set iterators
as read-only. Consequently, this code won't compile, and in fact will cause some particularly nasty
compiler errors.

When porting C++ code from one compiler to another, you might end up with inexplicable compiler errors.
If you find some interesting C++ code online that doesn't work on your compiler, it doesn't necessarily



-182 - Chapter 7: STL Algorithms

mean that the code is invalid; rather, you might have an overly strict compiler or the online code might use
an overly lenient one.

Extended Example: Palindromes

A man, a plan, a caret, a ban, a myriad, a sum, a lac, a liar, a hoop, a pint, a catalpa, a gas, an oil, a
bird, a yell, a vat, a caw, a pax, a wag, a tax, a nay, a ram, a cap, a yam, a gay, a tsar, a wall, a car,
a luger, a ward, a bin, a woman, a vassal, a wolf, a tuna, a nit, a pall, a fret, a watt, a bay, a daub, a
tan, a cab, a datum, a gall, a hat, a tag, a zap, a say, a jaw, a lay, a wet, a gallop, a tug, a trot, a
trap, a tram, a torr, a caper, a top, a tonk, a toll, a ball, a fair, a sax, a minim, a tenor, a bass, a
passer, a capital, a rut, an amen, a ted, a cabal, a tang, a sun, an ass, a maw, a sag, a jam, a dam, a
sub, a salt, an axon, a sail, an ad, a wadi, a radian, a room, a rood, a rip, a tad, a pariah, a revel, a
reel, a reed, a pool, a plug, a pin, a peek, a parabola, a dog, a pat, a cud, a nu, a fan, a pal, a rum, a
nod, an eta, a lag, an eel, a batik, a mug, a mot, a nap, a maxim, a mood, a leek, a grub, a gob, a
gel, a drab, a citadel, a total, a cedar, a tap, a gag, a rat, a manor, a bar, a gal, a cola, a pap, a yaw,
a tab, a raj, a gab, a nag, a pagan, a bag, a jar, a bat, a way, a papa, a local, a gar, a baron, a mat,
a rag, a gap, a tar, a decal, a tot, a led, a tic, a bard, a leg, a bog, a burg, a keel, a doom, a mix, a
map, an atom, a gum, a kit, a baleen, a gala, a ten, a don, a mural, a pan, a faun, a ducat, a
pagoda, a lob, a rap, a keep, a nip, a gulp, a loop, a deer, a leer, a lever, a hair, a pad, a tapir, a
door, a moor, an aid, a raid, a wad, an alias, an ox, an atlas, a bus, a madam, a jag, a saw, a mass,
an anus, a gnat, a lab, a cadet, an em, a natural, a tip, a caress, a pass, a baronet, a minimax, a
sari, a fall, a ballot, a knot, a pot, a rep, a carrot, a mart, a part, a tort, a gut, a poll, a gateway, a
law, a jay, a sap, a zag, a tat, a hall, a gamut, a dab, a can, a tabu, a day, a batt, a waterfall, a
patina, a nut, a flow, a lass, a van, a mow, a nib, a draw, a regular, a call, a war, a stay, a gam, a
yap, a cam, a ray, an ax, a tag, a wax, a paw, a cat, a valley, a drib, a lion, a saga, a plat, a catnip, a
pooh, a rail, a calamus, a dairyman, a bater, a canal - Panama/

- Dan Hoey [Pic96]

[t is fitting to conclude our whirlwind tour of the STL with an example showcasing exactly how concise and
powerful well-written STL code can be. This example is shorter than the others in this book, but should
nonetheless illustrate how the different library pieces all fit together. Once you've finished reading this
chapter, you should have a solid understanding of how the STL and streams libraries can come together
beautifully to elegantly solve a problem.

Palindromes

A palindrome is a word or phrase that is the same when read forwards or backwards, such as “racecar” or
“Malayalam.” It is customary to ignore spaces, punctuation, and capitalization when reading palindromes,
so the phrase “Mr. Owl ate my metal worm” would count as a palindrome, as would “Go hang a salami! I'm
alasagna hog.”

Suppose that we want to write a function IsPalindrome that accepts a string and returns whether or
not the string is a palindrome. Initially, we'll assume that spaces, punctuation, and capitalization are all
significant in the string, so “Party trap” would not be considered a palindrome, though “Part y traP” would.
Don't worry - we'll loosen this restriction in a bit. Now, we want to verify that the string is the same when
read forwards and backwards. There are many possible ways to do this. Prior to learning the STL, we
might have written this function as follows:



Chapter 7: STL Algorithms -183 -

bool IsPalindrome (string input) {
for(int k = 0; k < input.size() / 2; ++k)
if (input[k] != input[input.length() - 1 - kIJ)
return false;
return true;

}

That is, we simply iterate over the first half of the string checking to see if each character is equal to its
respective character on the other half of the string. There's nothing wrong with the approach, but it feels
too mechanical. The high-level operation we're modeling asks whether the first half of the string is the
same forwards as the second half is backwards. The code we've written accomplishes this task, but has to
explicitly walk over the characters from start to finish, manually checking each pair. Using the STL, we can
accomplish the same result as above without explicitly spelling out the details of how to check each
character.

There are several ways we can harness the STL to solve this problem. For example, we could use the STL
reverse algorithm to create a copy of the string in reverse order, then check if the string is equal to its
reverse. This is shown here:

bool IsPalindrome (string input) {

string reversed = input;
reverse (input.begin (), input.end()):;
return reversed == input;

This approach works, but requires us to create a copy of the string and is therefore less efficient than our
original implementation. Can we somehow emulate the functionality of the initial for loop using
iterators? The answer is yes, thanks to reverse iterators. Every STL container class exports a type
reverse iterator which is similar to an iterator except that it traverses the container backwards. Just
as the begin and end functions define an iterator range over a container, the rbegin and rend functions
define a reverse iterator range spanninga container.

Let's also consider the the STL equal algorithm. equal accepts three inputs - two iterators delineating a
range and a third iterator indicating the start of a second range - then returns whether the two ranges are
equal. Combined with reverse iterators, this yields the following one-line implementation of
IsPalindrome:

bool IsPalindrome (string input) {
return equal (input.begin (), input.begin() + input.size() / 2,
input.rbegin());

This is a remarkably simple approach that is identical to what we've written earlier but much less verbose.
Of course, it doesn't correctly handle capitalization, spaces, or punctuation, but we can take care of that
with only a few more lines of code. Let's begin by stripping out everything from the string except for
alphabetic characters. For this task, we can use the STL remove if algorithm, which accepts as input a
range of iterators and a predicate, then modifies the range by removing all elements for which the
predicate returns true. Like its partner algorithm remove, remove if doesn't actually remove the
elements from the sequence (see the last chapter for more details), so we'll need to erase the remaining
elements afterwards.

Because we want to eliminate all characters from the string that are not alphabetic, we need to create a
predicate function that accepts a character and returns whether it is not a letter. The header file



-184 - Chapter 7: STL Algorithms

<cctype> exports a helpful function called isalpha that returns whether a character is a letter. This is
the opposite what we want, so we'll create our own function which returns the negation of isalpha:’

bool IsNotAlpha (char ch) {
return !isalpha(ch);

}
We can now strip out nonalphabetic characters from our input string as follows:

bool IsPalindrome (string input) {
input.erase (remove if (input.begin(), input.end(), IsNotAlpha),
input.end());
return equal (input.begin (), input.begin() + input.size() / 2,
input.rbegin());

Finally, we need to make sure that the string is treated case-insensitively, so inputs like “RACEcar” are
accepted as palindromes. Using the code developed in the chapter on algorithms, we can convert the
string to uppercase after stripping out everything except characters, yielding this final version of
IsPalindrome:

bool IsPalindrome (string input) {
input.erase(remove if (input.begin(), input.end(), IsNotAlpha),

input.end());
transform(input.begin(), input.end(), input.begin(), ::toupper):;
return equal (input.begin (), input.begin() + input.size() / 2,
input.rbegin());

This function is remarkable in its elegance and terseness. In three lines of code we've stripped out all of the
characters in a string that aren't letters, converted what's left to upper case, and returned whether the
string is the same forwards and backwards. This is the STL in action, and I hope that you're beginning to
appreciate the power of the techniques you've learned over the past few chapters.

Before concluding this example, let's consider a variant on a palindrome where we check whether the
words in a phrase are the same forwards and backwards. For example, “Did mom pop? Mom did!” is a
palindrome both with respect to its letters and its words, while “This is this” is a phrase that is not a
palindrome but is a word-palindrome. As with regular palindromes, we'll ignore spaces and punctuation,
so “It's an its” counts as a word-palindrome even though it uses two different forms of the word its/it's.
The machinery we've developed above works well for entire strings; can we modify it to work on a word-
by-word basis?

In some aspects this new problem is similar to the original. We still to ignore spaces, punctuation, and
capitalization, but now need to treat words rather than letters as meaningful units. There are many
possible algorithms for checking this property, but one solution stands out as particularly good. The idea
is as follows:

1. Clean up the input: strip out everything except letters and spaces, then convert the result to upper
case.

2. Break up the input into a list of words.

3. Return whether the list is the same forwards and backwards.

*  When we cover the <functional> library in the second half of this book, you'll see a simpler way to do this.



Chapter 7: STL Algorithms -185 -

In the first step, it's important that we preserve the spaces in the original input so that we don't lose track
of word boundaries. For example, we would convert the string “Hello? Hello!? HELLO?” into “HELLO
HELLO HELLO” instead of “HELLOHELLOHELLO” so that we can recover the individual words in the
second step. Using a combination of the i salpha and isspace functions from <cctype> and the convert-
to-upper-case code used above, we can preprocess the input as shown here:

bool IsNotAlphaOrSpace (char ch) {
return !isalpha(ch) && !isspace(ch);

}

bool IsWordPalindrome (string input) {
input.erase (remove if (input.begin(), input.end(), IsNotAlphaOrSpace),
input.end());
transform(input.begin(), input.end(), input.begin(), ::toupper):
VA Y
}

At this point the string input consists of whitespace-delimited strings of uniform capitalization. We now
need to tokenize the input into individual words. This would be tricky were it not for stringstream.
Recall that when reading a string out of a stream using the stream extraction operator (>>), the stream
treats whitespace as a delimiter. Thus if we funnel our string into a stringstream and then read back
individual strings, we'll end up with a tokenized version of the input. Since we'll be dealing with an
arbitrarily-long list of strings, we'll store the resulting list in a vector<string>, as shown here:

bool IsWordPalindrome (string input) {
input.erase (remove if (input.begin(), input.end(), IsNotAlphaOrSpace),
input.end());
transform(input.begin(), input.end(), input.begin(), ::toupper);

stringstream tokenizer (input) ;
vector<string> tokens;

/* oo %/

Now, what is the easiest way to read strings out of the stream until no strings remain? We could do this
manually, as shown here:

bool IsWordPalindrome (string input) {
input.erase (remove if (input.begin(), input.end(), IsNotAlphaOrSpace),
input.end());
transform(input.begin(), input.end(), input.begin(), ::toupper):

stringstream tokenizer (input) ;
vector<string> tokens;

string token;
while (tokenizer >> token)
tokens.push back (token);

This code is correct, but it's bulky and unsightly. The problem is that it's just too mechanical. We want to
insert all of the tokens from the stringstream into the vector, but as written it's not clear that this is
what's happening. Fortunately, there is a much, much easier way to solve this problem thanks to
istream iterator. Recall that istream iterator is an iterator adapter that lets you iterate over an
input stream as if it were a range of data. Using istream iterator to wrap the stream operations and



-186 - Chapter 7: STL Algorithms

the vector's insert function to insert a range of data, we can rewrite this entire loop in one line as
follows:

bool IsWordPalindrome (string input) {
input.erase (remove if (input.begin(), input.end(), IsNotAlphaOrSpace),
input.end());
transform(input.begin(), input.end(), input.begin(), ::toupper);

stringstream tokenizer (input);
vector<string> tokens;

tokens.insert (tokens.begin (),
istream iterator<string>(tokenizer),
istream iterator<string>());

Recall that two istream iterators are necessary to define a range, and that an istream iterator
constructed with no arguments is a special “end of stream” iterator. This one line of code replaces the
entire loop from the previous implementation, and provided that you have some familiarity with the STL
this second version is also easier to read.

The last step in this process is to check if the sequence of strings is the same forwards and backwards. But
we already know how to do this - we just use equal and a reverse iterator. Even though the original
implementation applied this technique to a string, we can use the same pattern here on a
vector<string> because all the container classes are designed with a similar interface. Remarkable,
isn'tit?

The final version of IsWordPalindrome is shown here:

bool IsWordPalindrome (string input) {
input.erase (remove if (input.begin(), input.end(), IsNotAlphaOrSpace),
input.end());
transform(input.begin(), input.end(), input.begin(), ::toupper):

stringstream tokenizer (input) ;
vector<string> tokens;

tokens.insert (tokens.begin(),
istream iterator<string>(tokenizer),
istream iterator<string>());

return equal (tokens.begin (), tokens.begin() + tokens.size() / 2,
tokens.rbegin());

More to Explore

While this chapter lists some of the more common algorithms, there are many others that are useful in a
variety of contexts. Additionally, there are some useful C/C++ library functions that work well with
algorithms. If you're interested in maximizing your algorithmic firepower, consider looking into some of
these topics:

1. <cetype>: This chapter briefly mentioned the <cctype> header, the C runtime library's character
type library. <cctype> include support for categorizing characters (for example, isalpha to
return if a character is a letter and isxdigit to return if a character is a valid hexadecimal digit)
and formatting conversions (toupper and tolower).



Chapter 7: STL Algorithms -187 -

<cmath>: The C mathematics library has all sorts of nifty functions that perform arithmetic
operations like sin, sqrt, and exp. Consider looking into these functions if you want to use
transform on your containers.

Boost Algorithms: As with most of the C++ Standard Library, the Boost C++ Libraries have a
whole host of useful STL algorithms ready for you to use. One of the more useful Boost algorithm
sets is the string algorithms, which extend the functionality of the find and replace algorithms
on strings from dealing with single characters to dealing with entire strings.

Practice Problems

Algorithms are ideally suited for solving a wide variety of problems in a small space. Most of the following
programming problems have short solutions - see if you can whittle down the space and let the algorithms
do the work for you!

1.

Give three reasons why STL algorithms are preferable over hand-written loops.

What does the _if suffix on an STL algorithm indicate? What about n?

What are the five iterator categories?

Can an input iterator be used wherever a forward iterator is expected? That is, if an algorithm
requires a forward iterator, is it legal to provide it an input iterator instead? What about the other

way around?

Why do we need back_insert iterator and the like? That is, what would happen with the STL
algorithms if these iterator adaptors didn't exist?

The distance function, defined in the <iterator> header, takes in two iterators and returns the
number of elements spanned by that iterator range. For example, given a vector<int>, calling

distance (v.begin (), v.end());
returns the number of elements in the container.
Modify the code from this chapter that prints the average of the values in a file so that it instead
prints the average of the values in the file between 25 and 75. If no elements are in this range, you

should print a message to this effect. You will need to use a combination of accumulate and
distance.

Using remove if and a custom callback function, write a function RemoveShortWords that
accepts a vector<string> and removes all strings of length 3 or less from it. This function can be

written in two lines of code if you harness the algorithms correctly.

In n-dimensional space, the distance from a point (xi, X, X3 .. X,) to the origin is

\/X?-F x§+x§ —I—...—I—xi . Write a function DistanceToOrigin that accepts a vector<double>

representing a point in space and returns the distance from that point to the origin. Do not use any
loops - let the algorithms do the heavy lifting for you. (Hint: Use the inner product algorithm to
compute the expression under the square root.)



-188 -

10.

11.

12.

13.

14.

15.

16.

17.

Chapter 7: STL Algorithms

Write a function Biasedsort that accepts a vector<string> by reference and sorts the vector
lexicographically, except that if the vector contains the string “Me First,” that string is always at
the front of the sorted list. This may seem like a silly problem, but can come up in some
circumstances. For example, if you have a list of songs in a music library, you might want songs
with the title “Untitled” to always appear at the top.

Write a function CriticsPick that accepts a map<string, double> of movies and their ratings
(between 0.0 and 10.0) and returns a set<string> of the names of the top ten movies in the map.
If there are fewer than ten elements in the map, then the resulting set should contain every string
in the map. (Hint: Remember that all elements in a map<string, double> are stored internally as
pair<string, double>)

Implement the count algorithm for vector<int>s. Your function should have the prototype
int count (vector<int>::iterator start, vector<int>::iterator stop, int

element) and should return the number of elements in the range [start, stop) that are equal to
element.

Using the generate n algorithm, the rand function, and a back insert iterator, show how to
populate a vector with a specified number of random values. Then use accumulate to compute
the average of the range.

The median of a range of data is the value that is bigger than half the elements in the range and
smaller than half the elements in a range. For data sets with odd numbers of elements, this is the
middle element when the elements are sorted, and for data sets with an even number of elements
it is the average of the two middle elements. Using the nth element algorithm, write a function
that computes the median of a set of data.

Show how to use a combination of copy, istreambuf iterator, and ostreambuf iterator to
open a file and print its contents to cout.

Show how to use a combination of copy and iterator adapters to write the contents of an STL
container to a file, where each element is stored on its own line.

Suppose that you are given two vector<int>s with their elements stored in sorted order. Show
how to print out the elements those vectors have in common in one line of code using the
set intersection algorithm and an appropriate iterator adaptor.

A monoalphabetic substitution cipher is a simple form of encryption. We begin with the letters of
the alphabet, as shown here:

[2lelcfofefrleufr]a]x|c]u[nfofefofr]s|rufv]w[x]v]z]

We then scramble these letters randomly, yielding a new ordering of the alphabet. One possibility
is as follows:

[x|v|e|e|sfw|alv|w|e|r|c|e|r|ufu|x|z]o]c|r|z]e|u]s|n]

This new ordering thus defines a mapping from each letter in the alphabet to some other letter in
the alphabet, as shown here:



Chapter 7: STL Algorithms -189 -

C/D/IE|/F|G|H|I|J|K|L M|N/O|P|Q|R|S|T|U|V | W|X|Y]|Z

v/ D|IQ|J|W|A|]Y N|JE|F|C|L|R|/IH|IU|X|I|O|G|T|Z|P|M|S|B

To encrypt a source string, we simply replace each character in the string with its corresponding
encrypted character. For example, the string “The cookies are in the fridge” would be encoded as
follows:

T H/ E|]C|]O|O|K|I|E|S|AR|E|I|N T H|E|F|  R|I|D|G]|E
G|/Y J D H H  F N J| O K|I|  J NR G|Y J| W I N Q|A J

Monoalphabetic substitution ciphers are surprisingly easy to break - in fact, most daily
newspapers include a daily puzzle that involves deciphering a monoalphabetic substitution cipher
- but they are still useful for low-level encryption tasks such as posting spoilers to websites
(where viewing the spoiler explicitly requires the reader to decrypt the text).

Using the random shuffle algorithm, implement a function
MonoalphabeticSubstitutionEncrypt that accepts a source string and encrypts it with a
random monoalphabetic substitution cipher.



Part Two

Data Abstraction

It's all just bits and bytes.

Everything on your machine, whether it's your tax return, a picture from a trip, a web page, or a web
browser, is stored in memory as a series of ones and zeros encoded as magnetic, optical, or electrical
signals. How, then, can a computer do word processing? Or view images? Or check your email? All of this
data has structure - text documents store words and fonts, images vivid color pictures, and email a
mixture of text, headers, and contacts.



Chapter 8: Abstraction and Classes

Software keeps getting bigger. Society keeps digitizing and automating more and more aspects of life, and
the scope and complexity of software systems are ever increasing. For computer scientists, this is a
thrilling prospect: even after decades of booming growth, the field is still expanding and applications
abound. But for software engineers - the brave souls who actually write the code - this can be daunting.

In the early days of programming, software was considerably less complicated because the tasks we used
to ask of computers are nowhere near as complex as those we ask today. Operating systems worked on
less powerful hardware and with considerably fewer peripherals. The earliest web browsers didn't need
to support a wide array of HTML, CSS, JavaScript, XML, SVG, and RSS formats. Video games didn't need to
take advantage of the latest-and-greatest 3D hardware and weren't criticized for not having the most up-
to-date shading engine. But nowadays, the expectations are higher, and software is growing more
complicated.

Unfortunately, increasing the size of a software system greatly increases the system's complexity and
opens all sorts of avenues for failure. Combating software complexity is therefore extraordinarily
important as it allows software systems to grow robustly. This section of this book is dedicated entirely to
techniques for combating complexity through a particular technique called abstraction. Abstraction is a
subtle but important aspect of software design, and in many ways the difference between good
programmers and excellent programmers is the ability to design robust and intuitive abstractions in
software.

Many textbooks jump directly into a discussion of what abstraction is all about and how to represent it in
software, but I feel that doing so obscures the fundamental reasons underlying abstraction. This chapter
discusses how software engineering is different from other engineering disciplines, why software
complexity is particularly dangerous, and how abstraction can dramatically reduce the complexity of a
software system. It then introduces the class keyword and how to represent abstraction directly in
source code.

The Complexity of Software

What exactly does it mean to talk about the complexity of a software system? One of the first metrics that
may come to mind is the number of lines of code in the program. This is akin to measuring the complexity
of a chip by the number of transistors on it or a bridge by the number of welds required: while in general
system complexity rises with lines of code, a program with ten thousand lines of code is not necessarily
ten times more complicated than a system with one thousand lines of code. However, number of lines of
code is still a reasonable metric of software complexity. To give you a sense for how massive some
projects can be, here is a list of various software projects and the number of lines of code they contain:



-194 - Chapter 8: Abstraction and Classes

1-10 Hello, World!
10-100 Most implementation of the STL stack or queue.
100 -1,000 Most of the worked examples in this book.
1,000 -10,000 Intensive team project in a typical computer science curriculum.
10,000 - 100,000 Most Linux command-line utilities.
100,000 - 1,000,000 Linux g++ Compiler
1,000,000 - 10,000,000 Mozilla Firefox

10,000,000 - 100,000,000 Microsoft Windows 2000 Kernel
100,000,000 - 1,000,000,000 Debian Linux Operating System

The number of lines of code in each of these entries is ten times more than in the previous example. This
means that there are ten times as many lines of code in Firefox than in g++, for example. And yes, you did
read this correctly - there are many, many projects that clock in at over a million lines of code. The Debian
Linux kernel is roughly 230 million lines of code as of this writing. It's generally accepted that no single
programmer can truly understand more than fifty thousand lines of code, which means that in all but the
simplest of programs, no one programmer understands how the entire system works.

So software is complex - so what? That is, why does it matter that modern software systems are getting
bigger and more complicated? There are many reasons, of which two specifically stand out.

Every Bit Counts

In a software system, a single incorrect bit can spell disaster for the entire program. For example, suppose
you are designing a system that controls a nuclear reactor core. At some point in your program, you have
the following control logic:

if (MeltdownInProgress()) {
SetReactorPower (0) ;
EmergencyShutoff () ;

}

Let's suppose that MeltdownInProgress returns a bool that signals whether the reactor is melting
down. On most systems, bools are represented as a sequence of ones and zeros called bits. The value
false is represented by those bits all being zero, and true represented by any of the bits being nonzero.
For example, the value 00010000 would be interpreted as true, while 00000000 would be false. This
means that the difference between true and false is a single bit. In the above example, this means that
the difference between shutting down the reactor in an emergency and continuing normal operation is a
single bit in memory.

In the above example, our “single incorrect bit” was the difference between the boolean values true and
false, but in most systems the “single incorrect bit” will be something else. It might, for example, be an
negative integer where a positive integer was expected, an iterator that is past the end of a container, or an
unsorted vector when the data was expected to be sorted. In each of these cases, the erroneous data is
likely to be only a handful of bits off from a meaningful piece of data, but the result will be the same - the
program won't work as expected.



Chapter 8: Abstraction and Classes -195 -

Interactions Grow Exponentially

Suppose you have a program with n lines of code. Let's consider an “interaction” to be where data is
manipulated by two different lines of code. For example, one interaction might be creating an int in one
line and then printing it to the console in the next, or a function passing one of its parameters into another
function. Since every line of code might potentially manipulate data created by any of the other n lines of
code, if you sum up this count for all n lines of code there are roughly n® pairs of interacting lines. This
which means that the number of possible interactions in a software project increases, in the worst case, as
the square of the number of lines of code.

Let's consider a slightly different take on this. Suppose you are working on a software project with n lines
of code and you're interested in adding a new feature. As mentioned above, any changes you make might
interact with any of the existing n lines of code, and those n lines of code might interact with all of your
new lines of code. If the changes you make somehow violate an assumption that exists in some other
module, then changes in your relatively isolated region of the code base might cause catastrophic failures
in entirely different parts of the code base.

However, the situation is far worse than this. In this example we considered an interaction to be an
interaction between two lines of code. A more realistic model of interactions would consider interactions
between arbitrarily many lines of code, since changes made in several different points might converge
together in a point to form a result not possible if a single one of the changes didn't occur. In this case, if
the code base has n lines of code, the maximum number of interactions (sets of two or more lines of code)
is roughly 2". That's a staggeringly huge number. In fact, if we make the liberal assumption that there are
10'° atoms in the universe (most estimates put the figure at much less than this), then even a comparably
small software system (say, three thousand lines of code) has more possible interactions than there are
atoms in the universe.

In short, the larger a software system gets, the greater the likelihood than an error occurs and,
consequently, the more difficult it is to make changes. In short, software is chaotic, and even minuscule
changes to a code base can completely cripple the system.

Abstraction

One of the most powerful techniques available to combat complexity is abstraction, a means of simplifying
a complex program to a manageable level. Rather than jumping headfirst into a full-on definition of
abstraction with examples, let's look at abstraction by means of an example. Consider a standard, run-of-
the-mill stapler. Certainly you understand how to use a stapler: you place the papers to staple under the
arm of the stapler, then depress the handle to staple the pages together. You've undoubtedly encountered
more than one stapler in your life, yet (barring unfortunate circumstances) you've probably figured out
how to work all of them without much trouble. Staplers come in all shapes and sizes, and consequently
have many different internal mechanisms, yet switching from one type of stapler to another poses little to
no problem to you. In fact, you probably don't think much about staplers, even when you're using them.

Now consider the companies that make staplers - Swingline or McGill, for example. These companies
expend millions of dollars designing progressively better staplers. They consider all sorts of tradeoffs
between different types of springs and different construction materials. In fact, they probably expend
more effort in a single day designing staplers than you will ever spend thinking about staplers in your
entire life. But nonetheless, at the end of the day, staplers are simple and easy to use and bear no
markings to indicate the painstaking labor that has gone into perfecting them. This setup, where a
dedicated manufacturer designs a complex but easy-to-use product, is the heart of abstraction.



-196 - Chapter 8: Abstraction and Classes

Formally speaking, an abstraction is a description of an object that omits all but a few salient details. For
example, suppose we want to describe a particular coffee mug. Here are several different descriptions of
the coffee mug, each at different levels of abstraction:

* Matter.

* An object.

* Abeverage container.

* A coffee mug.

* A white coffee mug.

* A white ceramic coffee mug.

* A white ceramic coffee mug with a small crack in the handle.

* A white ceramic coffee mug with a small crack in the handle whose manufacturer's logo is
emblazoned on the bottom.

Notice how these descriptions move from least specific (matter) to most specific (A white ceramic coffee
mug with a small crack in the handle whose manufacturer's logo is emblazoned on the bottom). Each of
the descriptions describe the same coffee mug, but each does so at a different level of detail. Depending on
the circumstance, different levels of detail might be appropriate. For example, if you were a physicist
interested in modeling universal gravitation, the fact that the coffee mug is made of matter might be
sufficient for your purposes. However, if you wanted to paint a picture of the mug, you would probably
want to pick the last description, since it offers the most detail. If you'll notice, as the descriptions become
more and more detailed, more and more information is revealed about the object. Starting from the first
of these descriptions and moving downward, the picture of the coffee mug becomes more clear.
Describing the coffee mug as “matter” hardly helps you picture the mug, but as you go down the list you
begin to notice that the mug is white, has a small crack, and has a logo printed on the bottom.

What does this have to do with our previous discussion on staplers? The answer is simple: the reason that
staplers are so easy to use despite the complex mechanisms that make them work is because the very
notion of a stapler is an abstraction. There are many ways to build a stapler, some of which have handles
to staple documents, and others which use proximity sensors to detect paper and insert the staples
automatically. Although these devices have little mechanism or structure in common, we would consider
both of them staplers because they staple paper. In other words, what is important to us as stapler users
is the fact that staplers fasten paper together, not their inner workings. This may seem like a strange line
of reasoning, but it's one of the single most important concepts to grasp as a computer scientist. The rest
of this chapter is dedicated to exploring what abstraction means from a programming perspective and
how abstraction can combat complexity. But first, let's discuss some of the major concepts and terms
pertaining to abstraction at a high level.

The Wall of Abstraction

In our previous example with staplers, there was a clear separation of complexity between the stapler
manufacturer and the end user. The manufacturer took painstaking care to ensure that the stapler works
correctly, and end users just press a handle or feed paper near a sensor. This separation is fundamental to
combating complexity, and is given an appropriately impressive name: the wall of abstraction.

The wall of abstraction is the information barrier between a device and how it works. On one side of the
wall is the manufacturer, whose task is to provide a device capable of meeting certain requirements. To
the manufacturer, the single most important task is producing a device that works correctly and reliably.
On the other side of the wall of abstraction is the end user, who is interested in using the device but who,
unless curious, does not particularly care how the device works. In computer science, we refer to these
two roles as the client, who uses the device, and the implementer, who is tasked with making it work
correctly.



Chapter 8: Abstraction and Classes -197 -

When using a stapler, you don't care how the stapler works because it's an unnecessary mental burden.
You shouldn't need to know what type of metal the casing is made from, nor should you have to worry
about what type of spring pushes the staples up to the front of the stapler. The same is true of almost
every device and appliance in use today. Do you know exactly how a microwave works? How about an
internal combustion engine? What about an iPhone? Each of these devices is extraordinarily complicated
and works on nuanced principles of physics, materials science, chemical engineering, and in some cases
electrical and software engineering. The magic of all of these devices is that we don't need to know how
they work. We can trust that a team of dedicated engineers understand their inner workings, and can
focus instead on using them.

The fact that the wall of abstraction separates the implementer in the client necessarily means that an
abstraction shields clients from unnecessary implementation details. In that sense, the wall of abstraction
is a barrier that prevents information about the device's internals from leaking outside. That the wall of
abstraction is an information barrier has profound consequences for software design. Before we discuss
how abstraction can reduce system complexity, let us focus on this aspect in more detail.

Abstractions are Imprecise

Earlier in this chapter we discussed abstraction in the context of a coffee mug by exploring descriptions of
a cof fee mug at various levels of abstraction. Suppose that we have an actual coffee mug we are interested
in designing an abstraction for; for example, this mug here:

The highest-level description of a coffee mug in the original list was the extraordinarily vague “matter”
That is, all of the properties of the coffee mug are ignored except for the fact that it is matter. This means
the implementer (us) holds a coffee mug, but the client (the person reading the description “matter”)
knows only that our object is composed of matter. Because the wall of abstraction prevents information
from leaking to the client, that our object is made of matter is the only information the client has about the
coffee mug. This means that the client can't tell if our object is a coffee mug, Jupiter's moon Ganymede, or
a fried egg. In other words, our description was so vague that the client knows nothing about what object
we have.

Let's now move to a lower level of abstraction, the description that the mug is “a beverage container.” The
client can now tell that our mug is not Ganymede, nor is it a fried egg, but we haven't yet excluded other
possibilities. Many things are beverage containers - punch bowls, wine glasses, thermoses, etc. - and the
client cannot figure out from our limited description that the object is a coffee mug. However, without
knowing that the object is a coffee mug, at this level of abstraction the client could safely assume that our
object could store water.



-198 - Chapter 8: Abstraction and Classes

Now let's consider an even more precise description: we describe the coffee mug as “a coffee mug.” Now
what can the client infer about our mug? Because we have said that the object is a mug, they know that it's
a coffee mug, true, but there are many properties of the object that they don't know. For example, how big
is the mug? What color is it? What design, if any, adorns the mug? A client on the other side of the wall of
abstraction still can't paint a particularly vivid picture of the mug we're describing, but they now know a
good deal more about the mug than they did with either of the two previous descriptions.

This above discussion hits on a major point: abstractions are imprecise. When describing the coffee mug
at various levels of detail, we always truthfully represented our coffee mug, but our descriptions never
were sufficient to unambiguously convince the client of what object we were describing. In fact, if we had
instead been describing a different coffee mug, like this one here:

Black Mesa Research F&

then all of our descriptions would still have been perfectly honest.

Abstractions, by their very nature, make it impossible for the client to know exactly what object is being
described. This is an incredible blessing. Suppose, for example, that you bring your car in for routine
maintenance. The mechanic informs you that your radiator is nearing the end of its lifespan, so you pay
for a replacement. Once the mechanic replaces the radiator and you drive off into the sunset, the car that
you are driving is not the same car that you drove in with. One of its fundamental components has been
replaced, and so an integral part of the car's system is not the same as it used to be. However, you feel like
you are driving the same car when you leave because from your perspective, nothing has changed. The
accelerator and brakes still work as they used to, the car handles like it used to, and in fact almost every
maneuver you perform with the car will execute exactly the same way that the car used to. Viewing this
idea through the lens of abstraction, the reason for this is that your conception of the car has to do with its
observable behavior. The car you are now driving has a different “implementation” than the original car,
but it adheres to the same abstraction as the old car and is consequently indistinguishable from the
original car. Without looking under the hood (breaking the wall of abstraction), you wouldn't be able to
notice the difference.

Interfaces

The wall of abstraction sits at the boundary between two worlds - the world of the implementer, where
the workings of the mechanism are of paramount importance, and the world of the client, where the
observable behavior is all that matters. As mentioned earlier, the wall of abstraction is an information
barrier that prevents implementation details and usage information from crossing between the client and
implementer. But if the client is unaware of the implementation of the particular device, how can she
possibly use it? That s, if there is a logical barrier between the two parties, how can the client actually use
the implementer's device?



Chapter 8: Abstraction and Classes -199 -

One typical way to provide the client access to the implementation is via an interface. An interface is a set
of commands and queries that can be executed on the device, and is the way that the client interacts with
the object. For example, an interface might let the client learn some properties of the object in question, or
might allow the client to ask the device to perform some task. In software engineering, an interface
typically consists of a set of attributes (also called properties) that the object is required to have, along
with a set of actions that the object can perform. For example, here's one possible interface for a stapler:

* Attributes:

©  Number of staples left.

o Size of staples being used.

o How many sheets of paper are in the stapler.

©  The maximum number of sheets of paper that the stapler can staple.
e Actions:

© Add more staples.

o Put paper into the stapler.

o Staple the papers together.

Interfaces are fascinating because they provide a particularly elegant means for a implementer to expose
an object to a client. The implementer is free to build the device in question as she sees fit, provided that
all of the operations specified in the interface work correctly. That is, someone implementing a stapler
that adheres to the above interface can use whatever sort of mechanism they feel like to build the stapler,
so long as it is possible to look up how many staples are left, to add more staples to the stapler, etc.
Similarly, the client needs only learn the operations in the interface and should (theoretically) be able to
use any device that conforms to that interface. In software engineering terminology, we say that the
implementer implements the interface by providing a means of transforming any request given to the
interface to a request to the underlying device. For example, if the Swingline corporation decided to create
a new stapler, they might build a concrete stapler and then implement the interface for staplers as follows:

* Attributes:
©  Number of staples left: Open the cover and count the number of staples.
o Size of staples being used: Open the cover and look at the size of the staples.
©o How many sheets of paper are in the stapler: Count the sheets of paper on the base plate.
©  The maximum number of sheets of paper that the stapler can staple: 25
* Actions:
© Add more staples: Open the cover and insert more staples.
o Put paper into the stapler: Place the paper over the base plate.
o Staple the papers together: Depress the handle until it clicks, then release the handle.

However, we could also implement the stapler inteface in a different way if we were using an electronic
stapler:

* Attributes:
o Number of staples left: Read the digital display.
o Size of staples being used: Read the digital display.
o How many sheets of paper are in the stapler: Read the digital display.
© The maximum number of sheets of paper that the stapler can staple: 75
e Actions:
© Add more staples: Open the cover and snap the new roll of staples in place.
o Put paper into the stapler: Place the paper into the loading assembly.
o Staple the papers together: Press the “staple” button.



- 200 - Chapter 8: Abstraction and Classes

Notice that these two staplers have the same interface but entirely different actions associated with each
item in the interface. This is a concrete example of abstraction in action - because the interface only
describes some specific attributes and actions associated with the stapler, anything that can make these
actions work correctly can be treated as a stapler The actual means by which the interface is
implemented may be different, but the general principle is the same.

An extremely important point to note is the relation between interfaces and abstractions. Abstraction is a
general term that describes how to simplify systems by separating the role of the client and the
implementer. Interfaces are the means by which abstractions are actually modeled in software systems.
Whenever one speaks of abstraction in programming, it usually refers to designing an interface. In other
words, an object's interface is a concrete description of the abstraction provided for that object.

Encapsulation

When working with interfaces and abstractions, we build a wall of abstraction to prevent implementation
details about an object from leaking to the client. This means that the client does not necessarily need to
know how the particular object is implemented, and can just rely on the fact that some implementer has
implemented the interface correctly. But while an interface captures the idea that a client doesn't have to
know the particular implementation details, it does not express the idea that a client shouldn't know the
particular implementation details. To understand this, let's return to our discussion of staplers. If an
implementer provides a particular stapler that implements the stapler interface, then anyone using that
stapler can just use the interface to the stapler to get all of their required functionality. However, there's
nothing stopping them from disassembling the stapler, looking at its component parts, etc. In fact, given a
physical stapler, it's possible to do things with that stapler that weren't initially anticipated. You could, for
example, replace the stapler handle with a pneumatic compressor to build a stapler gun, which might
make the stapler more efficient in a particular application. However, you could also remove the spring
inside the stapler which forces the staples to the front of the staple tray, rendering the stapler useless.

In general, allowing clients to bypass interfaces and directly modify the object described by that interface
is dangerous. The entire purpose of an interface is to let implementers build arbitrarily complicated
systems that can be operated simply, and if a client bypasses the interface he'll be dealing with an object
whose workings could easily be far beyond his comprehension. In the case of a stapler, bypassing the
interface and looking at the stapler internals isn't likely to cause any problems, but you would certainly be
asking for trouble if you were to start poking around the internals of the Space Shuttle. This violation,
where a client bypasses an interface, is called breaking the wall of abstraction.

The above examples have hinted at why breaking the wall of abstraction is a bad idea, but we haven't
explicitly spelled out any reasons why in general it can be dangerous. Let us do this now. First, breaking
the wall of abstraction allows clients to severely hurt themselves by tweaking a complex system. In a
complex system like a car engine, certain assumptions have to hold about the relationship between the
parts of the car in order for the car to work correctly. That is, fuel shouldn't be injected into the engine
except in certain parts of the cycle, the transmission shouldn't try shifting gears until the clutch has been
released, etc. Consequently, most cars provide an interface into the engine that consists of a gas and brake
pedal, whose operation controls all of the relevant parts of the engine. If you were to ignore these controls
and instead try to drive the car by manually adjusting fuel intake and the brake pressure, barring special
training, you would almost certainly either cause an explosion or irreversibly destroy the engine.
Remember that abstraction protects both the client and the implementer - the client doesn't need to know
about the inner workings of the object, and the implementer doesn't need to worry that the client can
make arbitrary changes to the object; all operations on the object must come through the interface.
Breaking the wall of abstraction violates both these assumptions and can hurt both parties.

The second major reason against breaking the wall of abstraction is to ensure system flexibility. As
mentioned earlier, abstractions are by nature imprecise, and multiple different implementations might



Chapter 8: Abstraction and Classes -201-

satisfy a particular interface. If the client is allowed to break the wall of abstraction and look at a
particular part of the implementation, then that implementation is in essence “locked in place.” For
example, suppose that you provide a traditional stapler to a client. That client then decides to use the
stapler in a context where the exact position and orientation of the stapler hinge is important; perhaps the
client has trained a robot to use the stapler by learning to feed paper into the stapler whenever the hinge
is at a particular angle. Earlier in this chapter, we discussed how interfaces make it possible to change an
object's implementation without befuddling the user. That is, if the client only uses the operations listed in
an interface, then any object implementing that interface should be substitutable for any other. The
problem with breaking the wall of abstraction is that this is no longer possible. Consider, for example,
what happens if we try to replace the mechanical stapler from this setup with an electric stapler. Electric
staplers tend not to have hinges, and so if we swapped staplers the robot designed to feed paper into the
stapler would no longer be able to insert paper. In other words, because the robot assumed that some
property held true of the implementation that was documented nowhere in the interface, it became
impossible to ever change the implementation.

To summarize - peering behind an interface and looking at the underlying implementation is a bad idea. It
allows clients to poke systems in ways that were never intended, and it locks the particular
implementation in place.

If an abstraction does not allow clients to look at the implementation under any circumstance, that
abstraction is said to be encapsulated. In other words, it is as though the actual implementation is trapped
inside a giant capsule, and the only way to access the object is by issuing queries and commands specified
by the interface. Encapsulation is uncommon in the real world, but some analogies exist. For example, if
you visit a rare book collection, you cannot just go in and take any book off the shelf. Instead, you have to
talk to a librarian who will then get the book for you. You have no idea where the book comes from -
perhaps it's sitting on a shelf in the back, or perhaps the librarian has to get a courier to fetch it from some
special vault - but this doesn't concern you because at the end of the day you (hopefully) have the book

anyway.

Encapsulated interfaces are extraordinarily important in software because they represent a means for
entirely containing complexity. The immense amount of implementation detail that might be necessary to
implement an interface is abstracted away into a small set of commands that can be executed on that
interface, and encapsulation prevents other parts of the program from inadvertently (or deliberately)
modifying the implementation in unexpected ways. Later in this chapter, when we discuss classes, you
will see how C++ allows you to build encapsulated interfaces.

The Math: Why Abstraction Works

We've talked about abstraction and how it lets clients operate with complex objects without knowing their
full implementation. The implicit claim throughout this chapter has been that this greatly reduces the
complexity of software systems. Amazingly, given a suitable definition of system complexity, we can prove
that increasing the level of abstraction in a system reduces the maximum complexity possible in the
system.

In this discussion, we'll need to settle on a definition of a system's complexity. If a system consists of
different interfaces, we will define the maximum complexity of that system to be the maximum number of
interactions between these interfaces. For our purposes, we'll consider an interaction between interfaces
to be a set of two or more interfaces. It can be shown that there are 2" - n - 1 possible interactions
between interfaces, which is an absolutely huge number. In fact, in a system with ten interfaces, there are
1,013 possible interactions between those interfaces. The reason for this is the first term in this quantity
(2M), which grows extremely fast. It grows so quickly that we can ignore the last two terms in the sum and
approximate the maximum complexity of a system as 2".



-202 - Chapter 8: Abstraction and Classes

Now, suppose that we introduce a new abstraction into a system that reduces the total number of
interfaces in the system by 10. This means that the new system has n - 10 interfaces, and consequently its
maximum complexity is 2" '°. If we take the ratio of the maximum complexity of the new system to the
maximum complexity of the old system, we get 27, which is just under one one-thousandth. That is, the
maximum complexity of the new system will be roughly one one-thousandth that of the original system.
This result has extremely important implications for software design. It is possible to build reasonably
simple software systems that are hundreds of millions of lines of code simply by minimizing the number of
interfaces present in the software system. This caps the maximum complexity of the system by limiting
the number of possible interactions.

But the above logic is terribly misleading. In practice, software systems rarely get even close to reaching
the maximum number of possible interactions. Maximum complexity only occurs if every combination of
objects has a well-defined interaction, and this is rarely the case. For example, in a simulation with a
stapler, pen, and pencil sharpener, you are unlikely to ever have the stapler and pencil sharpener interact,
and if you do it is extremely unlikely that you will have all three objects have some specific behavior when
interacting all at the same time. A more realistic measure of complexity is the number of ways in which
pairs of objects can interact. This is a desirable choice for several reasons. First, it corresponds to an
elegant graphical measure of complexity. If we list all of the components in a system and add lines
between pairs of objects that interact with each other, the complexity of that system is then the number of
lines in the picture. For example, here are two diagrams of ways that common office supplies might
interact with one another. The first system is clearly more complex than the second since there are more
interactions defined between the components.

Paper Stapler Paper Stapler

Pencil Sharpener Pencil Sharpener

Setup one: Everything interacts Setup two: Only meaningful
with everything else. interactions defined.

Second, in practice, interactions between two or more objects can usually be simplified down into multiple
instances of interactions between pairs of objects. For example, if three billiard balls all collide, we could
consider the interaction between the three balls as three separate interactions of the pairs of balls. Only in
unusual circumstances is such a decomposition not possible. Finally, considering interactions only of pairs
rather than of triples or quadruples tends to correspond more accurately to how systems are actually
built. It is conceptually simpler to think about how a single piece of a system interacts with each of its
neighbors in isolation than it is to think about how that pieces interacts with all of its neighbors
simultaneously.

Even with this more restrictive definition of complexity, reducing the number of interfaces in a system still
produces larger reductions in complexity. It can be shown that the number of possible pairs of interacting
objects is slightly less than n® This means that if we make a linear reduction in the number of objects in
the system, we get a quadratic decrease in the maximum complexity in that system. That is, removing ten
interfaces isn't going to drop the maximum complexity by ten interactions - it will be a considerably
bigger number.



Chapter 8: Abstraction and Classes -203 -

Classes

The single most important difference between C++ and its predecessor C is the notion of a class. Classes
are C++'s mechanism for encoding and representing abstraction, pairing interfaces with implementations,
and enforcing encapsulation. The entire remainder of this book will be dedicated to exploring how to
create, modify, maintain, use, and refine classes and class definitions.

In the previous discussion on abstraction, we discussed abstractly the notions of interfaces and
encapsulation. Before we discuss the class mechanism, let's consider an extended example that illustrates
exactly why abstraction and interfaces are so important. In particular, we will explore how one might
represent an FM radio tuner in C++ code. We won't actually create a working FM radio in software - that
would require specialized hardware - but the example should demonstrate many of the reasons why
classes are so important.

Designing an FM Radio

In our example, we will create a data structure that stores information about an FM radio. Since the
properties of an FM radio can't be represented with a single variable, we'll create a struct called FMRadio
which will hold all of our data. What should this struct contain? At a bare minimum, we will need to
know what frequency the radio is tuned in to. We also probably want to specify a volume control, so that
listeners can turn up high-energy music or turn down shouting news pundits. We can represent this
information as follows:

struct FMRadio {
double frequency;
int volume;

}i

Here, the frequency field stores the frequency in MHz. For example, if you were listening to 88.5 KQED San
Francisco, this field would have the value 88.5. Similarly, listening to 107.9 The End Sacramento would
have the field hold 107.9. I've arbitrarily chosen to store the volume as an int that holds a value between 0
and 10, inclusive. Volume zero completely mutes the radio, while volume ten is as much power as the
speaker can deliver. This means that if I wanted to configure my radio to listen to “This American Life” at a
reasonably quiet level, I could write

FMRadio myRadio;
myRadio.frequency = 88.5; // 88.5 MHz (KQED)
myRadio.volume = 3; // Reasonably quiet

Now, let's consider one more extension to the radio. Most radios these days let the user configure up to six
different “presets,” saved stations that listeners can adjust the radio to quickly. Most car radios have this
feature, although older FM radios do not. The presets are numbered one through six, and at any time a
particular preset might be empty (the listener hasn't programmed this preset yet) or set to a particular
frequency. As an example, I frequently commute between Palo Alto and Sacramento, and enjoy listening to
NPR on the drive. Both Sacramento and San Francisco have stations that broadcast NPR content, and
about halfway between Palo Alto and Sacramento one of the stations fades out dramatically while the
other one comes in much more strongly. To make it easier to switch between the stations, [ programmed
my car radio's presets so that preset one is the San Francisco station (88.5) and preset two is the
Sacramento station (89.3).

We'd like to add this functionality to FMRadio, but what's the best way to do so? If we want to store a list
of six different settings, we could do so with a vector, but run into a problem because a vector always
enforces the restriction that there must be an element at every position. Because some of the presets



-204 - Chapter 8: Abstraction and Classes

might not be configured, we might run into trouble if we stored the elements in a vector because it would
be difficult to determine whether a particular position in the vector was empty or filled with a valid
station. Instead, we'll implement the FMRadio using a map that maps from the preset number to the
station at the preset. If a particular value between 1 and 6 is not a key in the map, then the preset has not
been configured; if it is a key, then its value is the preset. This leads to the following version of FMRadio:

struct FMRadio {
double frequency;
int volume;
map<int, double> presets;

}i
If I then wanted to program my radio as described above, I would do so as follows:

FMRadio myRadio;

myRadio.presets[1l] = 88.5;
myRadio.presets[2] = 89.3;
Abusing the FM Radio

The definition of FMRadio from above seems reasonably straightforward. It has three fields that
correspond to some attribute of the radio. Unfortunately, however, using this FMRadio in any complex
software system can cause problems. The reason is that there are certain restrictions on what values the
fields of the FMRadio can and cannot be, but there is no means of enforcing those restrictions. For
example, in the United States, all FM radio frequencies are between 87.5 and 108.0 MHz. Consequently,
the frequency field should never be set to any value out of this range, since doing so would be
meaningless. Similarly, we've stated that we don't want the volume field to leave the range 0 to 10, but
nothing prevents clients of FMRadio from doing so. Finally, the presets field has to obey two restrictions:
that the keys are integers between 1 and 6, and that the values are doubles restricted to the range of valid
frequencies.

Now, suppose that someone who does not have this intimate knowledge of the FM radio class we've
designed comes along and writes the following code:

FMRadio myRadio;

myRadio.frequency = 110.0; // Problem: Invalid frequency
myRadio.volume = 11; // Problem: Volume out of range
myRadio.presets[0] = 85.0; // Problem: Bad preset index, invalid frequency

All of the above operations are illegal on FM radios, but this code compiles and runs just fine. Moreover,
there is no indication at runtime that this code isn't going to work correctly. Everything that the client has
done is perfectly legal C++, and the compiler has no idea that something bad might happen in the future.
To give a context of where things can go wrong, suppose that we have a function that adjusts the power
level to some system peripheral to tune in to the proper frequency. Because all legal frequencies are
between 87.5 and 108.0 MHz, the code adjusts the power level to a floating-point value such that the
power is 0.0 at the lowest possible frequency (87.5 MHz) and 1.0 at the highest frequency (108.0 MHz).
This code is shown below, assuming the existence of a SetDevicePower function that actually sets the
device power:



Chapter 8: Abstraction and Classes - 205 -

void TuneReceiver (FMRadio radio) {
/* Compute the fraction of the maximum power that this
* frequency requires.
*/
double powerLevel = (radio.frequency - 87.5) / (108.0 - 87.5);
SetDevicePower (powerLevel) ;

I'll leave double-checking that the above computation gives the fraction of the power to the transmitter as
an exercise to the reader. In the meantime, think about what will happen if we write the following code:

FMRadio myRadio;

myRadio. frequency = 110.0;
myRadio.volume = 11;
myRadio.presets[0] 85.0;
TuneReceiver (myRadio) ;

We now have a fairly serious problem on our hands. Because the radio frequency is 110.0 MHz, a value out
of the valid FM radio range, the code inside of TuneReceiver is going to set the power level to a
nonsensical value. In particular, since (110.0 - 87.5) / (108.0 - 87.5) = 1.095, the code will turn the
receiver on at roughly 110% of the maximum power it's supposed to receive. If we're lucky, the code inside
TuneReceiver will have a check that this value is out of range, and the program will report an error. If
we're unlucky and the code actually drives too much power into the receiver, we might overload the device
and set it on fire. In other words, because the client of the FMRad1io struct set a single field to a nonsensical
value, it's possible that our program will crash or cause a physical device malfunction. This is clearly
unacceptable, and we will need to do something about this.

Modifying the FM Radio

Of course, that's not all of the problems we might encounter when working with the FMRadio. Suppose, for
example, that we write the following function, which sets the radio's frequency to the preset at the given
position if possible, and does not change the frequency otherwise. The code is as follows:

void LoadPreset (FMRadio& radio, int preset) {
/* Check whether this preset exists. */
map<int, double>::iterator itr = radio.presets.find(preset);

/* If not, don't do anything. */
if (itr == radio.presets.end())
return;

/* Otherwise, change the radio frequency. */
radio.frequency = itr->second;

Now, suppose that for some reason (efficiency, perhaps) that we decide to change the FMRadio struct so
that the presets are implemented as an array of doubles. We arbitrarily say that any preset that has not
been programmed will be represented by having the value 0 stored in a particular slot. That is, given my
NPR travel presets, the preset array would look like this:

Value 88.5 89.3 0 0 0 0
Index 0 1 2 3 4 5




- 206 - Chapter 8: Abstraction and Classes

This requires us to change the definition of the FMRadio interface to use a raw array instead of an STL map.
The updated definition is shown here:

struct FMRadio {
double frequency;
int volume;
double presets[6];
bi

We now have a serious problem. Almost of the code that we've written previously that uses the FMRadio's
preset field will fail to compile. For example, our earlier code for LoadPreset will call presets. find,
which does not exist in a raw array. This means that this single change might require us to rewrite huge
amounts of code. In a small project, this is a mere annoyance, but in a large system on the order of millions
of lines of code might be so time-consuming as to render the change impossible.

What Went Wrong?

The above discussion highlighted two problems with the FMRadio struct. First, FMRadio provides no
means for enforcing its invariants. Because the aspects of the FM radio were represented in FMRadio by
raw variables, any part of the program can modify those variables without the FMRadio getting a chance to
intervene. In other words, the FMRadio expects that certain relations hold between its fields, but has no
mechanism for enforcing those relations. Second, because the FMRadio is represented in software as a
particular implementation of an FM radio, code that uses the FM radio necessarily locks the FM radio into
that particular implementation. Using the terminology from the earlier in this chapter, this
implementation of the FM radio provides no abstraction and no encapsulation. The FMRadio interface is its
implementation - that is, the operations that clients can perform on the FMRadio are manipulations of the
fields that compose the FMRadio. Changing the implementation thus changes the interface, which is why
changing the fields breaks existing code. Similarly, because the interface of FMRadio is the set of all
possible manipulations of the data members, clients can tweak the FMRadio in any way they see fit, even if
such manipulations break internal invariants.

This is the reality of what C++ programming is like without classes. Code bases are more brittle, bugs are
more likely, and changes are more difficult. As we now change gears and see how to represent an FM radio
using classes, keep this starting point in mind. By the time you finish this chapter, the FM radio will be
significantly more robust than it is now.

Introduction to Classes

In C++, a class is an interface paired with an implementation. Like structs, classes define new types that
can be created and used elsewhere in the program.

Because classes pair an implementation and an interface, the structure of an individual class can be
partitioned into two halves - the public interface specifying how clients interact with the class, and the
private implementation, which specifies how functions in the public interface are implemented. Rather
than diving head-first into a full-blown class definition, we'll investigate each of these parts individually.
We will focus first on how to declare the class, and worry about the implementation later.

Defining a Public Interface

Let's return to the example of the FM radio. We are interested in designing an abstraction that represents
an FM radio, then expressing the radio in software. In particular, we want our radio to have three pieces of
data: the current frequency (in MHz), the volume (from 0 to 10), and the presets. As we saw in the failed
experiment with struct FMRadio, we cannot simply give clients direct access to the fields that ultimately



Chapter 8: Abstraction and Classes - 207 -

implement these properties. How, then, can we design an FM radio that contains some data but which
does not allow clients to directly modify the data? The answer is a subtle yet beautiful trick that is
ubiquitous in modern software. We will create a set of functions that set and query the value of these data
members. We then prevent the client from directly accessing the data members that these functions
manipulate. The major advantage of this approach is that every operation that could potentially read or
modify the data must go through this small set of functions. Consequently, the implementer retains full
control over what operations manipulate the class's implementation.

Now, let's see how one might express this in C++. We will rewrite our FMRadio struct from earlier to
convert it into a fully-fledged C++ class. To begin, we use the C++ class keyword to indicate that we're
defining a new class called FMRadio. This is shown here:

class FMRadio {
}i

Currently, this class is empty and is useless. We'll thus start defining the public interface by which clients
of FMRadio will interact with the class. In C++, to define a class's public interface, we use the public
keyword to indicate the start of the interface, and then list the functions contained in that public interface.
This leads us to the following code:

class FMRadio {
public:

}s

That is, the public keyword, followed by a colon. Any definitions that follow the public keyword will be
included as part of the class's public interface. But what functions should we put in here? Let's begin by letting
the client query and set the radio's frequency. To do this, we'll define two member functions called
getFrequency and setFrequency. This is shown here:

class FMRadio {
public:
double getFrequency() ;
void setFrequency (double newFreq);

}i

These functions are called member functions of the FMRadio class. Although they look like regular
function prototypes, because these functions are defined inside of FMRadio, they are local to that class. In
fact, calling the function getFrequency by itself will result in a compile-time error because there is no
global function called getFrequency. Instead, we've defined a function that can be invoked on an object of
type FMRadio. To see how this works, let's create a new object of type FMRadio. This is syntactically
identical to the code for creating instances of a struct type — we put the name of the type, followed by the
variable name. This is shown here:

FMRadio myRadio; // Declare a new variable of type FMRadio

Now that we have this myRadio object, we can ask it for its frequency by invoking the getFrequency
member function. This is shown here:

FMRadio myRadio;
double f = myRadio.getFrequency(); // Query the radio for its frequency

Note that this code will not run as written, because we have not yet implemented the getFrequency ()
function; we'll see how to do that later in this chapter. However, this syntax should seem familiar, as it's



-208 - Chapter 8: Abstraction and Classes

the same syntax we used to invoke functions on STL containers, stream objects, and strings. In fact, all of
those objects are instances of classes. You're on the road to learning how these complex objects are put
together!

Let's continue designing our interface. We also want a means for the client to set and read the radio
volume. Along the same lines as before, we can add a pair of member functions to FMRadio to grant access
to this data. This is shown here:

class FMRadio {
public:
double getFrequency();
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

i
Clients can then read and write the volume by writing code like this:
FMRadio myRadio;

myRadio.setVolume (8) ;
cout << myRadio.getVolume () << endl;

Again, this code will not run because we haven't implemented either of these functions. Don't worry, we're
almost at the point where we'll be able to do this.

Let us now consider the final piece of the FMRadio interface — the code for manipulating presets. With the
previous two properties (volume and frequency) we were working with a single entity, but we now must design
an interface to let clients read and write multiple different values. Moreover, some of these values might not
exist, since the presets might not yet be programmed in. To design a good interface, we should consider what
clients would like to do with presets. We should certainly allow clients to set each of the presets. Additionally,
clients should be able to check whether a certain preset has been programmed in. Finally, clients should be able
to read back the presets they've programmed in, assuming they exist. We can represent each of these operations
with a member function, leading to this interface for the FMRadio class:

class FMRadio {
public:
double getFrequency();
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

}i

We now have an interface for our FMRadio class. Now, let's see how we specify the implementation of this
interface.

Writing a Class Implementation

A C++ class represents an abstraction, which consists of an interface into some object. We've just seen
how to define the interface for the class, and now we must provide an implementation of that interface.



Chapter 8: Abstraction and Classes -209 -

This implementation consists of two parts. First, we must define what variables we will use to implement
the class. This is akin to choosing the fields we putin a struct for the information to be useful. Second,
we must provide an implementation of each of the member functions we defined in the class's public
interface. We will do each of these in a separate step.

If you'll recall, one old version of FMRadio was a struct that looked like this:

struct FMRadio {

double frequency;

int volume;

map<int, double> presets;
}i

This is a perfectly fine implementation of an FMRadio since it allows us to store all of the information we
could possibly need. We'll therefore modify our implementation of the FMRadio class so that it is
implemented using these three fields. However, we want to do this in a way that prevents clients of
FMRadio from accessing the fields directly. For this purpose, C++ provides the private keyword, which
indicates that certain parts of a class are completely off-limits to clients. This is shown here:

class FMRadio {
public:
double getFrequency();
void setFrequency (double newfreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
double frequency;
int volume;

map<int, double> presets;
}i

When referring to elements of a struct, one typically uses the term field. In the context of classes, these
variables are called data members. That is, frequency is a data member of FMRadio, and getvVolume is a
member function.

Because we've marked these data members private, the C++ compiler will enforce that no client of the
FMRadio class can access them. For example, consider the following code:

FMRadio myRadio;
myRadio.frequency = 110.0; // Problem: Illegal; frequency is private

This code will cause a compile-time error because the frequency data member is private. To write code to
this effect, clients would have to use the public interface, in particular the setFrequency member
function, as shown here:

FMRadio myRadio;
myRadio.setFrequency (110.0); // Legal: setFrequency is public



-210 - Chapter 8: Abstraction and Classes

All that's left to do now is implement the member functions on the FMRadio class. Implementing a
member function is syntactically similar to implementing a regular function, though there are a few
differences. One obvious syntactic difference is the means by which we specify the name of the function.
If we are interested in implementing the getFrequency function of FMRadio, for example, then we would
begin as follows:

double FMRadio::getFrequency () {
/* ... implementation goes here ... */

}

Notice that the name of the function is FMRadio: :getFrequency. The double-colon operator (::) is
called the scope resolution operator and tells C++ where to look for the function we want to implement.
You can think of the syntax x: : Y as meaning “look inside x for v.” When implementing member functions,
it is extremely important that you make sure to use the full name of the function you want to implement. If
instead we had written the following:

double getFrequency() { // Problem: Legal but incorrect
/* ... implementation goes here ... */

}

Then C++ would think that we were implementing a regular function called getFrequency that has no
relationship whatsoever to the get Frequency function inside of FMRadio.

Now that we've seen how to tell C++ that we're implementing the function, what code should we write
inside of the function? We know that the function should return the FM radio's current frequency.
Moreover, the frequency is stored inside of a data member called frequency. Consequently, we can write
the following code for FMRadio: :getFrequency:

double FMRadio::getFrequency () {
return frequency;

}

This may look a bit confusing, so let's take a second to think about what's going on here. This function is a
single line, return frequency. If you'll notice, nowhere in the getFrequency () function did we define a
variable called frequency, but this function still compiles and runs correctly. The reason is as follows -
inside of a member function, all of the class's data members can be accessed by name. That is, when
implementing the getFrequency function, we can freely access and manipulate any or all of the class's
data members by referring to them by name. We don't need to indicate that frequency is a data member,
nor do we have to specify which FMRadio's frequency data member we're referring to. By default, C++
assumes that all data members are the data members of the receiver object, and so the line return
frequency means “return the value of the frequency data member of the object on which this function
was invoked.”

At this point, let us more formally define what the public and private access specifiers actually mean. If a
member of a class is marked public, then any part of the code can access and manipulate it. Thus if you
have a public member function in the class interface, all code can access it. If a class member is marked
private, then the only pieces of the code that can access that member are the member functions of the
class. That is, private data can only be read and written by the implementations of the class's member
functions. In this sense, the public and private keywords are C++'s mechanism for defining interfaces and
enforcing encapsulation. A class's interface is defined by all of its public members, and its implementation
by the implementations of those public member functions along with any private data members. The
compiler enforces encapsulation by disallowing class clients from directly accessing private data, and so



Chapter 8: Abstraction and Classes -211-

the implementation can assume that any access to the class's private data goes through the public
interface.

Let's conclude this section by implementing the remaining pieces of the FMRadio class. First, let's
implement the setFrequency function, which sets the radio's frequency to a particular value. If you'll
recall, all FM radio frequencies must be between 87.5 MHz and 108.0 MHz. Thus, we'll have this function
verify that the new frequency is in this range, and will then set the frequency to be in that range if so.
Here's one possible implementation:

void FMRadio::setFrequency (double newFreq) {
assert (newFreq >= 87.5 && newFreqg <= 108.0);
frequency = newFreq;

Here, the assert function, defined in <cassert>, is a function that tests whether the particular condition
is true and aborts the program with a useful error message if it isn't. assert is useful in testing because it
allows you to verify that certain invariants hold in your programs in a means conducive to debugging.
Plus, most compilers completely remove assert statements from release builds, so there's no runtime
overhead when you decide to ship your software.

This is a remarkably simple two lines of code. We first assert that the frequency is in range, and then set
the frequency data member of the class to the new value. What's so fantastic about this code is that it
allows us to enforce the restriction that the frequency be constrained to the range spanned by 87.5 MHz to
108.0 MHz. Because the only way that clients can change the frequency data member is through the
setFrequency function, we can prevent the frequency from ever being set to a value out of range. We'll
discuss this in more detail when we talk about class invariants.

Using the implementation of the get/setFrequency functions as a basis, we can easily implement the
get/setVolume functions. This is shown here:

int FMRadio::getVolume () {
return volume;

}

void FMRadio::setVolume (int newVol) {
assert (newVol >= 0 && newVol <= 10);
volume = newVol;

This pattern of pairing a get* function along with a set* function is extremely common, and you will
undoubtedly see it in any major C++ project you work on. We'll detail exactly why it is such a useful design
later in this chapter.

The final three functions we wish to implement are the setPreset, presetExists, and getPreset
functions. These functions are in some ways similar to the get/setvolume functions, but differ in that the
values they read and write might not exist. We'll begin with setPreset, which is shown here:

void FMRadio::setPreset (int index, double freq) ({
assert (index >= 1 && index <= 6);
assert (freq >= 87.5 && freq <= 108.0);
presets[index] = freq;



-212 - Chapter 8: Abstraction and Classes

The presetExists function can be implemented quite simply by returning whether the map contains the
specified key. However, there's one detail we didn't consider - what happens if the index is out of bounds?
That is, what do we do if the client asks whether preset 0 exists, or whether preset 137 exists? We could
implement presetExists to so that it returns false in these cases (since there are no presets in those
slots), but it seems more reasonable to have the function assert that the value is in bounds first. The
reason is that if a client is querying whether a preset that is out of the desired range exists, it almost
certainly represents a logical error. Using assert to check that the value is in bounds will let us debug the
program more easily. This leads to the following implementation of presetExists:

bool FMRadio::presetExists(int index) {
assert (index >= 1 && index <= 6);
return presets.find(index) != presets.end();

Finally, we'll implement the getPreset function. Since there is no meaningful value to return if the preset
doesn't exist, we'll have this function verify that the preset is indeed valid before returning it. This is
shown here:

double FMRadio::getPreset (int index) {
assert (presetExists (index)) ;
return presets[index];

Notice that in this function, we invoked the presetExists member function. As with private data
members, C++ lets you call member functions of the receiver object without having to explicitly specify
which object you are referring to. That is, the compiler is smart enough to tell that the call to
presetExists (index) should be interpreted as “call the presetExists function on the receiver object,
passing in the value index.” This also brings up another important point: it is perfectly legal to use a
class's public interface in its implementation. In fact, doing so is often a wise idea. If we had implemented
getPreset without calling presetExists, we would have to duplicate a reasonable amount of code,
which is in general a very bad idea.

Comparing classes and structs

Earlier in this chapter, we saw how representing the FMRadio as a struct led to all sorts of problems.
The struct had no means of enforcing invariants, and any change to the struct's fields could break a
potentially unbounded amount of code. We discussed earlier at a high level how abstraction and
encapsulation can prevent these problems from occurring. Does the class mechanism, which is designed
to represent these ideas in software, prevent the aforementioned problems from happening? Let's take a
few minutes to see whether this is the case.

Classes Enforce Invariants

An invariant is a property of a set of data that always holds true for that data. For example, one possible
invariant might be that a certain value always be even, while another could be that the difference between
two values is less than fourteen. In our example with FMRadio, our class had several invariants:

* Theradio's frequency is always between 87.5 MHz and 108.8 MHz.
* Theradio's volume is a value between 0 and 10, inclusive.
* Theradio's presets are numbered between 1 and 6, and are valid frequencies.

The struct version of FMRadio failed to enforce any of these invariants because clients could go in and
directly modify the fields responsible for holding the data. In the class version, however, any access to the



Chapter 8: Abstraction and Classes -213-

data members that represent these quantities must go through the appropriate set* and get* functions.
This allows the implementation to double-check that all of the invariants hold before modifying the class's
data members. For example, let's review the implementation of setPreset:

void FMRadio::setPreset (int index, double freq) ({
assert (index >= 1 && index <= 6);
assert (freq >= 87.5 && freqg <= 108.0);
presets|[index] = freqg;

This is the only function in the interface that allows clients to modify the radio's presets. Before the
function writes a value to one of the presets, it verifies that the index and frequency are in range.
Consequently, if the data member is written to, it is only after the implementer has had a chance to inspect
the value and confirm that it is indeed in range. In other words, by restricting access to the data members
and instead providing a set of functions that modify the data members, the implementer can prevent
clients from modifying the implementation in a way that violates the class invariants.

Classes Enforce Encapsulation

Recall that when we implemented the FMRadio as a struct, changing any of the fields would break
existing code. The reason for this is that any manipulations of the struct required direct access to the
fields of the struct. When using classes, however, all operations on the class must go through an
additional layer - the interface - which is independent of the current implementation. For example,
consider the following code:

FMRadio myRadio;

myRadio.setVolume (10) ;
cout << myRadio.getVolume () << endl;

This isn't the most exciting code we've written, but it illustrates how a client might read and set the radio's
volume. Now, suppose that we are implementing the FMRadio class so that it interacts with a real set of
speakers. Initially, you might think that the speaker volume is controlled by modifying how much power
the speakers receive; at lower power, the speakers output less sound. In reality, though, most speaker
volumes are controlled by modifying how much attenuation the sound signal receives. That is, when a
speaker is at full volume, the attenuation level is zero, and the speaker plays the sound at maximum
volume. When the volume is zero (the sound is muted), the attenuation level is 100% and the speakers
produce no sound. In other words, the volume control is represented by determining how much
attenuation to insert. Consequently, whenever we want to increase the volume, we would decrease the
attenuation, and vice-versa. Given this description, we therefore might change the implementation of the
FMRadio class so that the volume is represented internally as an attenuation amount. Here's the modified
class:

class FMRadio {
public:
double getFrequency();
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);



-214 - Chapter 8: Abstraction and Classes

private:
double frequency;
int attenuation; // 0 is no attenuation, 10 is maximum attenuation

map<int, double> presets;

}i

Because we've changed the internal representation of the FMRadio, we will need to change the implementation
of the get/setVolume functions. Now, these functions are designed so that the user inputs an amount of
volume, not an amount of attenuation, and so the functions will have to do a quick behind-the-scenes calculation
to convert between the two. Here's one possible implementation of setVolume:

void FMRadio::setVolume (int newVol) {
assert (newVol >= 0 && newVol <= 10); // Unchanged
attenuation = 10 - newVol; // Convert from volume to attenuation level

Here, the code for setvolume takes in a volume level from the client, then converts it into an attenuation
level by subtracting the volume from ten. This means that volume 10 corresponds to 0 attenuation, volume
7 to 3 attenuation, etc.

Now, how might we go about changing the implementation of getvolume? This function must return a
volume between 0 and 10 with 0 meaning no volume and 10 meaning maximum volume, but we've
implemented the volume level internally as the attenuation. This means that the function must do a quick
calculation to convert between the two. The resulting implementation is shown here:

int FMRadio::getVolume () {
return 10 - attenuation;

}
I'll leave it as an exercise to the reader to verify that this computation is correct. ©

In this short discussion, we completely changed the internal implementation of the radio volume. But from
a client's perspective, absolutely nothing has changed. Recall the client code we wrote earlier on for
changing the radio volume:

FMRadio myRadio;

myRadio.setVolume (10) ;
cout << myRadio.getVolume () << endl;

This code is still perfectly legal, and moreover it produces the exact same output as before. Because this
code only uses the class's public interface, the client cannot tell that calling myRadio.setVolume (10)
actually sets an internal field in the FMRadio to zero, nor can she tell that calling myRadio.getVolume ()
will perform a conversion behind-the-scenes. In other words, using the public interface allows clients of
FMRadio to write code that will compile and run correctly even if the entire implementation of the
FMRadio has changed.

Class Constructors

One of the recurring themes of this chapter has been that classes can enforce invariants. However, using
only the techniques we've covered so far, there are some invariants that classes cannot enforce
automatically. To see this, let's return to the FMRadio class. If you'll recall, when implementing FMRadio
using a struct, we saw that one possible implementation of the preset list was to use an array of six



Chapter 8: Abstraction and Classes -215-

doubles, where an unprogrammed preset has value 0.0. Let's modify our original implementation of the
FMRadio class so that we use this implementation strategy. The new class looks like this:



-216 - Chapter 8: Abstraction and Classes

class FMRadio {
public:
double getFrequency();
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
double frequency;
int volume;

double presets[6];
bi

This, of course, necessitates that we change our implementation of presetExists, since we no longer
represent the preset list as a map. The new implementation is shown here:

bool FMRadio::presetExists(int index) {
assert (index >= 1 && index <= 6);
return presets[index - 1] == 0.0; // -1 maps [1, 6] to [0, 5]

Given this implementation, what is the result of running the following code snippet?

FMRadio myRadio;
if (myRadio.presetExists (1))

cout << "Preset 1: " << myRadio.getPreset(l) << endl;
else

cout << "Preset 1 not programmed." << endl;

Intuitively, this program should print out that preset one is not programmed, since we just created the
radio. Unfortunately, though, this program produces undefined behavior. Here is the output from several
different runs of the program on my machine:

Preset 1: 3.204e+108
Preset 1 not programmed.
Preset 1: -1.066e-34
Preset 1: 4.334e+20

This certainly doesn't seem right! What's going on here?

The problem is that all of the data members of FMRadio are primitive types, and unless you explicitly
initialize a primitive type, it will hold whatever value happens to be in memory at the time that it is
created. In particular, this means that the presets array will be filled with garbage, and so the
presetExists and getPreset functions will be working with garbage data. Garbage data is never a good
thing, but it is even more problematic from the standpoint of class invariants. The FMRadio assumes that
certain constraints hold for its data members, but those data members are initialized randomly. How can
FMRadio ensure that it behaves consistently when it does not have control over its implementation? The
answer is simple: it can't, and we're going to need to refine our approach to make everything work
correctly.



Chapter 8: Abstraction and Classes -217 -

A Step in the Right Direction: init ()

One way that we could fix this problem is to create a new member function called init that initializes all
of the data members. We then require all clients of the FMRadio class to call this init function before
using the other member functions of the FMRadio class. Assuming that clients ensure to call init before
using the FMRadi o, this should solve all of our problems.

Let's take a minute to see how we might implement the init function. First, we need to modify the class's
public interface, as shown here:

class FMRadio {
public:
void init();

double getFrequency() ;
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
double frequency;
int volume;

double presets[6];
bi

We could then implement init as follows:

void FMRadio::init () {
for(size t i = 0; 1 < 6; ++1)
presets([i] = 0.0;

This is certainly a step in the right direction. We no longer have to worry about the presets array containing
uninitialized values. But what of the other data members, frequency and volume? They too must be initialized to
some meaningful value. We can therefore update the init function to set them to some reasonable value. For
simplicity, let's set the frequency to 87.5 MHz (the minimum possible frequency) and set the volume to five.
This is shown here:

void FMRadio::init () {
for(size t i = 0; 1 < 6; ++1)
presets[i] = 0.0;
frequency = 87.5;
volume = 5;

It may seem strange that we have to initialize frequency and volume inside of the init function. After all,
why can't we do something like this?



-218- Chapter 8: Abstraction and Classes

class FMRadio {
public:
void init () ;

double getFrequencyl() ;
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
double frequency = 87.5; // Problem: Not legal C++
int volume = 5; // Problem: Not legal C++

double presets|[6];
}i

Unfortunately, this is not legal C++ code. There isn't a particularly good reason why this is the case, and in
the next release of C++ this syntax will be supported, but for now we have to manually initialize everything
in the init function.

Why init () is Insufficient

The approach we've outlined above seems to solve all of our problems. Every time that we create an
FMRadio, we manually invoke the init function. This solves our problem, but puts an extra burden on the
client. In particular, if a client does not call the init function, our object's internals will not be configured
properly and any use of the object will almost certainly cause some sort of runtime error.

The problem with init is that it does not make logical sense. When you purchase a physical object, most
of the time, that object is fully assembled and ready to go. When you buy a stapler, you don't buy the
component parts and then assemble it; you buy a finished product. You don't purchase a car and then
manually connect the transmission to the rest of the engine; you assume that the car manufacturer has
done this for you. In other words, by the time that you begin using an object, you expect it to be assembled.
From the standpoint of physical objects, this is because you are buying a logically complete object, not a
collection of components. From the standpoint of abstraction, this is because it breaches the wall of
abstraction if you are required to set up an object into a well-formed state before you begin using it.

None of the objects we've seen so far have required any function like init. The STL vector and map are
initialized to sensible defaults before you begin using them, and strings default to holding the empty
string without any explicit intervention by the user. But how do they do this? It's through the magic of a
special member function called the constructor.

Class Constructors

A constructor is a special member function whose job is to initialize the object into a well-formed state
before clients start manipulating that object. In this sense, constructors are like the init function we
wrote earlier. However, constructors have the special property that they are called automatically whenever
an object is constructed. That is, if you have a class that defines a constructor, that constructor is
guaranteed to execute whenever you create an object of the class type.

Syntactically, a constructor is a member function whose name is the same as the name of the class. For
example, the string constructor is a function named string::string, and in our FMRadio example, the



Chapter 8: Abstraction and Classes -219-

constructor is a member function named FMRadio: : FMRadio. Here is a refined interface for FMRadio that
includes a class constructor:

class FMRadio {
public:
FMRadio () ;

double getFrequency() ;
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
double frequency;
int volume;

double presets[6];
}i

Notice that the constructor has no return type, not even void. This may seem strange at first, but will make
substantially more sense once you see how and where the constructor is invoked.

Syntactically, one implements a constructor just as one would any other member function. The only
difference is that the constructor does not have a return type, and so the syntax for implementing a
constructor looks like this:

FMRadio: :FMRadio () {
/* ... implementation goes here ... */

}

Constructors are like any other function, and so we can put whatever code we feel like in the body of the
constructor. However, the constructor should ensure that all of the object's data members that need
manually initialization are manually initialized. In our case, this means that we might implement the
FMRadio constructor as follows:

FMRadio: :FMRadio ()
for(size t i =
presets[i]
frequency = 87
volume =5

{
0; 1 < 6; ++1i)
= 0.0;

.5;

’

Now, whenever we create an instance of the FMRadio type, the object will be set up correctly. That is, when we
write code like this:

FMRadio myRadio;
if (myRadio.presetExists(1l))

cout << “Preset 1: “ << myRadio.getPreset(l) << endl;
else

cout << “Preset 1 not programmed.” << endl;



-220 - Chapter 8: Abstraction and Classes

The output will always be “Preset 1 not programmed.” This is because in the line where we create the
myRadio object, C++ automatically invokes the constructor, which zeros out all of the presets.

Itis illegal to call a class's constructor; C++ will always do this for you. For example, the following code will
not compile:

FMRadio myRadio;
myRadio.FMRadio(); // Problem: Cannot manually invoke constructor

This may seem like an unusual restriction, but is actually quite useful. Because the constructor is invoked
when and only when the class is being constructed for the first time, you don't need to worry about
unusual conditions where the class is being instantiated but meaningful data is already stored in the class.
Additionally, this makes the role of the constructor explicitly clear - its job is to initialize the class to a
meaningful state, nothing more. Second, as a consequence, constructors can never return values. The
constructor is invoked automatically, not giving you a chance to store a returned value even if one were to
exist.

Arguments to Constructors

In the above example, our FMRadio constructor takes in no parameters. However, it is possible to create
constructors that take in arguments that might be necessary for initialization. For example, our FMRadio
constructor arbitrarily sets the frequency to 87.5 MHz and the volume to 5 because we need these values
to be in certain ranges. There's no particular reason why we should initialize these values this way, but in
the absence of information about what the client wants to do with the object we cannot do any better. But
what if the client could tell us what she wanted the frequency and volume to be? In that case, we could
initialize the frequency and volume to the user's values, in essence creating a radio whose frequency and
volume were already set up for the user. To do this, we can create a second FMRadio constructor that takes
in a frequency and volume, then initializes the radio to those settings.

Syntactically, a constructor of this sort is a member function named FMRadio that takes in two parameters.
This is shown here:

class FMRadio {
public:
FMRadio () ;
FMRadio (double freqg, int wvol);

double getFrequency();
void setFrequency (double newfreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
double frequency;
int volume;

double presets[6];
bi

We could then implement this function as follows:



Chapter 8: Abstraction and Classes -221-



-222 - Chapter 8: Abstraction and Classes

FMRadio: :FMRadio (double freq, int vol) {

for(size t 1 = 0; 1 < 6; ++1i)
presets[i] = 0.0;

frequency = freqg;

volume = vol;

Now that we have this constructor, how do we call it? That is, how do we create an object that is initialized
using this constructor? The syntax for this is reasonably straightforward and looks like this:

FMRadio myRadio (88.5, 5);

That is, we write out the type of the object to create, the name of the object to create, and then a
parenthesized list of the arguments to pass into the constructor.

You may be wondering why in the case of a zero-argument constructor, we do not need to explicitly spell
out that we want to use the default constructor. In other words, why don't we write out code like this:

FMRadio myRadio(); // Problem: Legal but incorrect

This code is perfectly legal, but it does not do what you'd expect. There is an unfortunate defect in C++ that
causes this statement to be interpreted as a function prototype rather than the creation of an object using
the default constructor. In fact, C++ will interpret this as “prototype a function called myRadio that takes in
no arguments and returns an FMRadio” rather than “create an FMRadio called myRadio using the zero-
argument constructor” This is sometimes referred to as “C++'s most vexing parse” and causes extremely
difficult to understand warnings and error messages. Thus, if you want to invoke the default constructor,
omit the parentheses. If you want to invoke a parametrized constructor, parenthesize the arguments.

Another important point to remember when working with multiple constructors is that constructors
cannot invoke one another. This is an extension of the rule that you cannot directly call a constructor. If
you need to do the same work in multiple constructors, you can either duplicate the code (yuck!) or use a
private member function, which we'll discuss later.

Classes Without a Nullary Constructor

A function is called nullary if it takes no arguments. For example, the first FMRadio constructor we wrote
is a nullary constructor, since it takes no arguments. If you define a class and do not provide a constructor,
C++ will automatically provide you a default nullary constructor that does absolutely nothing. This is why
in the case of FMRadio, we needed to provide a nullary constructor to initialize the data members;
otherwise they would initialize to arbitrary values. However, if you define a class and provide any
constructors, C++ will not automatically generate a nullary constructor for you. This means that it is
possible to construct classes that do not have a zero-argument constructor. For example, suppose that we
remove the nullary constructor from FMRadio; this results in the following class definition:



Chapter 8: Abstraction and Classes -223 -

class FMRadio {
public:
FMRadio (double freqg, int vol);

double getFrequencyl() ;
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
double frequency;
int volume;

double presets|[6];
}i

Because this class does not have a nullary constructor, we cannot construct instances of it without passing
in values for the frequency and volume. That is, the following code is illegal:

FMRadio myRadio; // Problem: No default constructor available

At first, this may seem like a nuisance. However, this aspect of class design is extremely valuable because it
allows you to create types that must be initialized to a meaningful value. For example, suppose that you
are designing a class that represents a robot-controlled laser, either for automated welding or delicate
surgical procedures. When building such a laser; it is imperative that the laser know how much power to
deliver and what points the beam should be directed at. These values absolutely must be initialized to
meaningful data, or the laser might deliver megawatts of power at a patient or aim at random points firing
the beam. If you wanted to represent the laser as a C++ class, you could force clients to specify this data
before using the laser by making a RobotLaser class whose only constructor takes in both the laser
power and laser coordinates. This means that clients could not create instances of RobotLaser without
entering coordinates, reducing the possibility of a catastrophic failure.

Private Member Functions

Let's return once again to our FMRadio example, this time looking at the implementation of three
functions: setFrequency, setPreset, and presetExists. The implementations of these functions are
shown here:

void FMRadio::setFrequency (double newFreq) {
assert (newFreq >= 87.5 && newFreqg <= 108.0);
frequency = newFreq;

}

void FMRadio::setPreset (int index, double freq) ({
assert (index >= 1 && index <= 6);
assert (freq >= 87.5 && freq <= 108.0);
presets[index - 1] = freq;

}

double FMRadio::presetExists(int index) {
assert (index >= 1 && index <= 6);
return presets[index - 1] == 0.0;



-224 - Chapter 8: Abstraction and Classes

Notice that each highlighted line of code appears in two of the three functions. Normally this isn't too
serious a concern, but in this particular case makes the implementation brittle and fragile. In particular, if
we ever want to change the number of presets or the maximum frequency range, we'll need to modify
multiple parts of the code accordingly or risk inconsistent handling of presets and frequencies. To unify
the code, we might consider decomposing this logic into helper functions. However, since the code we're
decomposing out is an implementation detail of the FMRadio class, class clients shouldn't have access to
these helper functions. In other words, we want to create a set of functions that simplify class
implementation but which can't be accessed by class clients. For situations like these, we can use a
technique called private member functions.

Marking Functions private

If you'll recall from earlier, the private keyword indicates which parts of a class cannot be accessed by
clients. So far we have restricted ourselves to dealing only with private data members, but it is possible to
create member functions that are marked private. Like regular member functions, these functions can read
and write private class data, and are invoked relative to a receiver object. Unlike public member functions,
though, they can only be invoked by the class implementation. Therefore, private member functions are
not part of the class's interface and exist solely to simplify the class implementation.

Declaring a private member function is similar to declaring a public member function - we just add the
definition to the class's private data. In our FMRadio example, we will introduce two helper functions:
checkFrequency, which asserts that a frequency is in the proper range, and checkPreset, which ensures
that a preset index is in bounds. The updated class definition for FMRadio is shown here:

class FMRadio {
public:
FMRadio () ;
FMRadio (double freq, int wvol);

double getFrequency();
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
void checkFrequency (double freq);
void checkPreset (int index);

double frequency;
int volume;
double presets[6];

}i

We can then implement these functions as follows:



Chapter 8: Abstraction and Classes -225-

void FMRadio: :checkFrequency (double freq) {
assert (freq >= 87.5 && freq <= 108.8);

}

void FMRadio::checkPreset (int index) {
assert (index >= 1 && index <= 6);

}
Using these functions yields the following implementations of the three aforementioned functions:

void FMRadio: :setFrequency (double newFreq) {
checkFrequency (newFreq) ;
frequency = newFreq;

}

void FMRadio::setPreset (int index, double freq) ({
checkPreset (index) ;
checkFrequency (freq) ;
presets[index - 1] = freq;

}

bool FMRadio::presetExists(int index) {
checkPreset (index) ;
return presets[index - 1] == 0.0;

These functions are significantly cleaner than before, and the class as a whole is much more robust to
change.

Simplifying Constructors with Private Functions

Private functions can greatly reduce the implementation complexity of classes with multiple constructors.
Recall that our FMRadio class has two constructors, one which initializes the FMRadio to have a
reasonable default frequency and volume, and one which lets class clients specify the initial frequency and
volume. The implementation of these two functions is shown here:

FMRadio: :FMRadio ()
for(size t 1 =
presets[i]
frequency = 87
volume = 5;

{
0; 1 < 6; ++1)
5

}

FMRadio: :FMRadio (double freq, int vol) {
for(size t i = 0; 1 < 6; ++1i)

presets[i] = 0.0;
frequency = freqg;
volume = vol;

These functions are extremely similar in structure, but because C++ does not allow you to manually call a
class's constructor. How, then, can the two functions be unified? Simple - we introduce a private member
function which does the initialization, then have the two constructors invoke this member function with

the proper arguments. This is illustrated below:



-226- Chapter 8: Abstraction and Classes

class FMRadio {
public:
FMRadio () ;
FMRadio (double freqg, int vol);

double getFrequency() ;
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
void checkFrequency (double freq);
void checkPreset (int index) ;
void initialize (double freqg, int wvol);

double frequency;

int volume;

double presets[6];
bi

void FMRadio::initialize(double freq, int wvol) {

for(size t i = 0; 1 < 6; ++1)
presets[i] = 0.0;

frequency = freqg;

volume = vol;

}

FMRadio: :FMRadio () {
initialize(87.5, 5);
}

FMRadio: :FMRadio (double freq, int vol) {
initialize(freq, vol);

}

As you can see, private member functions are extremely useful tools. We will continue to use them
throughout the remainder of this book, just as you will undoubtedly use them in the course of your
programming career.

Partitioning Classes Across Files

One of the motivations behind classes was to provide a means for separating out implementation and
interface. We have seen this already through the use of the public and private access specifiers, which
prevent clients from looking at implementation-specific details. However, there is another common means
by which implementation is separated from interface, and that is the split between header files and
implementation files. As you've seen before, almost all of the programs you've written begin with a series
of #include directives which tell the compiler to fetch certain files and include them in your programs.
Now that we've reached a critical mass and can begin writing our own classes, we will see how to design
your own header files.

At a high level, header files provide a means for exporting a class interface without also exporting
unnecessary implementation details. Programmers who wish to use your class in their code can



Chapter 8: Abstraction and Classes -227 -

#include the header file containing your class declaration, and the linker will ensure that the class
implementation is bundled along with the final program. More concretely, a header file contains the class
declaration (including both public and private members), and the implementation file contains the
actual class implementation. For example, suppose that we want to export the FMRadio class we've just
designed in a header/implementation pair. We'll begin by constructing the header file. Traditionally,
header files that contain class declarations have the same name as the class and a .h suffix. In our case,
this means that we'll be creating a file called FMRadio.h that contains our class definition. This is shown
here:

File: FMRadio.h

#ifndef FMRadio Included
#define FMRadio Included

class FMRadio
{
public:

FMRadio () ;

FMRadio (double freqg, int vol);

double getFrequency();
void setFrequency (double newFreq);

int getVolume () ;
void setVolume (int newVolume) ;

double setPreset (int index, double freq);
bool presetExists (int index);
double getPreset (int index);

private:
void checkFrequency (double freq);
void checkPreset (int index);
void initialize (double freq, int vol);

double frequency;

int volume;

double presets[6];
}i

#endif

Notice that we've surrounded the header file with an include guard. In case you've forgotten, the include
guard is a way to prevent compiler errors in the event that a client #includes the same file twice; see the
chapter on the preprocessor for more information. Beyond this, though, the header contains just the class
interface.

Now that we've built the .h file for our FMRadio class, let's see if we can provide a working implementation
file. Typically, an implementation file will have the same name as the class, suffixed with the .cpp
extension.” Appropriately, we'll name this file FMRadio.cpp. Unlike a .h file, which is designed to export
the class declaration to clients, the .cpp file just contains the implementation of the class. Here's one
possible version of the FMRadio. cpp file:

* Itis also common to see the .cc extension. Older code might use the .C extension (capital C) or the .c++ extension.



-228- Chapter 8: Abstraction and Classes

File: FMRadio. cpp
#include "FMRadio.h"

FMRadio: :FMRadio () {
initialize(87.5, 5);
}

FMRadio: :FMRadio (double freq, int vol) {
initialize(freq, vol);

}

void FMRadio::initialize (double freqg, int vol) {

for(size t 1 = 0; 1 < 6; ++1i)
presets[i] = 0.0;

frequency = freqg;

volume = vol;

}

void FMRadio: :checkFrequency (double freq) {
assert (freq >= 87.5 && freq <= 108.8);
}

void FMRadio::checkPreset (int index) {
assert (index >= 1 && index <= 6);

}

double FMRadio::getFrequency () {
return frequency;

}

void FMRadio::setFrequency (double newFreq) {
checkFrequency (newFreq) ;
frequency = newFreq;

}

void FMRadio::setPreset (int index, double freq) {
checkPreset (index) ;
checkFrequency (freq) ;
presets[index - 1] = freq;

}

bool FMRadio::presetExists (int index) {
checkPreset (index) ;
return presets[index - 1] == 0.0;

}

double FMRadio::getPreset (int index) {
checkPreset (index) ;
return presets[index - 1];

There are a few important aspects of this .cpp file to note. First, notice that at the top of the file, we
#included the .h file containing the class declaration. This is extremely important - if we don't include the
header file for the class, when the C++ compiler encounters the implementations of the class's member
functions, it won't have seen the class declaration and will flag all of the member function
implementations as errors. Second, note that when #include-ing the .h file, we surrounded the name of
the file in “double quotes” instead of <angle brackets.> If you'll recall, this is because the preprocessor



Chapter 8: Abstraction and Classes -229-

treats include directives using <angle brackets> as instructions to look for standard library files, and since
the classes you'll be writing aren't part of the standard library you'll want to use “double quotes” instead.”

Now that we've partitioned the class into a .h/.cpp pair, we can write programs that use the class without
having to tediously copy-and-paste the class definition and implementation. For example, here's a short
program which manipulates an FMRadio. Note that we never actually see the declaration or
implementation of the FMRadio class; #include-ing the header provides the compiler enough
information to let us use the FMRad1o.

#include <iostream>

#include "FMRadio.h"

using namespace std;

int main () {
FMRadio myRadio;
myRadio.setFrequency (88.5);

myRadio.setVolume (8) ;
/* ... etc. L. X/

Throughout the remainder of this book, whenever we design and build classes, we will assume that the
classes are properly partitioned between .h and .cpp files.

Chapter Summary

* Software systems are often on the order of millions of lines of code, far larger than even the most
competent programmers can ever keep track of at once.

* Asingle incorrect value in a software system can cause that entire system to fail.

* The maximum number of possible interactions in a software system grows exponentially in the
number of components of that system.

» Abstractions give a way to present a complex object in simpler terms.

* Abstractions partition users into clients and implementers, each with separate tasks. This
separation is sometimes referred to as the wall of abstraction.

* Abstractions describe many possible implementations, and encapsulation prevents clients from
peeking at that implementation.

* The way in which a client interacts with an object is called that object's interface.

* Abstraction reduces the number of components in a software system, reducing the maximum
complexity of that system.

* C++ structslack encapsulation because their implementation is their interface.

*  The C++ class concept is a realization of an interface paired with an implementation.

* If you ever have the honor of getting to write a new standard library class, please contact me... I'd love to offer

comments and suggestions!



-230-

Chapter 8: Abstraction and Classes

The members of a class that are listed public form that class's interface and are accessible to
anyone.

The members of a class that are listed private are part of the class implementation and can only be
viewed by member functions of that class.

Constructors allow implementers to enforce invariants from the moment the class is created.

Private member functions allow implementers to decompose code without revealing the
implementation to clients.

Class implementations are traditionally partitioned into a .h file containing the class definition and
a .cpp file containing the class implementation.

Design class interfaces before implementations to avoid overspecializing the interface on an
implementation artifact.

Practice Problems

In our discussion of abstraction, we talked about how interfaces and modularity can exponentially
reduce the maximum complexity of a system. Can you think of any examples from the real world
where introducing indirection makes a complex system more manageable?

What is the motivation behind functions along the lines of get Frequency and setFrequency over
just having a public frequency data member?

When is a constructor invoked? Why are constructors useful?
What is the difference between a public member function and a private member function?
What goes in a class's .h file? In its.cpp file?

We've talked at length about the streams library and STL without mentioning much of how those
libraries are implemented behind-the-scenes. Explain why abstraction makes it possible to use
these libraries without full knowledge of how they work.

Suppose that C++ were designed somewhat differently in that data members marked private could
only be read but not written to. That is, if a data member called volume were marked private, then
clients could read the value by writing myObject.volume, but could not write to the volume
variable directly. This would prohibit clients of a class from modifying the implementation
incorrectly, since any operations that could change the object's data members would have to go
through the public interface. However, this setup has a serious design flaw that would make class
implementations difficult to change. What is this flaw? (Hint: Think back to the
volume/attenuation example from earlier)



Chapter 8: Abstraction and Classes -231-

8.

10.

11.

12.

13.

Below is an interface for a class that represents a grocery list:

class GroceryList {
public:
GroceryList () ;

void addItem(string quantity, string item);
void removeltem(string item);

string itemQuantity(string item);
bool itemExists(string item);

}s

The GroceryList constructor sets the grocery list to contain no items. The addItem function
adds a certain quantity of an item to the grocery list. For example, the call

gList.addItem("One Gallon", "Milk");

would add the item “Milk” to the list with quantity “One Gallon.” If the item already exists in the
list, then addItem should replace the original quantity with the new quantity.

The removeItem function should delete the specified item off of the shopping list. itemExists
returns whether the specified item exists in the shopping list, and itemQuantity takes in an item
and returns the quantity associated with it in the list. If the item doesn't exist, i temQuantity can
either raise an assert error or return the empty string.

Provide an implementation for the GroceryList class. You are free to use whatever
implementation you feel is best, and can implement the member functions as you see fit. However,
you might find it useful to use amap<string, string> torepresent the items in the list.

What is the advantage of making a GroceryList class over just using a raw map<string,
string>?

Does the GroceryList class need a constructor? Why or why not?
Give an example of a parameterized constructor you have encountered in the STL.
Why are parameterized constructors useful?

Keno is a popular gambling game with similarities to a lottery or bingo. Players place a bet and
pick a set of numbers between 1 and 80, inclusive. The number of numbers chosen can be
anywhere from one to twenty, with each having a different payoff scale. Once the players have
chosen their numbers, twenty random numbers between 1 and 80 are chosen, and players receive
a payoff based on how many numbers they picked that matched the chosen numbers. For example,
if a player picked five numbers and all five were chosen, she might win around $1,000 for a one- or
two-dollar bet. The actual payoffs are based on the probabilities of hitting k numbers out of n
chosen, but this is irrelevant for our discussion.

Suppose that you are interested in writing a program that lets the user play Keno. You are not
interested in the payoffs, just letting the user enter numbers and reporting which of the user's
numbers came up. To do this, you decide to write a class KenoGame with the following interfaces:



-232-

14.

Chapter 8: Abstraction and Classes

class KenoGame ({
public:
KenoGame () ;

void addNumber (int value);
size t numChosen();

size t numWinners (vector<int>& values);

}i

The KenoGame constructor initializes the class however you see fit. addNumber takes in a number
from the user and adds it to the set of numbers the user guessed. The numChosen member
function returns how many numbers the user has picked so far. Finally, the numWinners function
takes in a vector<int> corresponding to the numbers that were chosen and returns how many of
the user's numbers were winners.

Write an implementation of the KenoGame class.
Refer back to the implementation of Snake from the chapter on STL containers. Design and

implement a class that represents a snake. What operations will you support in the public
interface? How will you implement it?



Chapter 9: Refining Abstractions

In the previous chapter, we explored the class concept and saw how to use classes to model an interface
paired with an implementation. You learned how to realize the idealized versions of abstraction and
encapsulation using the public and private keywords, as well as how to use constructors to enforce
class invariants. However, our tour of classes has just begun, and there are many nuances of class design
we have yet to address. For example, since class clients cannot look at the class implementation, how can
they tell which parts of the public interface are designed to read the class's state and which parts will
write it? How can you more accurately control how constructors initialize data? And how can you share
data across all instances of a class? These questions are all essentially variants on a common theme: how
can we refine our abstractions to make them more precise?

This chapter explores some of C++'s language features that allow you as a programmer to more clearly
communicate your intentions when designing classes. The tools you will learn in this chapter will follow
you through the rest of your programming career, and appreciating exactly where each is applicable will
give you a significant advantage when designing software.

Parameterizing Classes with Templates

One of the most important lessons an upstart computer scientist or software engineer can learn is
decomposition or factoring - breaking problems down into smaller and smaller pieces and solving each
subproblem separately. At the heart of decomposition is the concept of generality - code should avoid
overspecializing on a single problem and should be robust enough to adapt to other situations. Take as an
example the STL. Rather than specializing the STL container classes on a single type, the authors decided
to parameterize the containers over the types they store. This means that the code written for the vector
class can be used to store almost any type, and the map can use arbitrary types as key/value pairs.
Similarly, the STL algorithms were designed to operate on all types of iterators rather than on specific
container classes, making them flexible and adaptable.

The STL is an excellent example of how versatile, flexible, and powerful C++ templates can be. In C++ a
template is just that - a code pattern that can be instantiated to produce a type or function that works on
an arbitrary type. Up to this point you've primarily been a client of template code, and now it's time to
gear up to write your own templates. In this section we'll cover the basics of templates and give a quick
tour of how template classes operate under the hood. We will make extensive use of templates later in this
text and especially in the extended examples, and hopefully by the time you've finished reading this book
you'll h