
Streams
Ali Malik

malikali@stanford.edu

mailto:malikali@stanford.edu

Recap

Purpose of Streams

Output Streams

Input Streams

Stringstream (maybe)

Game Plan

Announcements

Recap

Recap - Hello, world!

#include <iostream>

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

Recap - Hello, world!

#include <iostream>

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

These can get annoying to
write for common names
like cout, endl, string etc.

Recap - Hello, world!

#include <iostream>

using std::cout;
using std::endl;

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

Recap - Hello, world!

#include <iostream>

using std::cout;
using std::endl;

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

Whenever you use cout,
the compiler will assume
you mean std::cout

Recap - Hello, world!

#include <iostream>

using std::cout;
using std::endl;

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

Whenever you use cout,
the compiler will assume
you mean std::cout

Recap - Hello, world!

#include <iostream>

using std::cout;
using std::endl;

int main() {
 cout << "Hello, world!" << endl;
 return 0;
}

Whenever you use cout,
the compiler will assume
you mean std::cout

Recap - Hello, world!

#include <iostream>

using std::cout;
using std::endl;

int main() {
 cout << "Hello, world!" << endl;
 return 0;
}

Whenever you use cout,
the compiler will assume
you mean std::cout

The using namespace std directive is a bazooka version of this.

Streams

"Designing and implementing a general input/output facility for a
programming language is notoriously difficult"

- Bjarne Stroustrup

A stream is an abstraction for input/output.

You can think of it as a source (input) or destination (output) of
characters of indefinite length.

Streams - Introduction

A stream is an abstraction for input/output.

You can think of it as a source (input) or destination (output) of
characters of indefinite length.

Streams - Introduction

std::cout

<< "Hello, world!"

A stream is an abstraction for input/output.

You can think of it as a source (input) or destination (output) of
characters of indefinite length.

Streams - Introduction

"Hello, world!"

std::cout

A stream is an abstraction for input/output.

You can think of it as a source (input) or destination (output) of
characters of indefinite length.

Streams - Introduction

Hello, world!

std::cout

The Idea Behind Streams

You can write data of multiple types to stream objects.

The Idea Behind Streams

In particular, any primitive type can be inserted into a stream! For other
types, you need to explicitly tell C++ how to do this.

cout << "Strings work!" << endl;
cout << 1729 << endl;
cout << 3.14 << endl;
cout << "Mixed types - " << 1123 << endl;

How does this work?

Idea:

● Input from user is in text form (string)
● Output to user is in text form (string)
● Intermediate computation needs to be done on object type

The Idea Behind Streams

Streams allow a C++ programmer to convert between the
string representation of data, and the data itself.

The Idea Behind Streams

Types of Streams

Output Streams

Can only receive data.

● The std::cout stream is an example of an output stream.
● All output streams are of type std::ostream.

Send data using stream insertion operator: <<

Insertions converts data to string and sends to stream.

We can use a std::ostream for more than just printing to a
console.

You can send the data to a file using a std::ofstream, which
is a special type of std::ostream.

Output Streams

Output Stream Example

(output.cpp)

Input Streams

Quick test!

How familiar is this:

int x;
std::cin >> x;

Input Streams

Can only give you data.

● The std::cin stream is an example of an input stream.
● All input streams are of type std::istream.

Pull out data using stream extraction operator: >>

Extraction gets data from stream as a string and converts it into
the appropriate type.

Just like with std::ostream, we can use a std::istream for
more than just console IO.

You can read data from a file using a std::ifstream.

Input Streams

Input Stream Example

(input.cpp)

To understand a std::istream , think of it as a sequence of characters.

Input Streams

4 2 1 3 4 \n

position

Extracting an integer will read as many characters as possible from the stream.

Input Streams

4 2 1 3 4 \n

position

// input is an istream
int value;
input >> value; // value is now 42

Extracting again will skip over any whitespace when reading the next integer.

Input Streams

4 2 1 3 4 \n

position

// input is an istream
int value;
input >> value; // value is now 134

When no more data is left, the fail bit will be set to true and input.fail()
will return true.

Input Streams

4 2 1 3 4 \n

position

// input is an istream
int value;
input >> value; // value is now ??

Input Streams

More Input Stream Examples

(input.cpp)

There are some quirks with extracting a string from a stream.

Reading into a string using >> will only read a single word, not the
whole line.

To read a whole line, use

getline(istream& stream, string& line);

Reading Data From a File

Input Streams

More Input Stream Examples

(input.cpp)

Think carefully when mixing >> and getline!

Using >> can have some weird bugs so next lesson we will talk
about a way to avoid it by using getline and string streams.

Input Stream

What happens if you read into the wrong type?

Can you extract user defined types (e.g. classes) from a stream?

Can you control how output stream output the data we give
them?

Is there a stream that might be both an input and output stream?

Some Questions to Ponder

Find out next time!

Next Time
Streams - The Details

