Streams

Ali Malik

malikali@stanford.edu



mailto:malikali@stanford.edu

Game Plan

Recap
Purpose of Streams

Output Streams

Input Streams

Stringstream (maybe)



Announcements



Recap



Recap - Hello, world!

#include <iostream>

int main () {
std::cout << "Hello, world!" << std::endl;
0;



Recap -

#include <iostream>

int main () {

std: :cout << "Hello,

0;

ello, world!

world!" << std::endl;

These can get annoying to
write for common names
like cout, endl, string etc.




Recap - Hello, world!

#include <iostream>

std::cout;
std: :endl;

int main () {
std::cout << "Hello, world!" << std::endl;
0;



Recap -

#include <iostream>

std: :endl;

int main () {

std::cout << "Hello,

0;

ello, world!

Whenever you use cout,
the compiler will assume
you mean std: :cout

world!" << std::endl;



Recap -

#include <iostream>

std: :endl;

int main() {

cout << "Hello,

0;

ello, world!

Whenever you use cout,
the compiler will assume
you mean std: :cout

world!" << endl;



Recap -

#include <iostream>

std: :endl;

int main() {

ello, world!

Whenever you use cout,
the compiler will assume
you mean std: :cout

cout << "Hello, world!" << endl;

0;



Recap -

#include <iostream>

std: :endl;

int main () {

ello, world!

Whenever you use cout,
the compiler will assume
you mean std: :cout

cout << "Hello, world!" << endl;

0;

The std directive is a bazooka version of this.




Streams



"Designing and implementing a general input/output facility for a
programming language is notoriously difficult"

- Bjarne Stroustrup



Streams - Introduction

A stream is an abstraction for input/output.

You can think of it as a source (input) or destination (output) of
characters of indefinite length.



Streams - Introduction

A stream is an abstraction for input/output.

You can think of it as a source (input) or destination (output) of
characters of indefinite length.

std::cout

<i:::: << "Hello, world!"




Streams - Introduction

A stream is an abstraction for input/output.

You can think of it as a source (input) or destination (output) of
characters of indefinite length.

std::cout

<i:::: "Hello, world!"




Streams - Introduction

A stream is an abstraction for input/output.

You can think of it as a source (input) or destination (output) of
characters of indefinite length.

std::cout

<




The |Idea Behind Streams



The Idea Behind Streams

You can write data of multiple types to stream objects.

cout << "Strings work!" << endl;

cout << 1729 << endl;

cout << 3.14 << endl;

cout << "Mixed types - " << 1123 << endl;

In particular, any primitive type can be inserted into a stream! For other
types, you need to explicitly tell C++ how to do this.



The Idea Behind Streams

How does this work?
|dea:

e Input from useris intext form (string)
e OQutputto userisintextform(string)
e Intermediate computation needs to be done on object type



The Idea Behind Streams

Streams allow a C++ programmer to convert between the
string representation of data, and the data itself.



Types of Streams



Output Streams

Can only receive data.

e The std::cout stream is an example of an output stream.
e All output streams are of type std: :

Send data using stream insertion operator:

Insertions converts data to string and sends to stream.



Output Streams

We canusea std:: for more than just printing to a
console.
You can send the data to a file usinga std: : , which

is a special type of std: :

Output Stream Example

(output.cpp)



Input Streams

Quick test!

How familiar is this:

int x;
::Cclin >> X3



Input Streams

Can only give you data.

e The std::cin stream is an example of an input stream.
e Allinput streams are of type std::

Pull out data using stream extraction operator:

Extraction gets data from stream as a string and converts it into
the appropriate type.



Input Streams

Just like with std: : ,Wecanuseastd:: for
more than just console |O.

You can read data from a file usinga std: :

Input Stream Example

(input.cpp)



Input Streams

Tounderstand a std:: , think of it as a sequence of characters.

EIEI I ERENEEEY
I

position




Input Streams

Extracting an integer will read as many characters as possible from the stream.

EIEI I EEENENEY
I

position

int value;
input >> wvalue;



Input Streams

Extracting again will skip over any whitespace when reading the next integer.

EIEIEEENEEEY
I

position

int value;
input >> wvalue;



Input Streams

When no more data is left, the fail bit will be set to true and input.fail ()
will return true.

EIEIEEENEEEY
I

position

int value;
input >> wvalue;



Input Streams

More Input Stream Examples

(input.cpp)



Reading Data From a File

There are some quirks with extracting a string from a stream.

Reading into a string using >> will only read a single word, not the
whole line.

To read a whole line, use

getline(istream& stream, stringé& line);



Input Streams

More Input Stream Examples

(input.cpp)



Input Stream

Think carefully when mixing >> and getline!

Using >> can have some weird bugs so next lesson we will talk
about a way to avoid it by using getline and string streams.



Some Questions to Ponder

What happens if you read into the wrong type?
Can you extract user defined types (e.g. classes) from a stream?

Can you control how output stream output the data we give
them?

Is there a stream that might be both an input and output stream?

Find out next time!




Next Time

Streams - The Details






